陳楠楠 戴德
【摘要】 惡性腫瘤的發(fā)生、發(fā)展及轉(zhuǎn)移是一個(gè)多因素、多步驟的過(guò)程,大量的流行病學(xué)研究表明炎癥與惡性腫瘤之間存在密切聯(lián)系。隨著科學(xué)的發(fā)展,人們發(fā)現(xiàn)炎性細(xì)胞及炎性細(xì)胞因子參與了腫瘤的病理過(guò)程,包括發(fā)生、促進(jìn)、惡性轉(zhuǎn)化、侵襲及轉(zhuǎn)移,同時(shí),核轉(zhuǎn)錄因子-κB(NF-κB)在炎癥與腫瘤之間扮演著重要作用。基于此,探討重要炎性細(xì)胞、炎性細(xì)胞因子及NF-κB在炎癥與癌癥所起的“橋梁”作用是有意義的。
【關(guān)鍵詞】 慢性炎癥 惡性腫瘤 炎性細(xì)胞 炎性因子 核轉(zhuǎn)錄因子-κB
[Abstract] The occurrence, development and metastasis of malignant tumors is a multi-factor, multi-step process, a large number of epidemiological studies have shown that there is a close relationship between inflammation and malignant tumors. With the development of science, it is found that inflammatory cells and inflammatory cytokines are involved in the pathological processes of tumors, including occurrence, promotion, malignant conversion, invasion and metastasis, at the same time, NF-κB plays an important role between inflammation and tumors. Based on this, it is meaningful to explore the role of important inflammatory cells, inflammatory cytokines and NF-κB in bridging inflammation and cancer.
1 800年前,Galenus首次提出炎癥與腫瘤的關(guān)系,認(rèn)為腫瘤與炎癥組織在病理生理上相似,炎癥組織損傷可能引起腫瘤的發(fā)生[1],19世紀(jì),Rudolf Virchow發(fā)現(xiàn)了腫瘤內(nèi)白細(xì)胞的存在,提供了癌癥可能與慢性炎癥之間存在聯(lián)系的第一個(gè)證據(jù)[2]。有關(guān)數(shù)據(jù)表明,20%的癌癥與炎癥反應(yīng)相關(guān)[3],慢性炎癥會(huì)加速癌癥的發(fā)展,腫瘤誘發(fā)的炎癥會(huì)產(chǎn)生“雪球”效應(yīng)使腫瘤持續(xù)發(fā)展[4]。Francesco等更是將腫瘤相關(guān)性炎癥歸于癌癥的第七大生物學(xué)特征[1]。慢性炎癥可以通過(guò)提供生物活性分子浸潤(rùn)腫瘤微環(huán)境來(lái)增加癌癥發(fā)生的風(fēng)險(xiǎn),包括細(xì)胞因子、生長(zhǎng)因子及趨化因子。在這里筆者探討在腫瘤發(fā)生過(guò)程中關(guān)鍵的炎癥細(xì)胞及因子在腫瘤血管生成、上皮間充質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)、侵襲及轉(zhuǎn)移中的所扮演的角色。
1 慢性炎癥和惡性腫瘤
在一般情況下,當(dāng)機(jī)體出現(xiàn)炎癥反應(yīng)時(shí),炎癥可以通過(guò)影響多種細(xì)胞和因子來(lái)調(diào)控機(jī)體的病理與生理信號(hào),從而使平衡向促進(jìn)組織修復(fù)及消滅炎癥方向發(fā)展,此時(shí),炎癥反應(yīng)是機(jī)體的適應(yīng)性反應(yīng)。而與腫瘤相關(guān)的炎癥屬于慢性炎癥,可以促進(jìn)腫瘤的發(fā)展[5]。在慢性炎癥中,致炎因素?zé)o法被消除而導(dǎo)致促炎因子的過(guò)度表達(dá),局部微環(huán)境中反復(fù)的組織損傷與修復(fù)使活化的炎癥細(xì)胞釋放大量的炎性因子與介質(zhì),如活性氧(reactive oxygen species,ROS)與活性氮中間產(chǎn)物(reactive nitrogen species,RNS)等,一方面,這類物質(zhì)可以引起細(xì)胞DNA鏈斷裂,導(dǎo)致基因組的不穩(wěn)定,誘發(fā)基因發(fā)生突變[6];另一方面,炎性因子與介質(zhì)可以引起原癌基因活化和抑癌基因的失活,如P53抑癌基因的失活能抑制細(xì)胞的凋亡,從而引起炎性惡變轉(zhuǎn)化,最終促進(jìn)腫瘤的發(fā)生[7]。
2 炎性細(xì)胞、炎性因子與惡性腫瘤
2.1 巨噬細(xì)胞 腫瘤微環(huán)境中大量炎癥細(xì)胞浸潤(rùn)是腫瘤的病理學(xué)特征,巨噬細(xì)胞是腫瘤微環(huán)境中的主要免疫細(xì)胞,幾乎在所有腫瘤中都有不同程度的浸潤(rùn)[8]。在腫瘤微環(huán)境中浸潤(rùn)的巨噬細(xì)胞稱為“腫瘤相關(guān)巨噬細(xì)胞”(tumor-associated macrophages,TAM),Mantovani等[8]科學(xué)家發(fā)現(xiàn),在轉(zhuǎn)移的惡性腫瘤中,TAMs可以促進(jìn)腫瘤的生長(zhǎng)和轉(zhuǎn)移。TAM具有兩種極化狀態(tài),即M1型(classically activated macrophages,經(jīng)典活化型)和M2型(alternatively activated macrophages,交替活化型)[9]。M1型巨噬細(xì)胞可上調(diào)IL-12、IL-23等細(xì)胞因子激活Th1反應(yīng)[10],激活的M1型巨噬細(xì)胞產(chǎn)生TNF-α、一氧化氮(NO)、活性氧中間體(ROI)等有毒物質(zhì),對(duì)腫瘤及病原微生物產(chǎn)生毒性作用[9]。相反,M2型巨噬細(xì)胞受IL-4和IL-13刺激分泌IL-10、轉(zhuǎn)化生長(zhǎng)因子-β(TGF-β)和趨化因子,參與腫瘤基質(zhì)重塑及促進(jìn)腫瘤進(jìn)展[11]。在原發(fā)腫瘤及轉(zhuǎn)移灶中,TAM主要呈現(xiàn)為促腫瘤表型,相關(guān)臨床證據(jù)也表明,在腫瘤組織中,TAM聚集越多,患者預(yù)后越差[12]。TAM可分泌VEGF、基質(zhì)金屬蛋白酶、TGF-β、環(huán)加氧酶2(COX-2)等多種細(xì)胞因子來(lái)誘導(dǎo)新血管的生成[9, 12]。Jiang等[13]研究發(fā)現(xiàn),在宮頸癌的發(fā)展和進(jìn)展過(guò)程中,TAMs與腫瘤血管生成有著密切的聯(lián)系。Gordon等[14]發(fā)現(xiàn),小鼠與人類的TAM均表達(dá)程序性死亡受體-1(programmed death-1,PD-1),PD-1的表達(dá)與抗腫瘤細(xì)胞的吞噬能力呈負(fù)相關(guān),間接表明了TAM的促腫瘤作用。
2.2 白細(xì)胞介素-6(IL-6) 有研究表明,腫瘤微環(huán)境中高濃度的IL-6反映出炎癥與惡性腫瘤之間的密切關(guān)系[15],IL-6在多種惡性腫瘤基質(zhì)中高表達(dá),是炎癥與腫瘤聯(lián)系的重要參與者[16-17],通過(guò)促進(jìn)許多炎癥介質(zhì)的產(chǎn)生來(lái)引發(fā)和維持炎癥[18]。惡性腫瘤通過(guò)上皮間充質(zhì)轉(zhuǎn)化實(shí)現(xiàn)癌細(xì)胞的侵襲及轉(zhuǎn)移[19],Rokavec等[20]證明被IL-6誘導(dǎo)后的結(jié)直腸癌(CRC)細(xì)胞系DLD-1發(fā)生了上皮-間質(zhì)轉(zhuǎn)化,隨后作者通過(guò)qRT-PCR等方法確定結(jié)直腸癌細(xì)胞促進(jìn)IL-6的產(chǎn)生,IL-6激活STAT-3致癌轉(zhuǎn)錄因子抑制miR-34a的表達(dá),從而誘導(dǎo)細(xì)胞發(fā)生EMT及轉(zhuǎn)移。Goulet等[21]通過(guò)實(shí)驗(yàn)也發(fā)現(xiàn)CAF通過(guò)IL-6誘導(dǎo)EMT促進(jìn)非侵襲性膀胱癌的侵襲性表型。惡性腫瘤通過(guò)新生血管生成實(shí)現(xiàn)細(xì)胞增殖以形成轉(zhuǎn)移灶,IL-6可以通過(guò)激活STAT-3等信號(hào)通路促進(jìn)血管內(nèi)皮生長(zhǎng)因子的表達(dá)[20]。有關(guān)臨床數(shù)據(jù)表明,在胰腺癌與胰腺炎、膀胱癌與膀胱炎中,IL-6可以作用惡性腫瘤預(yù)測(cè)因子,具有較高的敏感性與特異性[22]。
2.3 TGF-β TGF-β是正常細(xì)胞和腫瘤細(xì)胞普遍分泌的細(xì)胞因子,其通過(guò)復(fù)雜的信號(hào)通路調(diào)節(jié)細(xì)胞的增殖、分化、黏附、遷移及其他功能。目前主流觀點(diǎn)認(rèn)為TGF-β在腫瘤發(fā)生發(fā)展的不同階段及不同的腫瘤類型中起著復(fù)雜作用,包括促進(jìn)和抑制作用[23]。在腫瘤發(fā)生的早期階段,TGF-β通過(guò)不同機(jī)制觸發(fā)G1細(xì)胞周期停滯來(lái)抑制腫瘤生長(zhǎng),如:上調(diào)細(xì)胞周期依賴性激酶抑制蛋白CDK-I(p15,p21,p27)和下調(diào)c-Myc及ID家族蛋白[24-25];在MCF10A和MDA-MB-231細(xì)胞系中,腫瘤抑制因子p53促進(jìn)TGF-β誘導(dǎo)的p21表達(dá),從而阻斷細(xì)胞周期進(jìn)程[26]。在腫瘤晚期,腫瘤細(xì)胞因獲得突變或失去腫瘤抑制基因的功能而對(duì)TGF-β誘導(dǎo)的細(xì)胞周期生長(zhǎng)停滯產(chǎn)生抵抗,TGF-β受體通過(guò)SMDA或非SMAD信號(hào)通路誘導(dǎo)EMT發(fā)生來(lái)實(shí)現(xiàn)腫瘤細(xì)胞遷移及侵襲等惡性生物學(xué)行為[27]。柳惠斌等[28]發(fā)現(xiàn),在A549細(xì)胞中,TGF-β1過(guò)表達(dá)上調(diào)波形蛋白Vimentin及與EMT相關(guān)的轉(zhuǎn)錄因子Twist、Snail,而E-鈣粘蛋白表達(dá)明顯下降,提示TGF-β1過(guò)表達(dá)能夠誘導(dǎo)EMT發(fā)生,顯著促進(jìn)了肺腺癌的侵襲及轉(zhuǎn)移。TGF-β可以促進(jìn)與腫瘤相關(guān)的成纖維細(xì)胞(CAF)中的肌成纖維細(xì)胞百分比和侵襲率,增強(qiáng)腫瘤侵襲的能力[29]。
3 炎癥誘導(dǎo)腫瘤的關(guān)鍵信號(hào)分子—核轉(zhuǎn)錄因子-κB(NF-κB)NF-κB廣泛存在于真核細(xì)胞內(nèi),最初是由David Baltimore等在成熟B淋巴細(xì)胞核中發(fā)現(xiàn)并命名的,它參與了多種細(xì)胞生物學(xué)過(guò)程,包括:細(xì)胞增殖、細(xì)胞生長(zhǎng)、細(xì)胞凋亡、細(xì)胞自噬、炎癥反應(yīng)、免疫應(yīng)答及促進(jìn)癌變等,在其中起雙向調(diào)節(jié)作用[30]。NF-κB活化信號(hào)通路包括經(jīng)典通路和非經(jīng)典通路,與炎癥及腫瘤的發(fā)生密切相關(guān)[31],通過(guò)胞內(nèi)信號(hào)通路或者相關(guān)基因表達(dá)的調(diào)控來(lái)影響炎癥以及腫瘤的發(fā)生、發(fā)展,包括促進(jìn)腫瘤細(xì)胞增殖、抑制腫瘤細(xì)胞凋亡、增加腫瘤的血管生成及增強(qiáng)腫瘤細(xì)胞侵襲、轉(zhuǎn)移能力[32]。NF-κB可以誘導(dǎo)多種促炎介質(zhì)的過(guò)度或持續(xù)表達(dá),如TNF-α、IL-6、IL-8及誘導(dǎo)型一氧化氮合酶(inducible nitric oxide synthase,iNOS),招募大量的炎癥細(xì)胞浸潤(rùn)于炎癥部位,產(chǎn)生一氧化氮和前列腺素,最后導(dǎo)致炎癥反應(yīng)[33]。多種炎癥介質(zhì)引起基因組不穩(wěn)定性而導(dǎo)致細(xì)胞發(fā)生基因突變,突變的細(xì)胞在炎性環(huán)境中異常增殖,促進(jìn)腫瘤的發(fā)生。NF-κB通過(guò)作用于細(xì)胞周期還可以將這種致瘤突變傳遞給下一代[34]。NF-κB同時(shí)有促進(jìn)細(xì)胞凋亡和抑制細(xì)胞凋亡雙向調(diào)節(jié)作用,在線粒體凋亡通路中,NF-κB可以激活細(xì)胞凋亡抑制蛋白(inhibitor of apoptosis proteins,IAP)家族成員來(lái)抑制細(xì)胞凋亡,同時(shí),NF-κB信號(hào)通路可以被腫瘤微環(huán)境中的MDSC分泌的IL-1β激活,導(dǎo)致如抗凋亡蛋白基因等下游基因高表達(dá),從而抑制細(xì)胞凋亡,促進(jìn)腫瘤細(xì)胞增殖[35]。NF-κB可以通過(guò)啟動(dòng)Slug、Twist家族bHLH轉(zhuǎn)錄因子1(twist family bHLH transcription factor 1,TWIST1)、鋅指轉(zhuǎn)錄因子(zinc-finger transcription factor,SNAIL)來(lái)促進(jìn)腫瘤細(xì)胞惡性表型形成和EMT過(guò)程,從而實(shí)現(xiàn)腫瘤細(xì)胞到血液、淋巴組織的轉(zhuǎn)移[36]。
慢性炎癥誘導(dǎo)腫瘤發(fā)生發(fā)展的機(jī)制十分復(fù)雜,與多種因素有關(guān),可能與腫瘤微環(huán)境的改變、與NF-κB及STAT等重要信號(hào)通路有關(guān),目前并無(wú)明確說(shuō)法。致癌變化也可以使腫瘤促進(jìn)炎性環(huán)境,無(wú)論兩者先后順序,可以明確的是,炎性細(xì)胞及炎性細(xì)胞因子可以在癌癥發(fā)生的生物學(xué)過(guò)程中起促進(jìn)作用。鑒于此,筆者有理由相信,隨著對(duì)炎癥與腫瘤之間關(guān)系的進(jìn)一步了解,人類能發(fā)現(xiàn)更為有效的治療癌癥的措施。
參考文獻(xiàn)
[1] Trinchieri G.Cancer and inflammation: an old intuition with rapidly evolving new concepts[J].Annu Rev Immunol,2012,30:677-706.
[2] Balkwill F,Mantovani A.Inflammation and cancer: back to Virchow?[J].Lancet,2001,357(9255):539-545.
[3] Wang K,Karin M.Tumor-Elicited Inflammation and Colorectal Cancer[J].Adv Cancer Res,2015,128:173-196.
[4] Lin W W,Karin M.A cytokine-mediated link between innate immunity, inflammation, and cancer[J].J Clin Invest,2007,117(5):1175-1183.
[5] Pesic M,Greten F R.Inflammation and cancer: tissue regeneration gone awry[J].Curr Opin Cell Biol,2016,43:55-61.
[6] Meira L B,Bugni J M,Green S L,et al.DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice[J].J Clin Invest,2008,118(7):2516-2525.
[7] Grivennikov S I,Greten F R,Karin M.Immunity, inflammation, and cancer[J].Cell,2010,140(6):883-899.
[8] Mantovani A,Marchesi F,Malesci A,et al.Tumour-associated macrophages as treatment targets in oncology[J].Nat Rev Clin Oncol,2017,14(7):399-416.
[9] Aras S,Zaidi M R.TAMeless traitors: macrophages in cancer progression and metastasis[J].Br J Cancer,2017,117(11):1583-1591.
[10] Verreck F A,de Boer T,Langenberg D M,et al.Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria[J].Proc Natl Acad Sci USA,2004,101(13):4560-4565.
[11] Fan X,Zhang H,Cheng Y,et al.Double Roles of Macrophages in Human Neuroimmune Diseases and Their Animal Models[J].Mediators Inflamm,2016,2016:8489251.
[12] Noy R,Pollard J W.Tumor-associated macrophages: from mechanisms to therapy[J].Immunity,2014,41(1):49-61.
[13] Jiang S,Yang Y,F(xiàn)ang M,et al.Co-evolution of tumor-associated macrophages and tumor neo-vessels during cervical cancer invasion[J].Oncol Lett,2016,12(4):2625-2631.
[14] Gordon S R,Maute R L,Dulken B W,et al.PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity[J].Nature,2017,545(7655):495-499.
[15] Kumari N,Dwarakanath B S,Das A,et al.Role of interleukin-6 in cancer progression and therapeutic resistance[J].Tumour Biol,2016,37(9):11553-11572.
[16] Li S,Wu Z,Li L,et al.Interleukin-6 (IL-6) Receptor Antagonist Protects Against Rheumatoid Arthritis[J].Med Sci Monit,2016,22:2113-2118.
[17] Ataie-Kachoie P,Pourgholami M H,Richardson D R,et al.
Gene of the month: Interleukin 6 (IL-6)[J].J Clin Pathol,2014,67(11):932-937.
[18] Tanaka T,Narazaki M,Kishimoto T.IL-6 in inflammation, immunity, and disease[J].Cold Spring Harb Perspect Biol,2014,6(10):a16295.
[19] Marcucci F,Stassi G,De Maria R.Epithelial-mesenchymal transition: a new target in anticancer drug discovery[J].Nat Rev Drug Discov,2016,15(5):311-325.
[20] Rokavec M,Oner M G,Li H,et al.IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis[J].J Clin Invest,2014,124(4):1853-1867.
[21] Goulet C R,Champagne A,Bernard G,et al.Cancer-associated fibroblasts induce epithelial-mesenchymal transition of bladder cancer cells through paracrine IL-6 signalling[J].BMC Cancer,2019,19(1):137.
[22]周斌,張毅.慢性炎癥微環(huán)境與腫瘤[J].臨床檢驗(yàn)雜志,2017,35(11):840-843.
[23] Guo Q,Betts C,Pennock N,et al.Mammary Gland Involution Provides a Unique Model to Study the TGF-β Cancer Paradox[J].J Clin Med,2017,6(1):10.
[24] Huang J J,Blobe G C.Dichotomous roles of TGF-β in human cancer[J].Biochemical Society Transactions,2016,44(5):1441-1454.
[25] Landskron G,De la Fuente M,Thuwajit P,et al.Chronic inflammation and cytokines in the tumor microenvironment[J].
J Immunol Res,2014:149185.
[26] Xu J,Acharya S,Sahin O,et al.14-3-3ζ turns TGF-βs function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of Smad partners from p53 to Gli2[J].Cancer Cell,2015,27(2):177-192.
[27] Hao Y,Baker D,Ten Dijke P.TGF-β-Mediated Epithelial-Mesenchymal Transition and Cancer Metastasis[J].International Journal of Molecular Sciences,2019,20(11):2767.
[28]柳惠斌,郭駿,蒲艷,等.轉(zhuǎn)化生長(zhǎng)因子-β1誘導(dǎo)人肺腺癌細(xì)胞侵襲遷移的機(jī)制[J].中華實(shí)驗(yàn)外科雜志,2018,35(4):706-709.
[29] Caja L,Dituri F,Mancarella S,et al.TGF-β and the Tissue Microenvironment: Relevance in Fibrosis and Cancer[J].Int J Mol Sci,2018,19(5):1294.
[30] Zhang Q, Lenardo M J,Baltimore D.30 Years of NF-κB: A Blossoming of Relevance to Human Pathobiology[J].Cell,2017,168(1-2):37-57.
[31] Mothes J,Busse D,Kofahl B,et al.Sources of dynamic variability in NF-kappaB signal transduction: a mechanistic model[J].Bioessays,2015,37(4):452-462.
[32] Prasad S,Ravindran J,Aggarwal B B.NF-κB and cancer: how intimate is this relationship[J].Molecular and Cellular Biochemistry,2010,336(1-2):25-37.
[33] Zhou Y,Xia L,Liu Q,et al.Induction of Pro-Inflammatory Response via Activated Macrophage-Mediated NF-κB and STAT3 Pathways in Gastric Cancer Cells[J].Cell Physiol Biochem,2018,47(4):1399-1410.
[34] Slattery M L,Mullany L E,Sakoda L,et al.The NF-κB signalling pathway in colorectal cancer: associations between dysregulated gene and miRNA expression[J].J Cancer Res Clin Oncol,2018,144(2):269-283.
[35] Huang R L,Yuan Y,Zou G M,et al.LPS-stimulated inflammatory environment inhibits BMP-2-induced osteoblastic differentiation through crosstalk between TLR4/MyD88/NF-kappaB and BMP/Smad signaling[J].Stem Cells Dev,2014,23(3):277-289.
[36] Rafa H,Benkhelifa S,Aityounes S,et al.All-Trans Retinoic Acid Modulates TLR4/NF-κB Signaling Pathway Targeting TNF-α and Nitric Oxide Synthase 2 Expression in Colonic Mucosa during Ulcerative Colitis and Colitis Associated Cancer[J].Mediators of inflammation,2017:7353252.
(收稿日期:2019-10-28) (本文編輯:張爽)
中國(guó)醫(yī)學(xué)創(chuàng)新2020年14期