趙?軍,王稼晨,閆?祺,馬?凌,李文甲
軋鋼加熱爐節(jié)能理論及提效方案規(guī)劃與評價
趙?軍,王稼晨,閆?祺,馬?凌,李文甲
(天津大學機械工程學院,天津 300350)
軋鋼加熱爐;能量損失;節(jié)能率;工序匹配;余熱回收
鋼鐵行業(yè)是我國國民經(jīng)濟的重要支柱產(chǎn)業(yè)[1].近幾十年來,我國鋼鐵產(chǎn)量快速增長,2018年我國粗鋼生產(chǎn)總量達到9.28億噸,占據(jù)了全球粗鋼生產(chǎn)總量的50%以上,鋼鐵行業(yè)對能源的需求也不斷增加[2-3].
軋鋼加熱爐是鋼鐵生產(chǎn)熱軋工序中的主要生產(chǎn)設備,是鋼鐵行業(yè)中主要的耗能設備之一,其能耗約占鋼鐵生產(chǎn)總能耗的10%~20%[4-6].如何降低加熱爐的能耗對于整個鋼鐵行業(yè)具有重要意義.因此,對加熱爐能效的研究一直是專家學者關注的焦點.
目前對軋鋼加熱爐能效的研究主要包括燃燒過程控制、傳熱傳質(zhì)機理分析、流程調(diào)度優(yōu)化、余熱回收技術以及爐體保溫的研究.在燃燒調(diào)控方面,曹衛(wèi)華等[7]提出了一種直接針對空氣、燃氣閥門開度的模糊專家控制系統(tǒng),穩(wěn)態(tài)控制精度可達5%;Steinboeck等[8]設計了一種非線性模式預測控制器,使出爐溫度在設定溫度范圍內(nèi)的板坯比率由41%升至88%;Manh等[9]提出將分布式模型預測控制用于加熱爐調(diào)控,相比于PID調(diào)控方式可降低能耗1.7%.在傳熱傳質(zhì)機理分析方面,Tang等[10]建立了預測板坯在加熱過程中的溫度變化的二維數(shù)值傳熱模型,實現(xiàn)了板坯溫度預測值與實際測量值的偏差在±15℃范圍內(nèi);Dubey等[11]建立了預測鋼坯氧化鐵皮生長的三維瞬態(tài)數(shù)值傳熱模型,表明最大氧化皮厚度位置與鋼坯上的最大溫度位置一致.馮輝君等[12]以整個連鑄連軋流程為研究對象,對薄板坯在加熱爐中加熱過程進行了數(shù)值計算,發(fā)現(xiàn)加熱段爐氣溫度持續(xù)上升的加熱方式使得爐氣溫度和薄板坯表面溫度變化趨勢基本相同.在流程調(diào)度優(yōu)化方面,屠乃威等[13]設計了蟻群優(yōu)化算法求解冷熱板坯混裝模式下的加熱爐調(diào)度問題,縮短鋼坯加熱時間的同時實現(xiàn)了算法求解時間不超過4min;楊業(yè)建等[14]構造了采用二進制編碼方式的遺傳禁忌搜索算法,求解以生產(chǎn)能耗最小化和加熱質(zhì)量最優(yōu)化為主次目標的加熱爐調(diào)度模型,與人工調(diào)度相比可將鋼坯入爐溫度提高120℃,降低加熱爐能耗10%.在余熱回收方面,Si等[15]提出用煙氣余熱預熱鋼坯,將鋼坯預熱至315℃時每年可節(jié)約21.5萬美元.Kilinc等[16]設計了一種省煤器,將加熱爐煙氣溫度從383℃降至215℃,并可產(chǎn)生90℃的熱水滿足企業(yè)熱水需求.孟百宏等[17]提出在加熱爐的煙道中加設余熱鍋爐,每年可增加蒸汽產(chǎn)量18.76萬噸.在爐體保溫的研究方面,F(xiàn)eng等[18]發(fā)現(xiàn)在保溫材料的總體積和總截面一定的約束下,采用基于最小的熱耗散而得到的隔熱層的最佳構造可以降低爐體平均熱損失率.劉強等[19]發(fā)現(xiàn)在加熱爐高溫段頂部安裝高黑度系數(shù)輻射體,通過將氣體輻射轉(zhuǎn)換為黑體輻射可降低加熱爐單耗3%~5%.Feng等[20]以最小熱損失率為優(yōu)化目標設計了加熱爐壁多層保溫結構,相比于傳統(tǒng)爐壁隔熱層厚度可減少9.5%.然而,現(xiàn)有研究大多只針對加熱爐某種能效優(yōu)化方法進行了分析論證,并未對加熱爐能量損失的原因深入分析,在對加熱爐能效優(yōu)化方法的節(jié)能效果的評價上也有所欠缺.
本文以軋鋼加熱爐的能量系統(tǒng)為研究對象,圖1為軋鋼加熱爐結構示意.軋鋼加熱爐具體工作過程為:鋼坯從左側進料端裝入,由爐內(nèi)步進機構帶動移動,依次經(jīng)過預熱段、加熱段和均熱段加熱,滿足工藝要求后從右側出料端排出.加熱段和均熱段由爐內(nèi)燒嘴噴出的燃氣燃燒供熱,預熱段由加熱段和均熱段產(chǎn)生的高溫煙氣供熱,煙氣從左側煙道排出.
1.2.1?加熱爐能效分析模型
圖1?軋鋼加熱爐結構示意
(1) 軋鋼加熱爐為平穩(wěn)運行的開口系統(tǒng).
(2) 所有氣體(燃氣、空氣、煙氣等)均視為理想氣體.
(3) 外界環(huán)境條件0=303.15K(0=30℃),0=101.325kPa.
(4) 不考慮加熱爐系統(tǒng)中涉及到的物質(zhì)的動能與勢能.
(5) 不考慮鼓風機、步進機構等設備消耗的電能.
對于平穩(wěn)運行的開口系統(tǒng),根據(jù)質(zhì)量守恒有
式中:in為加熱爐輸入的質(zhì)量流;out為加熱爐輸出的質(zhì)量流.
根據(jù)熱平衡有
模型中各物質(zhì)流的物理熱t(yī),i和發(fā)生化學反應的輸入物質(zhì)流的化學反應熱c,i的計算式分別為
式中:、c、Δ分別為該物質(zhì)的質(zhì)量、平均定壓比熱和溫度變化量;f和i分別為該物質(zhì)終態(tài)和初態(tài)的焓值;為該物質(zhì)單位質(zhì)量的化學反應熱.
1.2.2?加熱爐能效評估
式中:f,p和i,p分別為鋼坯終態(tài)焓值、初態(tài)焓值;p為單位質(zhì)量鋼坯的氧化熱;為該加熱爐的燒損率,均可視為常數(shù).
1.2.3?加熱爐能效優(yōu)化方法及其評價
深入分析加熱爐能量損失原因以尋找加熱爐能效優(yōu)化方法.考慮到加熱爐的實際工作過程,其進料與出料受到前后工序的影響,為間歇生產(chǎn)過程,前后工序的不匹配也會造成加熱爐能量的未有效利用;分析式(2)中的loss,工序不匹配引起的熱量未有效利用分散到loss的各項中,故將loss進一步劃分為可避免熱損失av loss與不可避免熱損失un loss,其表達式為
通過對能量損失原因的劃分可針對性地提出能效優(yōu)化方法.
在對于能效優(yōu)化技術的節(jié)能效果的評價方面,王忠金等[21]提出了評價指標節(jié)能率q-,其計算公式為
式中q0、q1分別為采用優(yōu)化技術前、后加熱爐的熱?效率.
可根據(jù)式(16)計算出的節(jié)能率對加熱爐采用的能效優(yōu)化方法的節(jié)能效果進行評價.
采用能效優(yōu)化方法后,加熱爐標準燃料消耗量隨之變化,其數(shù)值可直觀表達采用能效優(yōu)化技術后加熱爐的能效情況,故也用標準燃料消耗量作為評價能效優(yōu)化方法的指標.
以某鋼廠軋鋼加熱爐實際生產(chǎn)過程為例進行案例分析,該加熱爐所用燃料為高爐煤氣,進料端鋼坯均為來自板坯庫的冷坯,爐體外部有汽化冷卻裝置.該軋鋼加熱爐的基本生產(chǎn)參數(shù)如表1所示.
表1?軋鋼加熱爐基本生產(chǎn)參數(shù)
Tab.1?Basic production parameters of the steel-rolling reheating furnace
加熱爐熱量輸入項包括:燃料燃燒產(chǎn)生的熱量in1,燃料帶入的物理熱in2,空氣帶入的物理熱in3,爐內(nèi)鋼坯氧化放熱in4;熱量輸出項包括:鋼坯加熱所需熱量use,出爐煙氣攜帶的熱量out1,汽化冷卻裝置產(chǎn)生蒸汽攜帶的熱量out2,氧化燒損的廢鋼攜帶的熱量out3,由爐壁、爐門及爐體開孔等其他因素引起的爐體熱損失d.計算得加熱爐熱平衡如表2所示.
表2?軋鋼加熱爐熱平衡
Tab.2?Heat balance of the steel-rolling reheating furnace
Tab.3 Exergy balance of the steel-rolling reheating fur-nace
熱軋工序?qū)嶋H生產(chǎn)過程通常有多臺加熱爐和一套軋制機組同時工作,其實際生產(chǎn)過程受到以下約束:同一批次內(nèi)各板坯加熱要求、軋制要求相差不大,可在同一加熱爐內(nèi)進行加熱;每臺加熱爐可同時加熱多塊板坯;只有加熱爐內(nèi)鋼坯數(shù)量小于加熱爐爐容時,鋼坯才能入爐;鋼坯出爐受到前一塊出爐鋼坯的軋制時間約束,若前一塊板坯軋制未完成,則該塊板坯即使加熱完成也不能出爐;同一臺加熱爐內(nèi)遵循先入先出規(guī)則.上述實際約束條件的存在也是工序不匹配導致的加熱爐能量損失的原因,若同一爐內(nèi)相鄰兩塊鋼坯,后入爐的鋼坯在先入爐的鋼坯軋制完成前即使加熱完成也不能及時出爐,必須駐爐等待,部分輸入加熱爐的能量也因此被浪費.
圖2?能效優(yōu)化方法作用途徑
根據(jù)第2.2節(jié)中設定軋鋼加熱爐為平穩(wěn)運行的開口系統(tǒng),單位時間內(nèi)加熱爐能量的輸入量可視為定值,工序匹配通過減少鋼坯的駐爐等待時間來減少生產(chǎn)批次鋼坯的加熱時間,從而減少生產(chǎn)批次鋼坯時加熱爐能量的輸入量,進而實現(xiàn)節(jié)能的效果.
本節(jié)對第2.1節(jié)所述案例進行工序匹配優(yōu)化,案例中生產(chǎn)設備為4臺軋鋼加熱爐搭配一套軋制機組,加熱某一批次鋼坯,共80塊;每塊鋼坯的規(guī)格不盡相同,故鋼坯理論加熱時間與軋制時間亦不盡相同,但每塊鋼坯的差別有限,該批次內(nèi)每塊鋼坯的理論加熱時間處于190~230min之間,軋制時間處于1~3min之間,依鋼坯規(guī)格而定;案例中調(diào)度方式為人工調(diào)度,該批次鋼坯總加熱時間為387min.
以同一批次鋼坯在加熱爐內(nèi)加熱的總時長∑最短為優(yōu)化目標對其進行優(yōu)化,在滿足實際生產(chǎn)約束的條件下,以該批次內(nèi)每塊鋼坯入爐號、入爐時間、出爐時間為決策變量,建立數(shù)學模型.優(yōu)化目標的數(shù)學表達式為
式中:為時間;上標o表示出爐,i表示入爐;下標l表示最后一塊鋼坯,f表示第一塊鋼坯,優(yōu)化約束條件包括爐容約束、加熱時間約束、軋制約束、同一爐內(nèi)先入先出約束,其數(shù)學表達式分別為
式中:M、max分別為加熱爐內(nèi)鋼坯數(shù)量、加熱爐爐容;為第塊鋼坯;為第座加熱爐;t,min為第塊鋼坯最短加熱時間;上標z表示軋制完成.
表4?工序匹配優(yōu)化前后加熱爐能效對比
Tab.4?Energy efficiency of the reheating furnace with and without process matching
本節(jié)針對第2.1節(jié)所述案例中加熱爐進行余熱回收分析,案例中加熱爐的出爐煙氣溫度為600℃,流量為57600m3/h,具有余熱回收的潛力;并且該加熱爐燃料預熱溫度、空氣預熱溫度分別為200℃、300℃,流量分別為38000m3/h、26400m3/h,而提供預熱空氣、燃料所需的能量由額外熱源提供.故本節(jié)考慮以燃氣、空氣為載體,將加熱爐出爐煙氣余熱回收并用于預熱加熱爐入口的空氣和燃氣,減少加熱爐為預熱空氣、燃料而消耗能量的同時,降低出爐煙氣的溫度.
利用管式換熱器使燃氣與空氣分別由基準溫度(30℃)升至300℃、200℃,預熱空氣、燃氣所用的換熱器中的熱平衡關系式分別為
式中:g1、g2分別為預熱空氣、燃氣時煙氣的換熱量;a、f分別為空氣、燃氣吸收的熱量;s1、s2分別為兩個傳熱過程的熱損失,熱損失所占總換熱量的比例因換熱器材質(zhì)不同而有所差異,本文中s1、s2分別按g1、g2的10%計算.
據(jù)式(16)可知加熱爐節(jié)能率與熱效率之間的關系,由圖3可直觀看出軋鋼加熱爐各能效優(yōu)化方法的節(jié)能率,其中余熱回收技術比工序匹配方法的節(jié)能率更高,兩種優(yōu)化方法同時使用時,其節(jié)能率為23.56%,加熱爐熱效率升至60.99%.
據(jù)式(13)可知加熱爐標準燃料消耗量與熱效率的關系,由圖4可直觀看出采用能效優(yōu)化方法后加熱爐標準燃料消耗量的變化.未采用節(jié)能優(yōu)化技術時,加熱爐標準燃料消耗量為51.12kg/t(標煤);工序匹配方法、余熱回收技術分別可使標準燃料消耗量降至47.29kg/t(標煤)和44.29kg/t(標煤);兩者同時使用時,加熱爐標準燃料消耗量可降至40.98kg/t(標煤).
圖3?能效優(yōu)化方法的節(jié)能率
圖4?軋鋼加熱爐標準燃料消耗量
對加熱爐節(jié)能理論及提效方案的研究可對軋鋼加熱爐的節(jié)能提供一定的技術支持.本文首先建立了軋鋼加熱爐通用能效分析模型及能效評估模型,結合加熱爐所處熱軋流程進一步分析加熱爐能量損失原因,并將其劃分為可避免能量損失與不可避免能量損失,相應提出工序匹配與余熱回收兩種能效優(yōu)化方法,以節(jié)能率、優(yōu)化后加熱爐的標準燃料消耗量為評價指標對其節(jié)能效果進行了評價.
(2) 據(jù)能效分析模型及加熱爐所處生產(chǎn)流程特點,加熱爐能量損失可劃分為由加熱爐前后工序不匹配造成的可避免能量損失和由加熱爐設備的固有限制引起的不可避免能量損失;據(jù)能量損失的特點相應提出工序匹配與余熱回收兩種能效優(yōu)化方法.
(3) 工序匹配方法與余熱回收技術的節(jié)能率分別為7.71%和14.69%,分別可使加熱爐標準燃料消耗量由51.12kg/t(標煤)降至47.29kg/t(標煤)、44.29kg/t(標煤).
[1] Ma Shuhua,Wen Zongguo,Chen Jining,et al. Mode of circular economy in China’s iron and steel industry:A case study in Wu’an City[J]. Journal of Cleaner Production,2014,64:505-512.
[2] World Steel Association. World steel in figures 2019 [EB/OL]. https://www. worldsteel. org,2019-06-03.
[3] 國家統(tǒng)計局. 中國統(tǒng)計年鑒—2018[M]. 北京:中國統(tǒng)計出版社,2019.
National Bureau of Statistics. China Statistical Yearbook-2018[M]. Beijing:China Statistics Press,2019(in Chinese).
[4] 王?華. 加熱爐[M]. 4版. 北京:冶金工業(yè)出版社,2015.
Wang Hua. Reheating Furnace[M]. 4th ed. Beijing:Metallurgical Industrial Press,2015(in Chinese).
[5] Lu Biao,Chen Guang,Chen Demin,et al. An energy intensity optimization model for production system in iron and steel industry[J]. Applied Thermal Engineering,2016,100:285-295.
[6] Lu Biao,Chen Demin,Chen Guang,et al. An energy apportionment model for a reheating furnace in a hot rolling mill-A case study[J]. Applied Thermal Engineering,2017,112:174-183.
[7] 曹衛(wèi)華,吳?敏,杜玉曉. 基于閥門開度的加熱爐模糊專家控制[J]. 吉林大學學報:工學版,2004,34(3):475-478.
Cao Weihua,Wu Min,Du Yuxiao. Fuzzy expert control based on valve opening for gas reheating furnace[J]. Journal of Jilin University:Engineering and Technology Edition,2004,34(3):475-478(in Chinese).
[8] Steinboeck A,Wild D,Kugi A. Nonlinear model predictive control of a continuous slab reheating furnace[J]. Control Engineering Practice,2013,21(4):495-508.
[9] Manh N X,Rodriguez-Ayerbe P,Dumur D,et al. Distributed model predictive control of steel slab reheating furnace[J]. IFAC Proceedings Volumes,2012,45(23):175-180.
[10] Tang Guangwu,Saavedra A,Okosun T,et al. Modeling of steel slab reheating process in a walking beam reheating furnace[C]// Proceedings of the ASME Summer Heat Transfer Conference. New York:American Society of Mechanical Engineers,2016:581-588.
[11] Dubey S K,Srinivasan P. Development of three dimensional transient numerical heat conduction model with growth of oxide scale for steel billet reheat simulation [J]. International Journal of Thermal Sciences,2014,84:214-227.
[12] 馮輝君,陳林根,孫豐瑞. 薄板坯連鑄連軋流程數(shù)值分析[J]. 鋼鐵研究,2015,43(4):23-27.
Feng Huijun,Chen Lingen,Sun Fengrui. Numerical analyses of thin slab continuous casting and rolling process[J]. Research on Iron and Steel,2015,43(4):23-27(in Chinese).
[13] 屠乃威,羅小川,柴天佑. 基于蟻群優(yōu)化算法的步進式加熱爐調(diào)度[J]. 東北大學學報:自然科學版,2011,32(1):1-4.
Tu Naiwei,Luo Xiaochuan,Chai Tianyou. Scheduling of walking beam reheating furnaces based on ant colony optimization algorithm[J]. Journal of Northeastern University:Natural Science,2011,32(1):1-4(in Chinese).
[14] 楊業(yè)建,姜澤毅,張欣欣. 鋼坯熱軋加熱爐區(qū)生產(chǎn)調(diào)度模型與算法[J]. 北京科技大學學報,2012,34(7):841-846.
Yang Yejian,Jiang Zeyi,Zhang Xinxin. Model and algorithm of furnace area production scheduling in slab hot rolling[J]. Journal of University of Science and Technology Beijing,2012,34(7):841-846(in Chinese).
[15] Si Minxing,Thompson S,Calder K. Energy efficiency assessment by process heating assessment and survey tool(PHAST)and feasibility analysis of waste heat recovery in the reheat furnace at a steel company[J]. Renewable and Sustainable Energy Reviews,2011,15(6):2904-2908.
[16] Kilinc E,Kaya D,Kilic F,et al. An energy efficiency analysis of an industrial reheating furnace and an implementation of efficiency enhancements methods[J]. Energy,Exploration & Exploitation,2014,32(6):989-1004.
[17] 孟百宏,吳?斌. 余熱鍋爐在加熱爐余熱回收系統(tǒng)的應用[J]. 能源與節(jié)能,2015(4):191-192.
Meng Baihong,Wu Bin. The application of waste heat recovery system of heating furnace in waste heat boiler[J]. Energy and Energy Conservation,2015(4):191-192(in Chinese).
[18] Feng Huijun,Chen Lingen,Xie Zhihui,et al. Constructal entransy dissipation rate minimization for variable cross-section insulation layer of the steel rolling reheating furnace wall[J]. International Communications in Heat and Mass Transfer,2014,52:26-32.
[19] 劉?強,李衛(wèi)東,徐春柏,等. 軋鋼加熱爐綜合節(jié)能技術淺析[J]. 冶金能源,2016,35(4):38-41.
Liu Qiang,Li Weidong,Xu Chunbai,et al. A brief discussion on comprehensive reheating furnace energy saving technology[J]. Energy for Metallurgical Indus-try,2016,35(4):38-41(in Chinese).
[20] Feng Huijun,Chen Lingen,Xie Zhihui,et al. Constructal designs for insulation layers of steel rolling reheating furnace wall with convective and radiative boundary conditions[J]. Applied Thermal Engineering,2016,100:925-931.
[21] 王忠金,周德成,戴萬福. 工業(yè)爐窯節(jié)能原理的數(shù)學表達及節(jié)能分析[J]. 工業(yè)爐,2004,26(5):1-3.
Wang Zhongjin,Zhou Decheng,Dai Wanfu. Mathematic formulation of the theory of saving energy and analysis of saving energy on industry furnaces[J]. Industrial Furnace,2004,26(5):1-3(in Chinese).
Energy-Saving Theory and Optimization Planning and Evaluation for the Steel-Rolling Reheating Furnace
Zhao Jun,Wang Jiachen,Yan Qi,Ma Ling,Li Wenjia
(School of Mechanical Engineering,Tianjin University,Tianjin 300350,China)
Assessments of the energy efficiency of steel-rolling reheating furnaces has formed the basis of energy-saving technologies in steel-rolling production.To study the energy utilization of reheating furnaces,an energy efficiency analysis model that included both the energy flow and exergy flow analysis was presented.In this model,the energy efficiency indicators of reheating furnaces were presented,including thermal efficiency,exergy efficiency,and consumption of standard fuel,and a case study of the energy efficiency assessment of a reheating furnace was conducted.According to the working characteristics of the hot rolling process,the energy losses of the reheating furnaces were divided into avoidable and unavoidable energy loss,which were defined to quantify the losses caused by,respectively,the mismatch of the hot rolling production,and the inherent limitations of the working processes in reheating furnaces.On this basis,two energy efficiency optimization methods of enhancing the performances of process matching and recycling the waste heat of reheating furnaces were proposed.Subsequently,process matching optimization and waste heat recovery analysis were applied in an actual case and evaluated by the indicators for energy-saving rate and consumption of standard fuel.For the two methods applied to the reheating furnace,the energy-saving rates were 7.71% and 14.69%,and the consumption rates of standard fuel were 47.29kg/t(coal equivalent)and 44.29kg/t(coal equivalent),respectively.Furthermore,the comprehensive energy-saving rate reached 23.56% when the two optimization methods were simultaneously used.It was also found that the thermal and exergy efficiencies of the reheating furnace increased,respectively,from 49.36% to 60.99%,and from 41.83% to 47.11%,while the consumption of standard fuel was reduced from 51.12kg/t(coal equivalent)to 40.98kg/t(coal equivalent).The presented model provides feasible suggestions for energy-saving in reheating furnaces.
steel-rolling reheating furnace;energy loss;energy-saving rate;process matching;waste heat recovery
TK123
A
0493-2137(2020)07-0763-08
10.11784/tdxbz201908028
2019-08-16;
2019-10-27.
趙?軍(1964—??),男,博士,教授,zhaojun@tju.edu.cn.
李文甲,liwenjia@tju.edu.cn.
國家重點研發(fā)計劃資助項目(2018YFB0605901).
Supported by the National Key Research and Development Program of China(No.2018YFB0605901).
(責任編輯:孫立華)