韓廣弢 李皓桓 蔡偉松
[摘要] 骨關節(jié)炎是骨科常見的關節(jié)疾病,隨著人口老齡化加重其患病率也在增加。骨關節(jié)炎發(fā)病受多因素的影響,包括氧化應激和活性氧的過量產生。這些因素調節(jié)細胞內信號傳導過程,軟骨細胞衰老和細胞凋亡,細胞外基質合成和降解以及滑膜炎癥和軟骨下骨功能障礙。由于治療骨關節(jié)炎的藥物相對較少,本文針對復雜的氧化應激信號通路為治療骨關節(jié)炎提供策略。
[關鍵詞] 骨關節(jié)炎;氧化應激;軟骨細胞;活性氧;軟骨;滑膜;軟骨下骨;軟組織
[中圖分類號] R684? ? ? ? ? [文獻標識碼] A? ? ? ? ? [文章編號] 1673-7210(2020)03(c)-0029-04
[Abstract] Osteoarthritis is a common joint disease in orthopedics, and its prevalence is increasing with the aging of population. The pathogenesis of osteoarthritis is influenced by multiple factors, including oxidative stress and excessive production of reactive oxygen species, which regulate intracellular signal transduction, chondrocyte aging and apoptosis, extracellular matrix synthesis and degradation, synovial inflammation and subchondral bone function. Due to relatively few drugs for osteoarthritis, this paper targeting complex oxidative stress signaling pathways could provides strategies for treating osteoarthritis.
[Key words] Osteoarthritis; Oxidative stress; Chondrocytes; Reactive oxygen species; Cartilage; Synovial membrane; Subchondral bone; Soft tissue
骨關節(jié)炎(osteoarthritis,OA)是一種病因不明性疾病。它可以影響不同的關節(jié),是導致普通人殘疾的主要原因[1]。其特征是細胞和細胞外基質(ECM)的形態(tài)、生化、分子和生物力學的變化,導致關節(jié)軟骨損失、滑膜炎癥、軟骨下骨硬化、骨贅和軟骨下囊腫的形成。OA是一種多因素、多基因疾病,其發(fā)病受多種遺傳和環(huán)境因素的影響,這些因素與分子通路的激活有關,并最終導致關節(jié)損傷。需要進一步了解這些分子通路及其與不同關節(jié)組織的相互作用,以開發(fā)預防和治療OA的方法。研究顯示,OA的發(fā)生與氧化應激和活性氧(reactive oxygen species,ROS)的產生顯著相關[2]。本文針對氧化應激信號通路對OA的作用進行研究,并總結該通路潛在的治療策略。
1 ROS信號通路
1.1 ROS的定義和來源
ROS是含氧分子的自由基,包括羥基(OH-)、過氧化氫(H2O2)、超氧化物陰離子(O2-)、一氧化氮(NO)和次氯酸鹽離子(OCl-)。由于這些自由基共價鍵中未成對電子的存在,導致ROS存在半衰期短、不穩(wěn)定和高度反應性等缺點。ROS生成的主要位點包括線粒體的氧化磷酸化、非線粒體膜結合的煙酰胺腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleotide,NADPH)氧化酶和黃嘌呤氧化酶(xanthine oxidase,XO)。NADPH和XO最可能來源于線粒體。據估計,線粒體中2%~3%O2電子傳遞鏈是超氧化物陰離子,而不是水[3]。NADPH氧化酶由5個組分組成:3個位于線粒體胞漿,2個位于線粒體內膜。在NADPH氧化酶刺激下,細胞因子轉移到細胞膜的內表面形成一種激活態(tài)酶復合物,具有NADPH氧化酶活性。非吞噬細胞也經歷相同的過程。XO催化亞黃嘌呤氧化成黃嘌呤,生成H2O2[4]。需氧生物已經進化出清除ROS的機制。這種抗氧化系統(tǒng)包括酶類和非酶類抗氧化劑,如超氧化物歧化酶(SOD)、過氧化氫酶(CAT)、谷胱甘肽過氧化物酶、谷胱甘肽(L-Glutathione,GSH)、NADPH泛醌氧化還原酶、維生素C、維生素E和類胡蘿卜素。它們清除多種形式的ROS,從而維持細胞內氧化還原環(huán)境[5]。氧化應激是ROS產生和抗氧化之間的失調,導致細胞損傷和氧化還原信號中止。
自由基是由異種細胞產生的多功能的細胞。NO是l-精氨酸在一氧化氮合酶(nitric oxide synthase,NOS)催化下,經兩步法氧化成l-瓜氨酸的產物。神經元和內皮細胞中的亞型,即神經元NOS(neuron NOS,nNOS)和內皮NOS(endothelial NOS,eNOS),以鈣調素依賴方式產生少量NO。誘導型一氧化氮合成酶(inducible nitric oxide synthase,iNOS)在低濃度下表達時間較長,在促炎細胞因子激活下產生大量的NO,并通過其氧化毒性發(fā)揮宿主防御作用[6]。
1.2 ROS功能
ROS一直被認為是免疫細胞對細菌入侵的殺傷反應的組成部分。在NADPH氧化酶的催化下,吞噬細胞刺激ROS的產生,并產生“呼吸爆發(fā)”現象[7]。研究顯示,ROS在所有細胞類型中都產生,在正常的信號轉導、基因調控和細胞周期中發(fā)揮重要的細胞信使作用[8]。ROS誘導的細胞信號傳導涉及兩種機制:細胞內氧化還原狀態(tài)的改變和蛋白質的氧化修飾。
ROS誘導的信號傳導包括抑制酪氨酸磷酸酶,導致細胞增殖、易位和激活絲氨酸/蘇氨酸激酶,如蛋白激酶C和酪氨酸羥化酶mRNA表達,絲裂素活化蛋白激酶(mitogen-activated protein kinase,MAPKs)的活化,促進核因子NF-κb、p53、激活蛋白-1(activator protein-1,AP-1)和脂質通路的表達[9]。ROS氧化還原信號傳導的另一個主要機制是半胱氨酸殘基中巰基(-SH)的可逆氧化形成SOH、SO2H或SO3H衍生物[10]。在ROS過量的情況下,SOH可進一步氧化成SO2H和SO3H形式,SO2H和SO3H形式可以還原為SH,也可以不還原為SH。通過半胱氨酸殘基形成分子內二硫鍵參與翻譯后蛋白修飾,ROS作為信號通路的間接機制,導致蛋白激酶結構的改變和磷酸酶的可逆失活[11]。由于兩個酪氨酸分子通過依賴過氧化氫酶的反應形成活躍的二酪氨酸,一些蛋白質也可以相互作用。H2O2參與過渡金屬離子的單電子反應,生成各種中間鐵素體,作為一種強大的氧化劑,可導致脂質氧化和DNA損傷。
2 OA軟骨中的ROS信號傳導
2.1 軟骨細胞中ROS的產生
ROS在正常關節(jié)軟骨細胞中低表達,主要由NADPH氧化酶產生。作為細胞內信號傳導機制的參與者,有助于維持軟骨穩(wěn)態(tài),能夠調節(jié)軟骨細胞凋亡,ECM合成和分解以及細胞因子產生。OA軟骨比正常軟骨具有更多顯著的ROS誘導的DNA損傷,并且這種損傷由白細胞介素-1(IL-1)介導[13]。軟骨退化中ROS來自脂質過氧化產物,如生物體液中的氧化低密度脂蛋白(oxidized low density lipoprotein,ox-LDL)、亞硝酸鹽、硝基酪氨酸和硝化產物。相反,OA患者中的抗氧化酶如SOD、CAT、GPX和PON1減少,提示了氧化應激在OA發(fā)病機制中的作用。
2.2 ROS在關節(jié)軟骨中的作用
軟骨細胞占軟骨體積的2%~5%,其無血管并且缺乏神經支配。在正常條件下,成人關節(jié)軟骨細胞呈靜止狀態(tài),沒有有絲分裂活性,并且在低氧環(huán)境中生存,具有維持細胞內代謝和ECM組分的穩(wěn)定作用。盡管傳統(tǒng)觀點認為軟骨細胞生活在厭氧環(huán)境中,但關節(jié)軟骨的淺表和中間區(qū)域并非缺氧;氧氣擴散到關節(jié)軟骨中,關節(jié)軟骨細胞中的線粒體可在體外呼吸,產生ROS。
在病理情況下,例如在OA患者中,滑液中的氧張力由于缺血-再灌注現象,組織代謝的病理加速和關節(jié)上持續(xù)的異常應變而受到波動。由于部分氧分壓變化,機械應激和炎癥介質的變化,軟骨細胞通過NADPH氧化酶產生異常的ROS。在病理條件下,過量產生的ROS作為第二信使,通過抑制基質合成、細胞遷移和生長因子生物活性而促進軟骨降解,并直接降解基質成分,激活MMPs并誘導細胞死亡[15]。
3 滑膜中的ROS信號傳導
3.1 滑膜炎癥中的ROS信號傳導
滑膜中的炎性反應受幾種生化因子控制,包括前列腺素類、細胞因子、蛋白酶和由滑膜細胞和軟骨細胞產生的ROS。ROS有助于炎癥相關的組織降解,但另一方面,在某些情況下,它們具有抗炎作用,這取決于激活的信號通路。NO調節(jié)LPS激活的信號通路,而IL-1β激活的轉導因子對氧亞硝基(ONOO)更敏感[23]。在滑膜成纖維細胞中,ROS也被證明是通過α5β1引發(fā)的信號傳導所必需的整合素導致MMP-1的產生增加[24]。高級氧化蛋白產物(AOPPs)是氧化應激的標志物,可上調滑膜中MMP-3和MMP-13的表達。ROS還可以通過抑制促炎介質和白細胞黏附的合成而具有抗炎作用。值得注意的是,在iNOS缺陷小鼠滑膜中滑膜的炎癥產生速度加快。
3.2 滑膜細胞凋亡中的ROS信號傳導
氧化應激尤其是O2通過線粒體損傷在體外引起滑膜細胞凋亡。同樣,NO通過調節(jié)線粒體功能,增加p53表達以及控制細胞周期的蛋白質的表述,降低OA滑膜細胞的存活并誘導細胞死亡。然而,只有當DNA損傷超過細胞修復能力時,高NO水平才能誘導滑膜細胞凋亡。此外,NO通過激活caspase-3、MAPK和上調COX-2誘導OA滑膜成纖維細胞凋亡表達,并且NO誘導的細胞凋亡與ONOO-、H2O2和O2-的產生密切相關[25]。
4 軟骨下骨中的ROS信號傳導
軟骨下骨硬化是OA發(fā)病機制中的主要問題,并且涉及OA中的疼痛產生。在OA軟骨下骨的成骨細胞中,人中性粒細胞彈性蛋白酶通過增加p38、MAPK、氨基末端激酶2(JNK2)和轉錄因子CREB-1、ATF-2的磷酸化來誘導COX-2表達和PGE2釋放,同時伴隨著DNA結合的增加,人轉錄激活因子的表達亦增加。人中性粒細胞彈性蛋白酶通過抑制IκBα的磷酸化及NF-κB的DNA結合活性來降低腫瘤壞死因子-α(TNF-α)誘導的IL-6表達。這些發(fā)現顯示,ROS誘導的人中性粒細胞彈性蛋白酶可能選擇性激活信號轉導,對人OA成骨細胞產生多種作用,如成骨細胞表型的表達和促炎介質產生途徑的改變[26]。此外,在OA綿羊半月板切除術模型中,用NO供體化合物治療會增加軟骨下骨硬化,這提示NO在OA的疼痛發(fā)生過程中起作用[27]。高水平的NO抑制破骨細胞的功能和分化,抑制成骨細胞的生長[28]。這些結果顯示,氧化應激可能是OA中軟骨下骨變化的重要介質。
5 軟組織中的ROS信號傳導
軟組織如半月板和髕下墊在膝關節(jié)OA發(fā)病機制中起關鍵作用。半月板撕裂可導致膝關節(jié)OA,而膝關節(jié)OA也可導致自發(fā)性半月板撕裂。在OA半月板中,iNOS和NO產生增加,并且NO增強凋亡半月板的細胞通過JNK失活抑制自噬[29]。髕下脂肪墊是炎癥介質和脂肪因子的新興來源,有助于膝關節(jié)OA進展。眾所周知,脂肪功能障礙和代謝綜合征涉及炎癥通路和ROS信號傳導的相互作用。因此,膝關節(jié)OA中的氧化應激和髕下脂肪組織之間的聯系仍需要進一步研究。
6 總結
研究顯示,ROS在關節(jié)軟骨細胞中以低水平產生并且作為細胞內信號傳導機制的整體參與者發(fā)揮重要作用。通過調節(jié)基因表達,維持軟骨穩(wěn)態(tài)。然而,在關節(jié)疾病中,過量ROS的產生,會對關節(jié)組織有害。我們需要進一步研究以揭示OA產生和發(fā)展信號機制,這些機制可能會對OA的治療起到重要作用。
[參考文獻]
[1]? Duan L,Zhang W,Zhang F,et al. Myrtol improves post-traumatic knee osteoarthritis by regulation of reactive oxygen species,transforming growth factor β1 and apoptosis in a mouse model [J]. Exp Ther Med,2018,15(1):393-399.
[2]? Qiao YQ,Jiang PF,Gao YZ. Lutein prevents osteoarthritis through Nrf2 activation and downregulation of inflammation [J]. Arch Med Sci,2018,14(3):617-624.
[3]? Akuri MC,Barbalho SM,Val RM,et al. Reflections about Osteoarthritis and Curcuma longa [J]. Pharmacogn Rev,2017,11(21):8-12.
[4]? Abusarah J,Bentz M,Benabdoune H,et al. An overview of the role of lipid peroxidation-derived 4-hydroxynonenal in osteoarthritis [J]. Inflamm Res,2017,66(Suppl 1):1-15.
[5]? Sun MG,Beier F,Pest MA. Recent developments in emerging therapeutic targets of osteoarthritis [J]. Curr Opin Rheumatol,2017,29(1):96-102.
[6]? Yang C,You D,Huang J,et al. Effects of AURKA‐mediated degradation of SOD2 on mitochondrial dysfunction and cartilage homeostasis in osteoarthritis [J]. J Cell Physiol,2019,234(10):17727-17738.
[7]? Quan YY,Xia Q,Liu YH,et al. Inhibitory Effects of Free and Nano-Liposomal-Loaded Resveratrol on Sodium Nitroprusside-Induced Rabbit Chondrocyte Apoptosis [J]. J Nanosci Nanotechnol,2017,17(3):1740-1746.
[8]? Reckziegel D,Bailey H,Cottam WJ,et al. Imaging pain relief in osteoarthritis (IPRO):protocol of a double-blind randomised controlled mechanistic study assessing pain relief and prediction of duloxetine treatment outcome [J]. BMJ Open,2017,7(6):e014013.
[9]? Reed K,Collaku A,Moreira S. Efficacy and Safety of Twice-Daily Sustained-Release Paracetamol Formulation for Osteoarthritis Pain of the Knee or Hip:A Randomized,Double-Blind,Placebo-Controlled,Twelve-Week Study [J]. Curr Med Res Opin,2017,34(4):1.
[10]? Kapitanov GI,Ayati BP,Martin JA. Modeling the effect of blunt impact on mitochondrial function in cartilage:implications for development of osteoarthritis [J]. Peer J,2017,5(6):e3468.
[11]? Young IC,Chuang ST,Gefen A,et al. A novel compressive stress-based osteoarthritis-like chondrocyte system [J]. Exp Biol Med,2017,242(10):1062-1071.
[12]? Wu R,Li D,Tang Q,et al. A Novel Peptide from Vespa ducalis Induces Apoptosis in Osteosarcoma Cells by Activating the p38 MAPK and JNK Signaling Pathways [J]. Biol Pharm Bull,2018,41(4):458-464.
[13]? Fernández-Moreno M,Soto-Hermida A,Vázquez-Mosquera M E,et al. Mitochondrial DNA haplogroups influence the risk of incident knee osteoarthritis in OAI and CHECK cohorts. A meta-analysis and functional study [J]. Ann Rheum Dis,2017,76(6):1114.
[14]? Chen K,Yan Y,Li C,et al. Increased 15-lipoxygenase-1 expression in chondrocytes contributes to the pathogenesis of osteoarthritis [J]. Cell Death Dis,2017,8(10):e3109.
[15]? Guo YX,Liu L,Yan DZ,et al. Plumbagin prevents osteoarthritis in human chondrocytes through Nrf-2 activation [J]. Mol Med Rep,2017,15(4):2333.
[16]? Bethapudi B,Murugan S,Illuri R,et al. Bioactive Turmerosaccharides from Curcuma longa Extract (NR-INF-02):Potential Ameliorating Effect on Osteoarthritis Pain [J]. Pharmacogn Mag,2017,13(Suppl 3):S623-S627.
[17]? Cheleschi S,De AP,Pascarelli NA,et al. Could Oxidative Stress Regulate the Expression of MicroRNA-146a and MicroRNA-34a in Human Osteoarthritic Chondrocyte Cultures? [J]. Int J Mol Sci,2017,18(12):2660.
[18]? Hosseinzadeh A,Jafari D,Kamarul T,et al. Evaluating the Protective Effects and Mechanisms of Diallyl Disulfide on Interlukin-1β-induced Oxidative Stress and Mitochondrial Apoptotic Signaling Pathways in Cultured Chondrocytes [J]. J Cell Biochem,2017,118(7):1879-1888.
[19]? Xue EX,Lin JP,Zhang Y,et al. Pterostilbene inhibits inflammation and ROS production in chondrocytes by activating Nrf2 pathway [J]. Oncotarget,2017,8(26):41988-42000.
[20]? Bahrampour KJ,Kamarul T,Najafi M,et al. Restoring the IL-1β/NF-κB-induced impaired chondrogenesis by diallyl disulfide in human adipose-derived mesenchymal stem cells via attenuation of reactive oxygen species and elevation of antioxidant enzymes [J]. Cell Tissue Res,2018,373(2):407-419.
[21]? Zhang C,Lin S,Li T,et al. Mechanical force-mediated pathological cartilage thinning is regulated by necroptosis and apoptosis [J]. Osteoarthritis Cartilage,2017,25(8):1324-1334.
[22]? Mueller AJ,Canty-Laird EG,Clegg PD,et al. Cross-species gene modules emerge from a systems biology approach to osteoarthritis [J]. NPJ Syst Biol Appl,2017,3(1):13.
[23]? Von BM,Feierabend M,Jordan M,et al. Radiographic Hip or Knee Osteoarthritis and the Ability to Drive [J]. Orthopedics,2017,40(1):1.
[24]? Yin CM,Suen WC,Lin S,et al. Dysregulation of both miR-140-3p and miR-140-5p in synovial fluid correlate with osteoarthritis severity [J]. Bone Joint Res,2017,6(11):612-618.
[25]? Wang C,Silverman RM,Jie S,et al. Distinct metabolic programs induced by TGF-β1 and BMP2 in human articular chondrocytes with osteoarthritis [J]. J Orthop Translat,2018,12(C):66-73.
[26]? Lin M,Lin Y,Li X,et al. Warm sparse-dense wave inhibits cartilage degradation in papain-induced osteoarthritis through the mitogen-activated protein kinase signaling pathway [J]. Exp Ther Med,2017,14(4):3674-3680.
[27]? Zhang L,Luan L,Ma Y. Dishevelled-2 modulates osteogenic differentiation of human synovial fibroblasts in osteoarthritis [J]. Mol Med Rep,2018,18(1):292-298.
[28]? Zheng Z,Wang L,Pan J. Estradiol and proinflammatory cytokines stimulate ISG20 expression in synovial fibroblasts of patients with osteoarthritis [J]. Intractable Rare Dis Res,2017,6(4):269-273.
[29]? Pm VDK. Factors that influence outcome in experimental osteoarthritis [J]. Osteoarthritis Cartilage,2017,25(3):369-375.
(收稿日期:2019-09-25? 本文編輯:封? ?華)