王美華 王甲 韓丹
[摘要] 目的 探究小檗堿對氧糖剝奪/復(fù)氧(OGD/R)誘導(dǎo)大鼠體外血腦屏障損傷的保護(hù)作用及其機(jī)制。 方法 將原代培養(yǎng)的大鼠腦微血管內(nèi)皮細(xì)胞(rBMECs)分為對照組、模型組、小檗堿給藥組。對照組加入新鮮培養(yǎng)基;模型組和小檗堿給藥組給予不同濃度(0、1、3、10、30、100 μmol/L)的小檗堿預(yù)孵24 h后更換低糖培養(yǎng)基并將其放在不含氧氣的三氣培養(yǎng)箱中(95%N2/5%CO2)培養(yǎng)2 h(氧糖剝奪,OGD),之后換成新鮮培養(yǎng)基,置于37℃、5%CO2培養(yǎng)箱內(nèi)繼續(xù)培養(yǎng)2 h(復(fù)氧,R)。利用MTT法檢測細(xì)胞存活率,跨膜電阻法測定細(xì)胞緊密連接程度,Western blot法檢測緊密連接蛋白ZO-1、occludin以及核因子-κB p65(NF-κB p65)的蛋白表達(dá)量,ELISA法檢測炎性因子腫瘤壞死因子-α(TNF-α)、白細(xì)胞介素-1β(IL-1β)含量。 結(jié)果 與對照組比較,模型組rBMECs細(xì)胞存活率、ZO-1表達(dá)量、occludin表達(dá)量顯著降低,跨膜電阻值呈下降趨勢,NF-κB p65表達(dá)量及IL-1β、TNF-α含量顯著升高,差異均有高度統(tǒng)計(jì)學(xué)意義(均P < 0.01);與模型組比較,小檗堿給藥組rBMECs細(xì)胞存活率不同程度提高,小檗堿10、30 μmol/L濃度組ZO-1表達(dá)量、occludin表達(dá)量顯著升高,跨膜電阻值顯著提高,差異有統(tǒng)計(jì)學(xué)意義(P < 0.05或P < 0.01),同時(shí)NF-κB p65表達(dá)量及IL-1β、TNF-α含量顯著降低,差異均有高度統(tǒng)計(jì)學(xué)意義(均P < 0.01)。結(jié)論 小檗堿通過抑制NF-κB入核、降低炎性因子釋放量、改善OGD/R誘導(dǎo)的rBMECs的損傷,發(fā)揮對OGD/R損傷的血腦屏障保護(hù)作用。
[關(guān)鍵詞] 小檗堿;血腦屏障;核因子-κB p65;炎癥
[中圖分類號] R285.5? ? ? ? ? [文獻(xiàn)標(biāo)識碼] A? ? ? ? ? [文章編號] 1673-7210(2020)03(c)-0016-05
[Abstract] Objective To investigate the protective effect of berberine on oxygen glucose deprivation/reoxygenation (OGD/R) induced blood-brain barrier injury in vitro in rats and its mechanism. Methods Primary cultured rat brain microvascular endothelial cells (rBMECs) were divided into the control group, the model group and the berberine administration group. Fresh medium was added to the control group. The model group and the berberine administration group were preincubated with berberine at different concentrations (0, 1, 3, 10, 30, 100 μmol/L) for 24 h, then the low glucose medium was replaced and the culture medium was placed in a three-gas incubator without oxygen (95%N2/5%CO2) for 2 h (oxygen glucose deprivation, OGD). then replaced with fresh medium, at 37℃ and 5%CO2 incubator continue to develop 2 h (Reoxygenation, R). Cell survival was determined by MTT assay, cell tightness was determined by transendothelial electrical resistance, protein expression levels of tight junction protein ZO-1, occludin and nuclear factor-κB p65 (NF-κB p65) were detected by Western blot assay, and levels of inflammatory factors tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were detected by ELISA assay. Results Compared with the the control group, rBMECs cell survival rate, ZO-1 expression level and occludin expression level in the model group were significantly reduced, transendothelial electrical resistance showed a decreasing trend, and NF-κB p65 expression level, IL-1β, and TNF-α levels were significantly increased in the model group, the differences were highly statistically significant (all P < 0.01). Compared with the model group, the survival rate of rBMECs cells in the berberine administration group increased to different degrees, the ZO-1 expression, occludin expression, the transmembrane electrical resistance increased significantly in the berberine 10 and 30 μmol/L concentration groups, with statistically significant differences (P < 0.05 or P < 0.01). Meanwhile, the NF-κB p65 expression and the levels of IL-1β and TNF-α were significantly decreased in the berberine 10 and 30 μmol/L concentration groups, the differences were highly statistically significant (all P < 0.01). Conclusion Berberine plays a protective role of blood brain barrier on OGD/R injury by inhibiting NF-κB entry into the nucleus, reducing the release of inflammatory factors, and improving the damage of OGD/R-induced rBMECs.
[Key words] Berberine; Blood-brain barrier; Nuclear factor-κB p65; Inflammation
腦卒中是全球主要致死疾病之一,其中80%~85%的患者是缺血性腦卒中[1-2]。迄今為止,建立早期再灌注是唯一被認(rèn)可的有效治療缺血性腦卒中的方法。然而缺血再灌注會導(dǎo)致血腦屏障(blood-brain barrier,BBB)損傷[3],引發(fā)繼發(fā)性的腦損傷,包括腦水腫、神經(jīng)功能障礙,甚至腦梗死[4-5]。因此,改善BBB損傷有望成為防治缺血性腦卒中的治療方法。
小檗堿是一種中藥黃連衍生的異喹啉生物堿,具有廣泛的藥理作用[6-8],然而,小檗堿對腦缺血再灌注損傷后BBB的保護(hù)作用及其機(jī)制尚不清楚。本研究擬探究小檗堿對氧糖剝奪/復(fù)氧(OGD/R)損傷的大鼠腦微血管內(nèi)皮細(xì)胞的保護(hù)作用及其可能的機(jī)制,為臨床防治缺血性腦卒中提供新思路。
1 材料與方法
1.1 材料
occludin、ZO-1、核因子-κB(NF-κB)抗體IgG購自Santa Cruz公司(批號:K-2712、B-2513、J-1612);腫瘤壞死因子-α(TNF-α)、白細(xì)胞介素-1β(IL-1β)ELISA試劑盒購自南京建成生物工程研究所(批號:E-20219、E-20212)。
1.2 方法
1.2.1 大鼠腦微血管內(nèi)皮細(xì)胞的原代培養(yǎng)方法? 原代培養(yǎng)大鼠腦微血管內(nèi)皮細(xì)胞(rat brain microvessel endothelial cells,rBMECs),方法參照文獻(xiàn)[9]。接種后靜置培養(yǎng),待細(xì)胞長成致密單層,細(xì)胞呈長梭型。
1.2.2 MTT法檢測小檗堿對OGD/R誘導(dǎo)的rBMECs損傷細(xì)胞存活率影響? 將rBMECs分為對照組、模型組、小檗堿給藥組(1、3、10、30、100 μmol/L)。對照組加入新鮮DMEM-F12培養(yǎng)基;模型組和小檗堿給藥組給予不同濃度(0、1、3、10、30、100 μmol/L)的小檗堿預(yù)孵24 h后換為DMEM低糖培養(yǎng)基,并把培養(yǎng)板放在不含有氧氣的三氣培養(yǎng)箱中(95%N2/5%CO2)培養(yǎng)2 h(氧糖剝奪,OGD),之后換成DMEM-F12培養(yǎng)基,置37℃、5%CO2培養(yǎng)箱內(nèi)繼續(xù)培養(yǎng)2 h(復(fù)氧,R)。除去培養(yǎng)板內(nèi)的培養(yǎng)基,加入無血清培養(yǎng)基和MTT溶液(5 mg/mL),孵育4 h。棄掉含MTT的培養(yǎng)基之后,加入DMSO液,在酶標(biāo)儀570 nm處測定各孔的OD值,以實(shí)驗(yàn)組OD值/對照組OD值反映細(xì)胞的存活情況。
1.2.3 跨膜電阻法檢測小檗堿對OGD/R誘導(dǎo)的損傷后rBMECs緊密連接程度的影響? 在Transwell小室內(nèi)接種細(xì)胞測定跨膜電阻值(TEER),TEER趨于穩(wěn)定說明rBMECs在Transwell孔底形成單層屏障。在TEER不再增長之后按照上述預(yù)孵給藥及造模條件處理細(xì)胞,以測試點(diǎn)TEER/造模起始點(diǎn)TEER表示細(xì)胞緊密連接程度。
1.2.4 Western blot法檢測小檗堿對核NF-κB p65、ZO-1、occludin表達(dá)水平的影響? 經(jīng)上述預(yù)孵給藥及造模處理后,收集細(xì)胞并裂解,12000 g、4℃離心15 min,收集上清液。BCA法測定蛋白濃度后,制備12%分離膠、5%濃縮膠進(jìn)行SDS-PAGE電泳,轉(zhuǎn)膜。BSA封閉后,抗體孵育。接下來ECL顯色,Image J軟件進(jìn)行定量分析。
1.2.5 ELISA法測定IL-1β、TNF-α的釋放含量? 經(jīng)上述預(yù)孵給藥和造模處理后,吸取培養(yǎng)基,3000 g離心10 min,取上清液,按照說明書操作,測定IL-1β、TNF-α含量。
1.3 統(tǒng)計(jì)學(xué)方法
采用SPSS 20.0對所得數(shù)據(jù)進(jìn)行統(tǒng)計(jì)學(xué)分析,計(jì)量資料采用均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,多組間比較采用方差分析,組間兩兩比較用Bonferroni檢驗(yàn)。以P < 0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 小檗堿對大鼠腦微血管內(nèi)皮細(xì)胞存活率影響
與對照組比較,模型組細(xì)胞存活率顯著降低,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01)。與模型組比較,小檗堿給藥組細(xì)胞存活率不同程度提高,其中小檗堿3、10、30、100 μmol/L濃度組細(xì)胞存活率顯著提高,差異有統(tǒng)計(jì)學(xué)意義(P < 0.05或P < 0.01)。見圖1。
2.2小檗堿對大鼠腦微血管內(nèi)皮細(xì)胞緊密連接程度的影響
與對照組比較,造模5 h后,模型組TEER有所降低;與模型組比較,小檗堿10、30 μmol/L濃度組TEER不同程度的提高。在造模10 h后,小檗堿10、30 μmol/L濃度組提高TEER的趨勢呈現(xiàn)穩(wěn)定狀態(tài)。見圖2。
2.3 小檗堿對緊密連接蛋白ZO-1、occludin蛋白表達(dá)水平的影響
與對照組比較,模型組ZO-1蛋白表達(dá)水平顯著降低,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01)。與模型組比較,小檗堿10、30 μmol/L濃度組ZO-1蛋白水平顯著提高,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01)。見圖3A。與對照組比較,模型組occludin蛋白表達(dá)水平顯著降低,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01)。與模型組比較,小檗堿10、30 μmol/L濃度組occludin蛋白水平顯著提高,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01)。見圖3B。
2.4 小檗堿對 NF-κB p65入核水平的影響
與對照組比較,模型組的NF-κB p65表達(dá)水平顯著升高,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01)。與模型組比較,小檗堿10、30 μmol/L濃度組NF-κB p65入核水平不同程度降低,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01)。見圖4。
2.5 小檗堿對腦微血管內(nèi)皮細(xì)胞釋放炎性因子TNF-α、IL-1β水平的影響
與對照組比較,模型組細(xì)胞上清液中TNF-α含量顯著升高,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01)。與模型組比較,小檗堿10、30 μmol/L濃度組細(xì)胞上清液中TNF-α含量顯著降低,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01)。見圖5A。與對照組比較,模型組細(xì)胞上清液中IL-1β含量顯著提高,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01);與模型組比較,小檗堿10、30 μmol/L濃度組細(xì)胞上清液中IL-1β水平顯著降低,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01)。見圖5B。
3 討論
隨著我國老齡化人口增加以及人們生活水平的提高,缺血性腦卒中患者的人數(shù)持續(xù)增長。BBB對腦組織內(nèi)環(huán)境穩(wěn)態(tài)的維持起著重要作用[10-11],腦微血管內(nèi)皮細(xì)胞在此過程中尤為重要[12-13]。本研究采用OGD/R體外誘導(dǎo)rBMECs損傷模型模擬腦缺血/再灌注導(dǎo)致的BBB損傷[14],探究小檗堿對缺血性腦卒中/溶栓后BBB的保護(hù)作用。
本研究結(jié)果顯示小檗堿給藥組能提高OGD/R損傷的rBMECs細(xì)胞存活率,選取其中效果較好的小檗堿10 μmol/L以及30 μmol/L濃度組進(jìn)行后續(xù)實(shí)驗(yàn),實(shí)驗(yàn)數(shù)據(jù)進(jìn)一步提示,與模型組比較,小檗堿10、30 μmol/L濃度組可提高TEER。腦微血管內(nèi)皮細(xì)胞和其他內(nèi)皮細(xì)胞的區(qū)別在于它能夠特異性表達(dá)緊密連接蛋白[15]。本實(shí)驗(yàn)結(jié)果顯示小檗堿顯著性上調(diào)緊密連接蛋白ZO-1、occludin表達(dá)量,以上結(jié)果揭示小檗堿對OGD/R損傷的體外BBB具有保護(hù)作用。
缺血/再灌注損傷會導(dǎo)致炎性反應(yīng),NF-κB信號通路介導(dǎo)的炎性反應(yīng)在腦損傷過程中起著至關(guān)重要的作用[16-17]。在靜息細(xì)胞的胞質(zhì)中,NF-κB p65位于胞漿中;當(dāng)細(xì)胞受到外界刺激時(shí)可導(dǎo)致NF-κB p65轉(zhuǎn)位至細(xì)胞核。NF-κB p65入核后促使炎性因子TNF-α、IL-1β等的轉(zhuǎn)錄,這一過程在腦缺血中起著破壞性的作用[18-20]。本研究結(jié)果提示小檗堿給藥組顯著性抑制NF-κB p65入核,并降低炎性因子TNF-α、IL-1β釋放量。
綜上所述,本研究采用OGD/R誘導(dǎo)的rBMECs損傷模型探究小檗堿對體外BBB的保護(hù)作用。實(shí)驗(yàn)結(jié)果顯示,小檗堿通過抑制NF-κB入核、降低炎性因子釋放量、改善OGD/R誘導(dǎo)的rBMECs的損傷,發(fā)揮對OGD/R損傷的BBB保護(hù)作用。因缺乏體內(nèi)實(shí)驗(yàn)的驗(yàn)證,本研究結(jié)果具有一定局限性,但是本研究為小檗堿的進(jìn)一步開發(fā)以及抗缺血性腦卒中藥物的研發(fā)提供依據(jù)。
[參考文獻(xiàn)]
[1]? Vidale S,Consoli A,Arnaboldi M,et al. Postischemic Inflammation in Acute Stroke [J]. J Clin Neurol,2017,13(1):1-9.
[2]? Li Y,Zhong W,Jiang Z,et al. New progress in the approaches for blood-brain barrier protection in acute ischemic stroke [J]. Brain Res Bull,2019,144:46-57.
[3]? Ji B,Zhou F,Han L,et al. Sodium Tanshinone IIA Sulfonate Enhances Effectiveness Rt-PA Treatment in Acute Ischemic Stroke Patients Associated with Ameliorating Blood-Brain Barrier Damage [J]. Transl Stroke Res,2017, 8(4):334-340.
[4]? Wu W,Zhong W,Lang B,et al. Thrombopoietin could protect cerebral tissue against ischemia-reperfusion injury by suppressing NF-kappaB and MMP-9 expression in rats [J]. Int J Med Sci,2018,15(12):1341-1348.
[5]? Jiang X,Andjelkovic AV,Zhu L,et al. Blood-brain barrier dysfunction and recovery after ischemic stroke [J]. Prog Neurobiol,2018,163-164:144-171.
[6]? Kumar A,Ekavali,Chopra K,et al. Current knowledge and pharmacological profile of berberine:An update [J]. Eur J Pharmacol,2015,761:288-297.
[7]? Ahmed T,Gilani AU,Abdollahi M,et al. Berberine and neurodegeneration:A review of literature [J]. Pharmacol Rep,2015,67(5):970-979.
[8]? Pang B,Zhao LH,Zhou Q,et al. Application of berberine on treating type 2 diabetes mellitus [J]. Int J Endocrinol,2015,2015:905749.
[9]? Xue Y,He JT,Zhang KK,et al. Methamphetamine reduces expressions of tight junction proteins,rearranges F-actin cytoskeleton and increases the blood brain barrier permeability via the RhoA/ROCK-dependent pathway [J]. Biochem Biophys Res Commun,2019,509(2):395-401.
[10]? Lv J,Hu W,Yang Z,et al. Focusing on claudin-5:A promising candidate in the regulation of BBB to treat ischemic stroke [J]. Prog Neurobiol,2018,161:79-96.
[11]? Haley MJ,Lawrence CB. The blood-brain barrier after stroke:Structural studies and the role of transcytotic vesicles [J]. J Cereb Blood Flow Metab,2017,37(2):456-470.
[12]? Abbott NJ,Patabendige AA,Dolman DE,et al. Structure and function of the blood-brain barrier [J]. Neurobiol Dis,2010,37(1):13-25.
[13]? Sandoval KE,Witt KA. Blood-brain barrier tight junction permeability and ischemic stroke [J]. Neurobiol Dis,2008, 32(2):200-219.
[14]? Zhou YF,Li YN,Jin HJ,et al. Sema4D/PlexinB1 inhibition ameliorates blood-brain barrier damage and improves outcome after stroke in rats [J]. FASEB J,2018, 32(4):2181-2196.
[15]? Abdullahi W,Tripathi D,Ronaldson PT. Blood-brain barrier dysfunction in ischemic stroke:targeting tight junctions and transporters for vascular protection [J]. Am J Physiol Cell Physiol,2018,315(3):C343-C356.
[16]? Jin R,Liu L,Zhang S,et al. Role of inflammation and its mediators in acute ischemic stroke [J]. J Cardiovasc Transl Res,2013,6(5):834-851.
[17]? Li X,Su L,Zhang X,et al. Ulinastatin downregulates TLR4 and NF-kB expression and protects mouse brains against ischemia/reperfusion injury[J]. Neurol Res,2017, 39(4):367-373.
[18]? Simmons LJ,Surles-Zeigler MC,Li Y,et al. Regulation of inflammatory responses by neuregulin-1 in brain ischemia and microglial cells in vitro involves the NF-kappa B pathway [J]. J Neuroinflammation,2016,13(1):237.
[19]? Gao S,Mo J,Chen L,et al. Astrocyte GGTI-mediated Rac1 prenylation upregulates NF-kappaB expression and promotes neuronal apoptosis following hypoxia/ischemia [J]. Neuropharmacology,2016,103:44-56.
[20]? Chen AQ,F(xiàn)ang Z,Chen XL,et al. Microglia-derived TNF-alpha mediates endothelial necroptosis aggravating blood brain-barrier disruption after ischemic stroke [J]. Cell Death Dis,2019,10(7):487.
(收稿日期:2019-09-25? 本文編輯:顧家毓)