李慶生 王金蘭 張俊俊
[摘要]目的 系統(tǒng)評價高密度脂蛋白(HDL)亞型與心腦血管病發(fā)病風(fēng)險的相關(guān)性。方法 檢索PubMed、Embase、Cochrane Library、中國期刊全文數(shù)據(jù)庫(CNKI)、萬方數(shù)據(jù)庫、中國生物醫(yī)學(xué)文獻(xiàn)數(shù)據(jù)庫(CBM)從建庫至2019年7月有關(guān)HDL亞型與心腦血管病關(guān)系的文獻(xiàn)。嚴(yán)格按照納入和排除標(biāo)準(zhǔn)篩選文獻(xiàn)和提取資料。采用stata 12.0及Review Manager 5.3軟件進(jìn)行Meta分析。結(jié)果 磁共振法分類的HDL顆粒(HDLp)[RR=0.82,95%CI(0.77,0.87),P<0.000 01]及其亞型較HDL膽固醇(HDL-C)[RR=0.93,95%CI(0.87,1.00),P=0.05]能更好地反映與心腦血管病的相關(guān)性;對不同結(jié)局事件進(jìn)行分析,HDL-C[RR=0.96,95%CI(0.91,1.01),P=0.16],HDLp[RR=0.97,95%CI(0.82,1.15),P=0.74]及其亞型與腦卒中無明顯相關(guān)性。超速離心法所分類的HDL2[RR=0.95,95%CI(0.87,1.04),P=0.27]及HDL3[RR=0.89,95%CI(0.79,1.01),P=0.06]與冠心病發(fā)生風(fēng)險無明顯相關(guān)性。結(jié)論 磁共振法所分得HDLp及其亞型較HDL-C能更好地反映冠心病發(fā)生風(fēng)險,HDL-C、HDLp及HDLp亞型均與腦卒中無明顯相關(guān)性。超速離心法分類的HDL亞型不能很好地反映冠心病發(fā)生風(fēng)險。
[關(guān)鍵詞]高密度脂蛋白亞型;心腦血管病;冠心病;腦卒中;Meta分析
[中圖分類號] R541.7? ? ? ? ? [文獻(xiàn)標(biāo)識碼] A? ? ? ? ? [文章編號] 1674-4721(2020)2(a)-0014-05
Meta-analysis of the correlation between high-density lipoprotein subfractions and the risk of cardio-cerebrovascular diseases
LI Qing-sheng? ?WANG Jin-lan▲? ?ZHANG Jun-jun
Department of Neurology, the Second Affiliated Hospital of Zhengzhou University, He′nan Province, Zhengzhou? ?450003, China
[Abstract] Objective To systematically evaluate the correlation between high-density lipoprotein (HDL) subfractions and the risk of cardio-cerebrovascular diseases. Methods The literatures related to the relationship between HDL subfractions and cardio-cerebrovascular diseases published on PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang Database and Chinese Biomedical Literature Database (CBM) from the establishment of the database to July 2019 were searched. The inclusion and exclusion criteria were strictly followed. The stata 12.0 and Review Manager 5.3 software were used for Meta-analysis. Results HDL particle (HDLp) (RR=0.82, 95%CI [0.77, 0.87], P<0.000 01) and its subfractions defined by nuclear magnetic resonance were shown superior correlation with cardio-cerebrovascular disease to HDL cholesterol (HDL-C) (RR=0.93, 95%CI [0.87, 1.00], P=0.05). Within each individual ending events, HDL-C (RR=0.96, 95%CI [0.91, 1.01], P=0.16), HDLp (RR=0.97, 95%CI [0.82,1.15], P=0.74) and its subfractions showed no correlation with the incidence of stroke. No correlation was observed between coronary artery disease and HDL2 (RR=0.95, 95%CI [0.87, 1.04], P=0.27) or HDL3 (RR=0.89, 95%CI [0.79, 1.01], P=0.06) defined by ultracentrifugation. Conclusion HDLp and its subfractions defined by nuclear magnetic resonance are better indicators for risk of coronary artery diseases than HDL-C. There are no associations between HDL-C, HDLp and HDLp subfractions and stroke. HDL subfractions defined by ultracentrifugation are not good predictors of the risk of coronary artery diseases.
[Key words] High-density lipoprotein subfractions; Cardio-cerebrovascular diseases; Coronary heart disease; Stroke; Meta-analysis
相關(guān)研究證實,高密度脂蛋白膽固醇(high-density lipoprotein cholesterol,HDLC)與冠心病的發(fā)生成負(fù)相關(guān)[1]。所以一直以來人們認(rèn)為高HDLC可降低心腦血管?。╟ardio-cerebrovascular diseases,CCVD)的發(fā)病風(fēng)險。而近期的研究則反映出單純升高HDL-C,并不能降低心血管疾病(cardiovascular disease,CVD)的發(fā)病風(fēng)險[2]。這些研究提示,單純以HDL-C的水平高低判斷CCVD發(fā)生風(fēng)險不夠全面及客觀,需要進(jìn)一步了解HDL的分型、結(jié)構(gòu)及功能。本研究對納入的高質(zhì)量隊列研究及病例對照研究進(jìn)行Meta分析,以探討HDL亞型與CCVD發(fā)病風(fēng)險的相關(guān)性。
1資料與方法
1.1文獻(xiàn)檢索
系統(tǒng)檢索PubMed、Embase、Cochrane Library、中國期刊全文數(shù)據(jù)庫(CNKI)、萬方數(shù)據(jù)庫、中國生物醫(yī)學(xué)文獻(xiàn)數(shù)據(jù)庫(CBM)從建庫至2019年7月有關(guān)HDL亞型與CCVD關(guān)系的所有文獻(xiàn)。英文檢索詞:stroke,brain ischemic,cerebral Infarction,thrombosis,brain,brain emboli,myocardial infarction,heart attack,lipoprotein subfraction,lipoprotein particle,HDL2、HDL3,small HDL,large HDL,medium HDL,HDL subfraction。中文檢索詞:腦卒中、腦梗死、冠心病、心肌梗死、脂蛋白亞型、脂蛋白亞類、脂蛋白亞組、脂蛋白顆粒、HDL顆粒(HDLp)。
1.2納入及排除標(biāo)準(zhǔn)
納入標(biāo)準(zhǔn):①已發(fā)表的有關(guān)HDL亞型及CCVD相關(guān)性的隊列研究和巢式病例對照研究;②結(jié)局事件包括腦卒中、冠心病及相關(guān)死亡事件,且提供HDL亞型與心腦血管事件關(guān)系的OR、HR值及其95%CI。
排除標(biāo)準(zhǔn):①未對HDL亞型及CCVD相關(guān)性進(jìn)行評估;②會議摘要、個案報道、綜述、Meta分析及非隊列或病例對照研究;③重復(fù)發(fā)表的文獻(xiàn)。
1.3文獻(xiàn)篩選與資料提取
由兩名研究者獨(dú)立檢索上述數(shù)據(jù)庫,閱讀題目及摘要,必要時閱讀全文,嚴(yán)格按照納入與排除標(biāo)準(zhǔn)對文獻(xiàn)進(jìn)行篩選,針對存在爭議的文獻(xiàn)通過與第三名研究者協(xié)議解決,采用預(yù)先設(shè)計的表格由兩名研究者獨(dú)立提取相關(guān)數(shù)據(jù):第一作者及發(fā)表年份、平均年齡、樣本量、性別、地區(qū)、隨訪時間、分型方法、HDL亞型、CCVD事件例數(shù)、結(jié)局指標(biāo)。
1.4文獻(xiàn)質(zhì)量評價
由兩名研究者按照紐卡斯?fàn)?渥太華量表(Newcastle-Ottawa scale,NOS)的星級系統(tǒng)半量化原則獨(dú)立地對納入文獻(xiàn)進(jìn)行方法學(xué)質(zhì)量評價。隊列研究從隊列選擇、暴露組與非暴露組的可比性及結(jié)局評估3個方面進(jìn)行評分,病例對照研究從病例及對照的選擇、可比性及暴露評估3個方面進(jìn)行評分,評分≥6分視為高質(zhì)量文獻(xiàn)。
1.5統(tǒng)計學(xué)方法
應(yīng)用stata 12.0及Review Manager 5.3進(jìn)行統(tǒng)計學(xué)分析。本次Meta分析的各個研究效應(yīng)值采用多因素調(diào)整后的每增加單位標(biāo)準(zhǔn)差HDL濃度對應(yīng)的HR及OR值,將HR或OR近似為RR。采用I2進(jìn)行異質(zhì)性分析,I2<50%判定為較低異質(zhì)性,采用固定效應(yīng)模型,反之則采用隨機(jī)效應(yīng)模型。計算合并后的RR及95%CI,并制作森林圖。若異質(zhì)性較高,應(yīng)用敏感性分析探索異質(zhì)性來源。采用Egger檢驗分析是否存在發(fā)表偏倚,P>0.1表明不存在明顯的發(fā)表偏倚。以P<0.05為差異有統(tǒng)計學(xué)意義。
2結(jié)果
2.1文獻(xiàn)基本情況
文獻(xiàn)檢索及篩選結(jié)果初得到相關(guān)文獻(xiàn)1032篇,排除重復(fù)文獻(xiàn)后剩余801篇,通過閱讀題目及摘要排除無關(guān)文獻(xiàn)722篇,對剩余79篇閱讀全文,依照納入與排除標(biāo)準(zhǔn),最終納入13篇[3-15],具體篩選流程見圖1。
2.2納入文獻(xiàn)的基本特征及質(zhì)量評價
納入的13篇文獻(xiàn)[3-15],其中采用磁共振法(nuclear magnetic resonance,NMR)分類HDL亞型的文獻(xiàn)10篇[3-12],累積樣本量80 981例,CCVD發(fā)生共7893例;采用超速離心法分類HDL的文獻(xiàn)3篇[13-15]涉及4項研究,累積樣本量8484例,冠心病發(fā)生共900例。14項文獻(xiàn)的NOS評分在6~9分,具體見表1。
2.3 NMR分類HDL亞型與CCVD、不同結(jié)局事件關(guān)系的Meta分析
2.3.1 NMR分類HDL亞型與CCVD關(guān)系的Meta分析? 先選擇研究中報道的CCVD對應(yīng)RR[5,8-9],若未報道CCVD則選用冠心病[4,6-7,10-12],再次選擇腦卒中[3],結(jié)果NMR測得HDLp及大、中、小HDLp均與CCVD風(fēng)險成負(fù)相關(guān)[RR=0.82,95%CI(0.77,0.87),P<0.000 01;RR=0.89,95%CI(0.86,0.93),P<0.000 01;RR=0.86,95%CI(0.80,0.92),P<0.0001;RR=0.92,95%CI(0.86,0.98),P=0.01]。HDL-C與CCVD無明顯相關(guān)性[RR=0.93,95%CI(0.87,1.00),P=0.05](圖2)。結(jié)果均無明顯發(fā)表偏倚。敏感性分析結(jié)果提示,各個亞型剔除單個研究后各合并RR值與總合并RR值無明顯差異,提示研究結(jié)果較穩(wěn)健。
2.3.2 NMR分類HDL分型與不同結(jié)局事件關(guān)系的Meta分析
對結(jié)局為腦卒中事件的研究[3,7,9,12]進(jìn)行Meta分析,結(jié)果顯示,HDL-C、HDLp及大、中、小HDLp均與腦卒中風(fēng)險無明顯相關(guān)性[RR=0.96,95%CI(0.91,1.01),P=0.16;RR=0.97,95%CI(0.82,1.15),P=0.74;RR=0.92,95%CI(0.70,1.22),P=0.58;RR=1.01,95%CI(0.93,1.09),P=0.90;RR=1.00,95%CI(0.84,1.19),P=1.00]。對報道冠心病事件的研究[4,6-7,9-12]進(jìn)行Meta分析,結(jié)果顯示,HDL-C、HDLp及大、中、小HDLp均與冠心病風(fēng)險成負(fù)相關(guān)[RR=0.90,95%CI(0.87,0.94),P<0.0001;RR=0.87,95%CI(0.84,0.90),P<0.0001;RR=0.88,95%CI(0.81,0.97),P=0.01;RR=0.88,95%CI(0.84,0.91),P<0.0001;RR=0.92,95%CI(0.86,0.98),P=0.02](表2)。
2.4超速離心法分類HDL亞型與CCVD關(guān)系的Meta分析
對采用超速離心方法分型HDL亞型的研究[13-15]進(jìn)行Meta分析,結(jié)果顯示,HDL-C與冠心病發(fā)生風(fēng)險成負(fù)相關(guān)性[RR=0.88,95%CI(0.78,1.00),P=0.04]。而HDL2及HDL3與冠心病發(fā)生風(fēng)險無明顯相關(guān)性[RR=0.95,95%CI(0.87,1.04),P=0.27;RR=0.89,95%CI(0.79,1.01),P=0.06](圖3)。
3討論
目前用于分類HDL亞型的方法主要有4類:第一類是超速離心法,將HDL分為疏松而富含脂質(zhì)的HDL2及密集而富含蛋白HDL3[16];第二類是非變性梯度凝膠電泳,將HDL分為大切富含膽固醇及三酰甘油的HDL顆粒(α1、α2、preα1、preα2)及小切脂含量較少HDL顆粒(preβ1、α3)[17];第三類是線性聚丙烯酰胺凝膠電泳,將HDL分為大、中、小HDL-C[18];第四類是核磁光譜分析法,將HDL分為HDLp及大、中、小HDLp[19]。
本研究經(jīng)過分析,超速離心法所得HDL2及HDL3并不能很好地替代傳統(tǒng)方法測得的HDL-C用以預(yù)測冠心病的風(fēng)險。NMR分離的HDLp及大、中、小HDLp亞型均與CCVD的發(fā)生成負(fù)相關(guān)(P<0.05),其較HDL-C能更好地預(yù)測心腦血管不良事件的發(fā)生。非變性梯度凝膠電泳及線性聚丙烯酰胺凝膠電泳與CCVD的相關(guān)研究較少,本次研究未對這兩種方法進(jìn)行分析。
NMR是根據(jù)脂蛋白中不同的成分中甲基所釋放出不同核磁波譜信號對脂蛋白進(jìn)行分類。相較傳統(tǒng)方法及超速離心法其可將脂質(zhì)與蛋白質(zhì)分離開來,并根據(jù)此將脂蛋白膽固醇分成數(shù)百種不同的亞型[12]。可能因此其測得的HDL顆粒與CCVD的負(fù)相關(guān)性更強(qiáng)。
通過對結(jié)局事件為腦卒中及冠心病所對應(yīng)研究分別進(jìn)行Meta分析,結(jié)果提示,HDL-C及HDLp及其亞型與腦卒中的發(fā)生均無明顯相關(guān)性(P>0.05),這與之前研究的結(jié)果相符[20],相反也有研究證明高HDL-C水平可降低卒中的發(fā)生風(fēng)險[21]。這也再次說明了HDL結(jié)構(gòu)及功能的復(fù)雜多樣,目前已在HDL-C中發(fā)現(xiàn)225種蛋白成分[22],包括載脂蛋白、酶類、脂質(zhì)轉(zhuǎn)移蛋白、急性期反應(yīng)蛋白、補(bǔ)體成分、蛋白酶抑制劑和其他蛋白質(zhì),這些蛋白質(zhì)功能各異,今后對HDL-C的研究應(yīng)更加細(xì)致。
綜上所述,本研究納入的13篇文獻(xiàn),質(zhì)量較高,且無明顯發(fā)表偏倚,結(jié)合敏感性分析,研究結(jié)果可信度較高。超速離心法分型的HDL亞型不能很好地反映冠心病的風(fēng)險,NMR所分得HDLp及其亞型較HDL-C能更好反映冠心病風(fēng)險,HDL-C、HDLp及其亞型均與腦卒中無明顯相關(guān)性。今后需要更多的研究來分析HDL亞型。膽固醇含量。顆粒大小及數(shù)目對CCVD的影響,今后相關(guān)的研究可將腦卒中及冠心病分別進(jìn)行統(tǒng)計。
[參考文獻(xiàn)]
[1]Gordon T,Castelli WP,Hjortland MC,et al.High density lipoprotein as a protective factor against coronary heart disease.The Framingham Study[J].Am J Med,1977,62(5):707-714.
[2]Lincoff AM,Nicholls SJ,Riesmeyer JS,et al.Evacetrapib and cardiovascular outcomes in high-risk vascular disease[J].N Engl J Med,2017,376(20):1933-1942.
[3]Reina SA,Llabre MM,Allison MA,et al.HDL cholesterol and stroke risk:The Multi-Ethnic Study of Atherosclerosis[J].Atherosclerosis,2015,243(1):314-319.
[4]Mackey RH,Greenland P,Goff DC Jr,et al.High-density lipoprotein cholesterol and particle concentrations,carotid atherosclerosis,and coronary events:MESA (multi-ethnic study of atherosclerosis)[J].J Am Coll Cardiol,2012,60(6):508-516.
[5]Mora S,Glynn RJ,Ridker PM.High-density lipoprotein cholesterol,size,particle number,and residual vascular risk after potent statin therapy[J].Circulation,2013,128(11):1189-1197.
[6]Akinkuolie AO,Paynter NP,Padmanabhan L,et al.High-density lipoprotein particle subclass heterogeneity and incident coronary heart disease[J].Circ Cardiovasc Qual Outcomes,2014,7(1):55-63.
[7]Parish S,Offer A,Clarke R,et al.Lipids and lipoproteins and risk of different vascular events in the MRC/BHF Heart Protection Study[J].Circulation,2012,125(20):2469-2478.
[8]Chandra A,Neeland IJ,Das SR,et al.Relation of black race between high density lipoprotein cholesterol content,high density lipoprotein particles and coronary events (from the Dallas Heart Study)[J].Am J Cardiol,2015,115(7):890-894.
[9]May HT,Anderson JL,Winegar DA,et al.Utility of high density lipoprotein particle concentration in predicting future major adverse cardiovascular events among patients undergoing angiography[J].Clin Biochem,2016,49(15):1122-1126.
[10]Mackey RH,Mctigue KM,Chang YF,et al.Lipoprotein particles and size,total and high molecular weight adiponectin,and leptin in relation to incident coronary heart disease among severely obese postmenopausal women:The Women′s Health Initiative Observational Study[J].BBA Clin,2015,3:243-250.
[11]Otvos JD,Collins D,F(xiàn)reedman DS,et al.Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial[J].Circulation,2006,113(12):1556-1563.
[12]Holmes MV,Millwood IY,Kartsonaki C,et al.Lipids,lipo-proteins,and metabolites and risk of myocardial infarction and stroke[J].J Am Coll Cardiol,2018,71(6):620-632.
[13]Williams PT,F(xiàn)eldman DE.Prospective study of coronary heart disease vs. HDL2,HDL3,and other lipoproteins in Gofman′s Livermore Cohort[J].Atherosclerosis,2011,214(1):196-202.
[14]Joshi PH,Toth PP,Lirette ST,et al.Association of high-density lipoprotein subclasses and incident coronary heart disease:The Jackson Heart and Framingham Offspring Cohort Studies[J].Eur J Prev Cardiol,2016,23(1):41-49.
[15]Toth PP,Jones SR,Slee A,et al.Relationship between lipoprotein subfraction cholesterol and residual risk for cardiovascular outcomes:A post hoc analysis of the AIM-HIGH trial[J].J Clin Lipidol,2018,12(3):741-747.
[16]Rizzo M,Otvos J,Nikolic D,et al.Subfractions and subpo-pulations of HDL:an update[J].Curr Med Chem,2014,21(25):2881-2891.
[17]Tian L,F(xiàn)u M.The relationship between high density lipoprotein subclass profile and plasma lipids concentrations[J].Lipids Health Dis,2010,9:118.
[18]Lagos KG,F(xiàn)ilippatos TD,Tsimihodimos V,et al.Alterations in the high density lipoprotein phenotype and HDL-associated enzymes in subjects with metabolic syndrome[J].Lipids,2009,44(1):9-16.
[19]Calabresi L,Gomaraschi M,F(xiàn)ranceschini G.High-density lipoprotein quantity or quality for cardiovascular prevention?[J].Curr Pharm Des,2010,16(13):1494-1503.
[20]Berger JS,Mcginn AP,Howard BV,et al.Lipid and lipoprotein biomarkers and the risk of ischemic stroke in postmenopausal women[J].Stroke,2012,43(4):958-966.
[21]Tanne D,Yaari S,Goldbourt U.High-density lipoprotein cholesterol and risk of ischemic stroke mortality.A 21-year follow-up of 8586 men from the Israeli Ischemic Heart Disease Study[J].Stroke,1997,28(1):83-87.
[22]Shah AS,Tan L,Long JL,et al.Proteomic diversity of high density lipoproteins:our emerging understanding of its importance in lipid transport and beyond[J].J Lipid Res,2013,54(10):2575-2585.
(收稿日期:2019-10-12? 本文編輯:任秀蘭)