黃仲園何文輝 彭自然 劉玉超華雪銘 馮 悅李 向左 琳1,
苦草粉對(duì)草魚幼魚生長(zhǎng)性能與生理生化性能的影響*
黃仲園1,2,3何文輝4彭自然4劉玉超5華雪銘2,3①馮 悅1,2,3李 向1,2,3左 琳1,2,3
(1. 上海海洋大學(xué) 農(nóng)業(yè)農(nóng)村部魚類營(yíng)養(yǎng)與環(huán)境生態(tài)研究中心 上海 201306;2. 上海海洋大學(xué) 農(nóng)業(yè)農(nóng)村部淡水水產(chǎn)種質(zhì)資源重點(diǎn)實(shí)驗(yàn)室 上海 201306;3. 上海海洋大學(xué) 水產(chǎn)科學(xué)國(guó)家級(jí)實(shí)驗(yàn)教學(xué)示范中心 上海 201306;4. 上海海洋大學(xué)海洋生態(tài)與環(huán)境學(xué)院 上海 201306;5. 上海太和水環(huán)境科技有限公司 上海 200433)
本研究評(píng)價(jià)了苦草()粉在草魚()飼料中的應(yīng)用效果。以不含苦草粉的基礎(chǔ)飼料(VN0組)為對(duì)照,分別用10%(VN1組)、20%(VN2組)和30%(VN3組)的苦草粉替代基礎(chǔ)組飼料中的次粉和米糠,配制出4種實(shí)驗(yàn)飼料,另設(shè)置1組只投喂新鮮苦草的青飼料組(VN組)。選用初始體重為(18.85±0.20) g的草魚幼魚在室內(nèi)水泥池網(wǎng)箱進(jìn)行為期56 d的養(yǎng)殖實(shí)驗(yàn)。結(jié)果顯示,添加苦草粉不影響草魚的生長(zhǎng)性能、存活率和飼料系數(shù)。隨著苦草粉添加量的增加,內(nèi)臟指數(shù)及肝胰臟指數(shù)顯著降低;前腸淀粉酶活力顯著增強(qiáng),中、后腸淀粉酶活力顯著降低;對(duì)照組前、中、后腸蛋白酶活力依次增強(qiáng),隨著苦草粉含量的增加,前腸蛋白酶活力顯著增強(qiáng),中腸蛋白酶活力表現(xiàn)出先增強(qiáng)再減弱再增強(qiáng)的變化,VN1組顯著高于其他組,后腸蛋白酶活力呈現(xiàn)顯著降低的趨勢(shì);肝胰臟SOD活力顯著提高,MDA含量先下降后上升,VN3組最高。血清總蛋白含量有上升的趨勢(shì),VN3組顯著高于其他組;血清白蛋白含量呈現(xiàn)先增加后降低的趨勢(shì),VN1組最高;血清ALT活力先增強(qiáng)后減弱;與對(duì)照組相比血清AST活力顯著降低,各苦草粉組之間沒(méi)有顯著性差異。添加苦草粉顯著降低了飼料表觀消化率,但在一定程度上增強(qiáng)了草魚對(duì)嗜水氣單胞菌的抗感染能力。VN組出現(xiàn)負(fù)增長(zhǎng)現(xiàn)象,內(nèi)臟指數(shù)及肝胰臟指數(shù)、血清白蛋白、球蛋白及ALT都顯著低于其他組;腸道各段淀粉酶活力顯著高于各實(shí)用飼料組;中腸蛋白酶活力顯著高于對(duì)照組,后腸蛋白酶活力顯著低于對(duì)照組。研究表明,飼料中添加10%~30%苦草粉對(duì)草魚生長(zhǎng)沒(méi)有影響,且有利于魚體健康,可以作為草魚飼料原料進(jìn)行資源化的利用;苦草粉的使用效果明顯優(yōu)于新鮮苦草。
草魚幼魚;苦草;生長(zhǎng)性能;肝胰臟指標(biāo);消化率;抗感染能力
苦草()隸屬于水鱉科苦草屬,是一種多年生無(wú)莖沉水草本植物,廣泛分布于我國(guó)的河流、湖泊等水域。因?yàn)榭嗖葸m應(yīng)環(huán)境的能力強(qiáng),在修復(fù)水生態(tài)過(guò)程中對(duì)維護(hù)生態(tài)完整性與穩(wěn)定性、凈化水質(zhì)、抑制藻類生長(zhǎng)等具有重要作用,是生態(tài)修復(fù)工程上常用的一種沉水植物(Horppila, 2003; 潘慧云等, 2008)。然而,沉水植物生長(zhǎng)迅速,形成的生物量相當(dāng)可觀,在其腐爛分解時(shí)會(huì)釋放出大量的有機(jī)物質(zhì)和營(yíng)養(yǎng)鹽,易造成水體的二次污染(李文朝等, 2001; Chimney, 2006; 楊清心, 1998)。生態(tài)工程上一般采用人工打撈的方法來(lái)適時(shí)遷出富營(yíng)養(yǎng)化水體中的水草,遷出的這些水草的處理處置便成了當(dāng)務(wù)之急。
目前對(duì)于沉水植物資源化利用的研究大多集中在高投入且工藝不成熟的固體發(fā)酵、堆肥上(王艷麗等, 2006; 楊柳燕等, 2016; 陳專專, 2013; 查國(guó)君等, 2008)。研究發(fā)現(xiàn),鳳眼蓮草粉可用作鯰魚()的飼料源(Liang, 1971)。由于沉水植物是野生或湖泊放流河蟹()的重要食物來(lái)源,對(duì)其生長(zhǎng)發(fā)育起著重要作用(張蕾等, 2016),因此,輪葉黑藻()、伊樂(lè)藻()、馬來(lái)眼子菜()、苦草和金魚藻()可以開(kāi)發(fā)成飼料原料被中華絨螯蟹利用(孫麗萍, 2011)。
草魚()是我國(guó)第一大淡水養(yǎng)殖魚類,肉質(zhì)細(xì)嫩,深受人們喜愛(ài)。草魚具有攝食沉水植物的習(xí)性,攝食優(yōu)先選擇次序?yàn)椋狠喨~黑藻>苦草>菹草()>金魚藻>穗花狐尾藻()(孫健等, 2015)。研究發(fā)現(xiàn),沉水植物的構(gòu)造和次生代謝產(chǎn)物是影響其適口性的主要原因(Sun, 2017);而水溫、沉水植物的粗蛋白含量以及黃酮類物質(zhì)的種類和含量則影響攝食量(Sun, 2018)??嗖萁?jīng)干燥處理后粗蛋白含量為20%,粗脂肪含量約為5%,氨基酸種類齊全且含量豐富,氨基酸構(gòu)成比例優(yōu)良,有較高的營(yíng)養(yǎng)價(jià)值 (孫麗萍, 2011)。因此,本實(shí)驗(yàn)以草魚為研究對(duì)象,探討飼料中添加苦草粉對(duì)其生長(zhǎng)性能、組織生化指標(biāo)、消化酶、飼料表觀消化率和抗感染能力的影響,為苦草的資源化利用提供新的思路。
取苦草葉子,經(jīng)曬干后粉碎、過(guò)60目,其粗蛋白含量為16.8%,粗脂肪含量為4.5%。在基礎(chǔ)飼料(VN0)中分別添加10%(VN1)、20%(VN2)和30%(VN3)的苦草粉,相應(yīng)減少米糠和次粉的添加量,共配制出4組等氮等能的實(shí)驗(yàn)飼料(表1)。所有原料經(jīng)粉碎后過(guò)60目篩,逐級(jí)混勻制成粒徑為2 mm的沉性顆粒飼料(單螺桿擠壓機(jī)SLP-45,中國(guó)水產(chǎn)科學(xué)研究院漁業(yè)機(jī)械儀器研究所,中國(guó);制粒溫度為90℃~95℃),避光晾干,塑料自封袋保存?zhèn)溆?;另設(shè)置只投喂新鮮苦草的青飼料組(VN)。
表1 實(shí)驗(yàn)飼料配方及營(yíng)養(yǎng)組成(%, 風(fēng)干樣品)
Tab.1 Composition and nutrient levels of diets (%, air dry basis)
注:1. 維生素預(yù)混料向每千克飼料提供:維生素A, 6000 IU; 維生素D3, 2000 IU; 維生素C, 200 mg; 維生素E, 50 mg; 維生素K3, 5 mg; 維生素B1, 15 mg; 維生素B2, 15 mg; 維生素B3, 30 mg; 維生素B5, 35 mg; 維生素B6, 6 mg; 維生素B12, 0.03 mg; 生物素, 0.2 mg; 葉酸, 3 mg; 肌醇, 200 mg 2. 礦物元素預(yù)混料向每千克飼料提供: 碘, 0.4 mg; 銅, 4 mg; 鋅, 80 mg; 鐵, 150 mg; 錳, 20 mg; 鎂, 100 mg; 鈷, 0.1 mg; 硒, 0.1 mg
Note: 1.The vitamin premix provided the following per kg of diets: VA, 6000 IU; VD3, 2000 IU; VC, 200 mg; VE, 50 mg; VK3, 5 mg; VB1, 15 mg; VB2, 15 mg; VB3, 30 mg; VB5, 35 mg; VB6, 6 mg; VB12, 0.03 mg; biotin, 0.2 mg; folic acid, 3 mg; inositol, 200 mg 2. The mineral premix provided the following per kg of diets: I, 0.4 mg; Cu, 4 mg; Zn, 80 mg; Fe, 150 mg; Mn, 20 mg; Mg, 100 mg; Co, 0.1 mg; Se, 0.1 mg
實(shí)驗(yàn)用草魚平均初始體重為(18.85±0.20) g,購(gòu)買自浙江省湖州淡水魚苗場(chǎng)。取750尾體格健壯,規(guī)格整齊的個(gè)體,隨機(jī)分到25個(gè)網(wǎng)箱(2.0 m×1.2 m×1.2 m),每個(gè)網(wǎng)箱30尾,共5組,每組5個(gè)重復(fù),網(wǎng)箱隨機(jī)置于7個(gè)室內(nèi)水泥池(5.0 m×2.0 m×1.2 m)中。養(yǎng)殖實(shí)驗(yàn)在上海海洋大學(xué)濱?;剡M(jìn)行,養(yǎng)殖周期為56 d。
在養(yǎng)殖期間,每天按體重的3%~5%分3次(07:30, 12:30, 17:00)限量投喂,各網(wǎng)箱保持基本一致的投飼量,VN組按體重的20%~30%限量投喂新鮮苦草,并依據(jù)天氣、水溫和魚體增重等情況作適當(dāng)調(diào)整。飼喂期間,每5 d更換1/3池水,7 d吸污1次,水體24 h不間斷充氣,溶解氧>5.0 mg/L,pH為7.3~7.8,水溫為26℃~33℃,氨氮濃度低于0.2 mg/L。
養(yǎng)殖結(jié)束后,停食24 h,統(tǒng)計(jì)每個(gè)網(wǎng)箱草魚數(shù)量并稱總重,計(jì)算相對(duì)增重率(WGR)和飼料系數(shù)(FCR);每個(gè)網(wǎng)箱隨機(jī)取9尾魚,測(cè)體重和體長(zhǎng),計(jì)算肥滿度(CF);尾靜脈取血,4℃靜置24 h后以3500 r/min離心10 min,取上層血清;之后將實(shí)驗(yàn)魚解剖,分離肝胰臟,并稱重以計(jì)算肝胰臟指數(shù);分離前、中、后腸并剔除脂肪組織;最后,將所有樣品置于-80℃保存用于后續(xù)檢測(cè)分析。
1.3.1 生長(zhǎng)性能和形體指標(biāo)
存活率(Survival rate, SR, %)=實(shí)驗(yàn)結(jié)束時(shí)魚尾數(shù)/實(shí)驗(yàn)初始時(shí)魚尾數(shù)×100
相對(duì)增重率(Weight gain rate, WGR, %)=(終末平均體重-初始平均體重)/初始平均體重×100
飼料系數(shù)(Feed conversion ratio, FCR)=平均攝食量/(終末平均體重-初始平均體重)
肥滿度(Condition factor, CF)=100×終末魚體重/終末魚體長(zhǎng)3
內(nèi)臟指數(shù)(Viscerosomatic index, VSI, %)=內(nèi)臟重/ 魚體總重×100
肝胰臟指數(shù)(Hepatosomatic index, HSI, %)=肝胰臟重/魚體總重×100
1.3.2 血清樣品分析 堿性磷酸酶(AKP)活性、總蛋白(TP)、白蛋白(ALB)、丙氨酸轉(zhuǎn)氨酶(ALT)、天冬氨酸轉(zhuǎn)氨酶(AST)活性均采用南京建成生物的試劑盒檢測(cè),具體操作按照說(shuō)明書進(jìn)行。
1.3.3 肝胰臟樣品分析 肝胰臟勻漿液制備∶取部分新鮮肝胰臟稱重,按照質(zhì)量體積比1∶9加入生理鹽水,1000 r/min勻漿3 min,3500 r/min冷凍離心 10 min,取上清液分裝,4℃保存,24 h內(nèi)測(cè)定完成。
肝胰臟超氧化物歧化酶活力(SOD)、丙二醛(MDA)含量采用南京建成試劑盒測(cè)定。
1.3.4 消化酶活力的分析測(cè)定 腸道組織勻漿液的制備同肝胰臟組織勻漿液制備。
蛋白酶活力的測(cè)定參照Folin酚法進(jìn)行;淀粉酶活力采用南京建成生物的試劑盒檢測(cè)。
1.3.5 表觀消化率的測(cè)定 在養(yǎng)殖實(shí)驗(yàn)的中后期VN0、VN1、VN2和VN3組開(kāi)始投喂含有Cr2O3的飼料,適應(yīng)7 d后開(kāi)始在每次投喂2 h后收集新鮮、外表帶有包膜的完整糞便;VN組無(wú)法采用相同的方法測(cè)定表觀消化率,故不提供相應(yīng)的結(jié)果。
表觀消化吸收率(%)=(1-F/S)×100
F為飼料中Cr2O3含量;S為糞便中Cr2O3含量。
嗜水氣單胞菌活化后,經(jīng)預(yù)實(shí)驗(yàn)確定攻毒濃度為5×108CFU/ml,注射劑量為0.2 ml。待養(yǎng)殖實(shí)驗(yàn)中各組樣本采集完成后,隨機(jī)將各實(shí)用飼料組剩余草魚分成4重復(fù),每重復(fù)20尾魚,用預(yù)實(shí)驗(yàn)確定的嗜水氣單胞菌攻毒濃度和劑量對(duì)各實(shí)用飼料組草魚進(jìn)行急性攻毒,攻毒4 d后,草魚死亡趨于穩(wěn)定。詳細(xì)記錄內(nèi)各組草魚累計(jì)死亡數(shù),并計(jì)算累計(jì)死亡率(Accumulative death rate)和相對(duì)免疫保護(hù)率(Relative percent survival rate, RPS)。
RPS(%)=(1-免疫組死亡率/對(duì)照組死亡數(shù)率)×100
實(shí)驗(yàn)結(jié)果用平均值±標(biāo)準(zhǔn)差(Mean±SD)表示,采用SPSS 17.0對(duì)數(shù)據(jù)進(jìn)行單因素方差分析(One-way ANOVA),影響顯著時(shí)用Duncan氏法進(jìn)行多重比較,<0.05表示差異顯著。
飼料中添加苦草粉對(duì)草魚生長(zhǎng)性能和形體指標(biāo)的影響見(jiàn)表2。研究表明,除VN組外,其他各組在WGR、FCR和SR上都無(wú)顯著性差異(>0.05);VN0、VN1和VN2三組魚體CF沒(méi)有顯著性差異(>0.05),都顯著高于VN3組(<0.05);隨飼料中苦草粉含量的增加VSI和HSI顯著降低,VN0組的VSI和HSI顯著高于其他各組(<0.05),VN3組最小。VN組草魚出現(xiàn)反常的負(fù)增長(zhǎng)現(xiàn)象,其VSI和HSI都顯著低于其他各組(<0.05)。
由表3可見(jiàn),淀粉酶活力后腸最高,前腸最低;與VN0組相比,苦草粉組前腸淀粉酶活力顯著增強(qiáng)(<0.05),中、后腸淀粉酶活力則顯著降低(中腸VN1除外,<0.05),VN組前、中、后腸淀粉酶活力均顯著高于其他組(<0.05)。
對(duì)照組前、中、后腸蛋白酶活力依次增強(qiáng),隨著苦草粉含量的增加,前腸蛋白酶活力顯著增強(qiáng)(< 0.05);中腸蛋白酶活力表現(xiàn)出先增再降再增的變化,VN1組顯著高于其他組(<0.05);后腸蛋白酶活力呈現(xiàn)顯著降低的趨勢(shì)(<0.05);VN組中腸蛋白酶活力顯著高于對(duì)照組(<0.05),后腸蛋白酶活力顯著低于對(duì)照組(<0.05)。
表2 苦草粉對(duì)草魚生長(zhǎng)性能和形體指標(biāo)的影響指標(biāo)
Tab.2 Effects of V. natans meal on growth performance and physical indicators of grass carp
注:同行數(shù)據(jù)肩標(biāo)相同表示差異不顯著(>0.05),不同小寫字母表示差異顯著(<0.05)。下同
Notes: In the same row, values with the same small letter superscripts mean no significant difference (>0.05), while with different small letter superscripts mean significant difference (<0.05). The same as following
表3 苦草干粉對(duì)草魚腸道消化酶活力的影響(U/mg prot)
Tab.3 Effects of V. natans meal on intestinal digestive enzymes of grass carp (U/mg prot)
由圖1可知,隨著飼料中苦草粉含量的增加,飼料表觀消化率顯著降低(<0.05),當(dāng)添加量達(dá)到20%以后逐漸趨于穩(wěn)定。
由表4可知,隨著苦草粉用量的增加,肝胰臟SOD活力顯著提高(<0.05);MDA含量顯著降低而后又升高(<0.05)。
隨著飼料中苦草粉含量的上升血清總蛋白含量有上升的趨勢(shì),VN3組顯著高于其他組(<0.05);血清白蛋白含量先增后降,各添加組都顯著高于對(duì)照組(<0.05),VN1組最高;血清球蛋白含量先降后增,VN2組最低;血清AKP活力顯著下降(<0.05);血清ALT活力先增后降,VN2組顯著高于其他各組(<0.05);與對(duì)照組相比,添加苦草后血清AST活力顯著降低(<0.05),VN1、VN2和VN3組之間沒(méi)有顯著性差異(>0.05)。
圖1 苦草粉對(duì)飼料表觀消化率的影響
圖中相同小寫字母表示差異不顯著(>0.05),不同小寫字母表示差異顯著(<0.05)
Columns with the same small letter superscripts mean no significant difference (>0.05), while with different small letter superscripts mean significant difference (<0.05)
VN組的肝胰臟SOD顯著低于其他各組(< 0.05),肝胰臟MDA含量、血清球蛋白和總蛋白含量顯著高于其他各組(<0.05),而血清白蛋白含量與血清ALT顯著低于其他各組(<0.05);血清AKP及AST普遍低于VN0、VN1與VN2組。
表4 苦草粉對(duì)草魚血清、肝胰臟指標(biāo)的影響
Tab.4 Effects of V. natans meal on biochemical indicators in serum and hepatopancreas of grass carp
草魚受到嗜水氣單胞菌感染后,相繼出現(xiàn)死亡,24~48 h死亡最為嚴(yán)重,死魚表現(xiàn)出肛門紅腫潰爛、腹腔腫脹有積液、眼球紅腫、肝胰臟發(fā)黑等癥狀,第72 h之后不再死亡。表5顯示,各組累計(jì)死亡率沒(méi)有顯著性差異,VN2組的免疫保護(hù)率顯著高于其他各組(<0.05)。
表5 苦草對(duì)草魚死亡率和免疫保護(hù)率的影響
Tab.5 Effects of V. natans meal on accumulative death and relative percent survival of grass carp
注:同列數(shù)據(jù)肩標(biāo)相同表示差異不顯著(>0.05),不同小寫字母表示差異顯著(<0.05)
Notes: In the same column, values with the same small letter superscripts mean no significant difference (>0.05), while with different small letter superscripts mean significant difference (<0.05)
目前,關(guān)于沉水植物對(duì)動(dòng)物生長(zhǎng)影響的報(bào)道主要見(jiàn)于中華絨螯蟹(孫麗萍等, 2012)、尼羅羅非魚()(El-Sayed, 2003)、鯰魚(Liang, 1971)等。在中華絨螯蟹飼料中按15%的量分別添加5種不同的沉水植物,平均WGR從高到低依次為輪葉黑藻組>伊樂(lè)藻組>對(duì)照組>苦草組>金魚藻組>馬來(lái)眼子菜組(孫麗萍等, 2012);10%鳳眼蓮莖葉草粉替代飼料中的麥麩,對(duì)尼羅羅非魚的體組成沒(méi)有顯著的影響,但是顯著降低了生長(zhǎng)性能,替代量增加至20%時(shí),羅非魚的生長(zhǎng)性能進(jìn)一步受到抑制(El-Sayed, 2003);然而在飼料中添加5%~10%的鳳眼蓮草粉可顯著提高鯰魚的生長(zhǎng)速度和存活率,添加到20%也不影響飼料的適口性(Liang, 1971)。本研究中,隨著苦草粉含量的上升,草魚WGR有增長(zhǎng)的趨勢(shì),但差異并不顯著,與上述報(bào)道存在差異,同時(shí),本研究還觀察到,添加苦草粉的飼料組草魚搶食迅速,食欲旺盛,可見(jiàn)添加苦草粉對(duì)草魚可以起到一定的誘食作用。各種沉水植物所含營(yíng)養(yǎng)物質(zhì)不同 (孫麗萍, 2011; Sun2018),且中華絨螯蟹、羅非魚和鯰魚均屬于雜食性水產(chǎn)動(dòng)物,而草魚是典型的草食性魚類,營(yíng)養(yǎng)物質(zhì)和食性不同均可能引起飼料的適口性差異。
本研究中隨著苦草粉含量的增加,草魚HSI和VSI顯著降低(<0.05),這可能是由于實(shí)驗(yàn)中米糠和次粉被草粉所替代,飼料的糖源總量減少,而飼料中糖源對(duì)魚的HSI有顯著影響(Cui, 2010; Hutchins, 1998; 吳小易等, 2007)。本研究中,在沒(méi)有其他餌料來(lái)源、只投飼新鮮苦草的情況下,草魚WGR為負(fù)值,這是因?yàn)槌了参锏暮亢芨?,一般超過(guò)90%,苦草的水分含量更高達(dá)95%,干物質(zhì)只有5%,即便苦草干物質(zhì)蛋白含量可以達(dá)到20%,干物質(zhì)粗脂肪含量可以達(dá)到5%(尚士友等, 1997),也遠(yuǎn)遠(yuǎn)不能滿足草魚的生長(zhǎng)需求。
草魚無(wú)胃,腸道是食物容納、運(yùn)輸、消化吸收的主要場(chǎng)所,腸壁表皮能夠吸收營(yíng)養(yǎng)物質(zhì),通過(guò)血液和淋巴循環(huán)運(yùn)輸?shù)饺?隗黎麗, 2009)。魚類腸道消化酶活性與其食性和飼料營(yíng)養(yǎng)成分密切相關(guān),也反映了其對(duì)不同營(yíng)養(yǎng)物質(zhì)的利用能力(徐介民, 2008; 李弋等, 2015)。研究發(fā)現(xiàn),草魚腸道蛋白酶活力高于肝胰臟,且后腸活力最強(qiáng),魚類淀粉主要在腸道被消化和吸收(黃耀桐等, 1988)。本研究結(jié)果中,在對(duì)照組,無(wú)論是蛋白酶還是淀粉酶,都是前腸活力最弱,后腸活力最強(qiáng),與上述研究結(jié)果一致。
已有研究表明,草食性魚類的淀粉酶活力要高于肉食性魚類(Zanotto, 1997; Fu, 2015),淀粉酶活性主要由遺傳因素決定,飼料中的糖水平對(duì)其活性沒(méi)有顯著影響(Ugolev, 1983),也有研究表明,飼料中添加淀粉可以提高淀粉酶的活力(李弋等, 2015),飼料中過(guò)高的糖含量可以抑制鱸魚蛋白酶的活力(Moyano, 1996)。本研究中,苦草粉替代飼料中的次粉和米糠,飼料中淀粉種類及含量都發(fā)生變化,而糖水平的下降可能是導(dǎo)致淀粉酶活力下降的主要原因(胡毅等, 2018; 蔣陽(yáng)陽(yáng)等, 2016)。關(guān)于沉水植物對(duì)魚類消化酶活力影響的報(bào)道甚少,有報(bào)道稱大型沉水植物所含有的黃酮類物質(zhì)可以限制草魚對(duì)植物當(dāng)中蛋白的吸收,同時(shí)抑制消化酶的活力(Sun2018), 這可能是導(dǎo)致本研究后腸蛋白酶活力變化的一個(gè)重要原因。
由草魚對(duì)飼料干物質(zhì)和沉水植物表觀消化率的結(jié)果可知(羅莉等, 2001;陳少蓮等, 1993),草魚對(duì)苦草、次粉和米糠的表觀消化率依次為:苦草(63.05%)>次粉(61.64%)>米糠(47.41%)。本研究中,苦草粉主要替代原料中的次粉和米糠,隨著苦草粉用量的增加,飼料干物質(zhì)表觀消化率顯著降低,可能與消化酶的活力有關(guān),但這與上述結(jié)果存在一定差異,具體原因有待進(jìn)一步研究。
SOD是氧自由基的自然天敵,廣泛分布于細(xì)胞內(nèi)和各種體液間,能阻止并消除自由基的連鎖反應(yīng),以保護(hù)機(jī)體免受損害,SOD活力水平與機(jī)體免疫水平有密切關(guān)聯(lián)(張笑天等, 2014)。檢測(cè)SOD活力能夠比較準(zhǔn)確地反映機(jī)體內(nèi)自由基的代謝及組織的氧化損傷情況,對(duì)判斷機(jī)體的健康狀況以及免疫防御能力具有重要價(jià)值。當(dāng)機(jī)體處于氧化損傷時(shí),會(huì)產(chǎn)生丙二醛、4-羥基壬烯醛(4-Hydroxynonenal)等脂質(zhì)過(guò)氧化產(chǎn)物(Melin, 2000; Michiels, 1994),抑制蛋白質(zhì)的合成和酶活性(Szymonik-Lesiuk, 2003)。本研究中,苦草粉添加量不超過(guò)30%時(shí),草魚肝胰臟SOD活性增強(qiáng),MDA含量顯著降低,表明肝胰臟細(xì)胞受到損傷的可能性減小,這與孫麗萍等(2012)的研究結(jié)果一致。其原因可能是和苦草中含有阿魏酸、烏頭酸等抗菌、抗肝毒、抗雌激素及抗有絲分裂等功效的化合物有關(guān),阿魏酸還能抗氧化和清除自由基,保護(hù)內(nèi)膜不受損傷(孫文基等, 1998; 鮮啟鳴等, 2004)。魚體攝食過(guò)多的糖類物質(zhì),勢(shì)必會(huì)造成肝臟損傷和免疫力下降(許霄霄, 2017; 蔣利和等, 2013),本研究中,隨著苦草粉用量的增加,飼料總糖水平下降,這也可能是肝胰臟損傷程度降低的另一原因。
血清中酶活力的改變通常意味著機(jī)體組織的病理?yè)p傷,當(dāng)肝通透性改變或者肝細(xì)胞破裂時(shí),谷丙轉(zhuǎn)氨酶(ALT)、谷草轉(zhuǎn)氨酶(AST)及堿性磷酸酶(ALP)會(huì)溢出細(xì)胞進(jìn)入血液循環(huán),導(dǎo)致血液中三者的活力上升。本研究中,草魚攝食不同含量的苦草粉飼料后,血清ALT活力稍有升高,而血清AST與ALP活力顯著降低,進(jìn)一步說(shuō)明苦草能降低草魚肝胰臟損傷。
血清總蛋白(TP)是由白蛋白(ALB)與球蛋白(GLB)組成,其濃度是魚體健康狀況的基本指標(biāo)(Misra, 2006),較高的血清白蛋白標(biāo)志著較快的生長(zhǎng)速度,較高的球蛋白含量對(duì)應(yīng)著較強(qiáng)的免疫力(Li, 2012)。在本研究中,飼料中添加苦草粉血清總蛋白含量顯著提高,各苦草粉組草魚血清ALB含量均顯著高于對(duì)照組,這說(shuō)明在生長(zhǎng)上添加苦草粉要優(yōu)于對(duì)照組,各組生長(zhǎng)性能結(jié)果得到了進(jìn)一步驗(yàn)證;10%(VN1)和20%(VN2)組血清GLB含量低于對(duì)照組,當(dāng)苦草粉添加量達(dá)到30%時(shí),血清GLB含量顯著高于對(duì)照組,說(shuō)明適量使用苦草粉在一定程度上可以提高草魚的免疫力。這可能與苦草中的β-谷甾醇具有較強(qiáng)的抗炎作用和表皮滲透性、并促進(jìn)血纖維蛋白溶酶原激活因子產(chǎn)生等功效有關(guān)(王艷麗等, 2006)。
本研究表明,飼料中添加30%以下的苦草粉對(duì)草魚生長(zhǎng)性能沒(méi)有影響,且有利于魚體健康,可以作為草魚飼料原料進(jìn)行資源化的利用;苦草粉的使用效果明顯優(yōu)于新鮮苦草;飼料中添加苦草粉使草魚搶食迅速,食欲旺盛,苦草或可以作為草食性魚類誘食劑來(lái)開(kāi)發(fā)利用。
Chen SL, Liu XF, Su ZG. Nutrition and bioenergetics of the Chinese herbivorous fishes with important food values, II. Maximun consumption and digestion of seven aquatic plants byand. Acta Hydrobiologica Sinica, 1993, 17(1): 1–12 [陳少蓮, 劉肖芳, 蘇澤古. 我國(guó)淡水優(yōu)質(zhì)草食性魚類的營(yíng)養(yǎng)和能量學(xué)研究Ⅱ. 草魚、團(tuán)頭魴對(duì)七種水生高等植物的最大攝食量和消化率的測(cè)定. 水生生物學(xué)報(bào), 1993, 17(1): 1–12]
Chen ZZ. Nutrient mineralization of compost of aquatic plants and its agricultural utilization approaches. Master′s Thesis of Yangzhou University, 2013, 1–51 [陳專專. 水生植物混合堆腐料養(yǎng)分礦化規(guī)律及農(nóng)業(yè)利用途徑. 揚(yáng)州大學(xué)碩士研究生學(xué)位論文, 2013, 1–51]
Chimney MJ, Pietro KC. Decomposition of macrophyte litter in a subtropical constructed wetland in south Florida (USA). Ecological Engineering, 2006, 27(4): 301–321
Cui XJ, Zhou QC, Liang HO,. Effects ofdietary carbohydrate sources on the growth performance and hepatic carbohydrate metabolic enzyme activities of juvenilecobia (Linnaeus). Aquaculture Research, 2010, 42(1): 99–107
El-Sayed AFM. Effects of fermeniation methods on the nutritive value of water hyacinth for Nile tilapia (L.) fingerlings. Aquaculture, 2003, 218(1–4): 471–478
Fu SJ. The growth performance of southern catfish fed diets with raw, precooked cornstarch and glucose at two levels. Aquaculture Nutrition, 2015, 11(4): 257–261
Horppila J, Nurmnen L. Effects of submerged macrophytes on sediment resuspension and internal phosphorus loading in Lake Hiidenvesi (southern Finland). Water Research, 2003, 37(18): 4468–4474
Hu Y, Chen YF, Zhang DH,. Effects of different dietary carbohydrate and protein levels on growth, intestinal digestive enzymes and serum indexes in large-size grass carp (). Journal of Fisheries of China, 2018, 42(5): 777–786 [胡毅, 陳云飛, 張德洪, 等. 不同碳水化合物和蛋白質(zhì)水平膨化飼料對(duì)大規(guī)格草魚生長(zhǎng)、腸道消化酶及血清指標(biāo)的影響. 水產(chǎn)學(xué)報(bào), 2018, 42(5): 777–786]
Huang YT, Liu YJ. Study on protease activity in the intestinal and hepatopancreas of grass carps. Acta Hydrobiologica Sinica, 1988, 12(4): 328–333 [黃耀桐, 劉永堅(jiān). 草魚腸道肝胰臟蛋白酶活性的初步研究. 水生生物學(xué)報(bào), 1988, 12(4): 328–333]
Hutchins CG, Rawles SD, Gatlin DMⅢ. Effects of dietary carbohydrate kind and level on growth, body composition and glycemic response of juvenile sunshine bass (♀×♂). Aquaculture, 1998, 161(1–4): 187–199
Jiang LH, Wu HY, Huang K,. Effects of dietary carbohydrate levels on growth performance and liver metabolism functions of juvenile tilapia (). Journal of Fisheries of China, 2013, 37(2): 245–255 [蔣利和, 吳宏玉, 黃凱, 等. 飼料糖水平對(duì)吉富羅非魚幼魚生長(zhǎng)和肝代謝功能的影響. 水產(chǎn)學(xué)報(bào), 2013, 37(2): 245–255]
Jiang YY, He JX, Li HY,Effect of protein to carbohydrate ratios on growth performance, body composition and digestive enzymes activities of juvenile grass carp (). Journal of Southern Agriculture, 2016, 47(5): 753–758 [蔣陽(yáng)陽(yáng), 何吉祥, 李海洋, 等. 不同餌料蛋糖比對(duì)草魚幼魚生長(zhǎng)性能、體組成和消化酶活性的影響. 南方農(nóng)業(yè)學(xué)報(bào), 2016, 47(5): 753–758]
Li WC, Chen KN, Wu QL,. Experimental studies on decomposition process of aquatic plant material from East Taihu Lake. Journal of Lake Sciences, 2001, 13(4): 331–336 [李文朝, 陳開(kāi)寧, 吳慶龍, 等. 東太湖水生植物生物質(zhì)腐爛分解實(shí)驗(yàn). 湖泊科學(xué), 2001, 13(4): 331–336]
Li XF, Liu WB, Lu KL,. Dietary carbohydrate/lipid ratios affect stress, oxidative status and non-specific immune responses of fingerling blunt snout bream,. Fish and Shellfish Immunology, 2012, 33(2): 316–323
Li Y, Zhou PP, Qiu H,. Effects of dietary carbohydrate sources on growth performance, digestive enzyme and carbohydrate metabolic key enzyme activities of large yellow croaker (Richardson). Chinese Journal of Animal Nutrition, 2015, 27(11): 3438–3447 [李弋, 周飄蘋, 邱紅, 等. 飼料中糖源對(duì)大黃魚生長(zhǎng)性能及消化酶、糖代謝關(guān)鍵酶活性的影響. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào), 2015, 27(11): 3438–3447]
Liang JK, Lovell RT. Nutritional value of water hyacinth in channel catfish feeds. Hyacinth Control Journal, 1971, 9(1): 40–44
Luo L, Lin SM, Ye YT. The apparent digestibility of grass carp in the dry matter, protein and fat of nine feeds. Freshwater Fisheries, 2001, 31(3): 47–50 [羅莉, 林仕梅, 葉元土. 草魚對(duì)九種飼料的干物質(zhì)、蛋白質(zhì)和脂肪的表觀消化率. 淡水漁業(yè), 2001, 31(3): 47–50]
Melin AM, Perromat A, Déléris G. Pharmacologic application of Fourier transform IR spectroscopy:toxicity of carbon tetrachloride on rat liver. Biopolymers, 2000, 57(3): 160–168
Michiels C, Raes M, Toussaint O,. Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radical Biology and Medicine, 1994, 17(3): 235–248
Misra S, Sahu NP, Pal AK,. Pre- and post-challenge immuno- haematological changes injuveniles fed gelatinised or non-gelatinised carbohydrate with n-3 PUFA. Fish and Shellfish Immunology, 2006, 21(4): 346–356
Moyano FJ, Diaz M, Alarcon FJ,. Characterization of digestive enzyme activity during larval development of gilthead seabream (). Fish Physiology and Biochemistry, 1996, 15(2): 121–130
Pan HY, Xu XH, Gao SX. Study on process of nutrition release during the decay of submerged macrophytes. Environmental Science Research, 2008, 21(1): 64–68 [潘慧云, 徐小花, 高士祥. 沉水植物衰亡過(guò)程中營(yíng)養(yǎng)鹽的釋放過(guò)程及規(guī)律. 環(huán)境科學(xué)研究, 2008, 21(1): 64–68]
Shang SY, Du JM, Zhang ZY,. Exploitation of submersed macrophytes resources and lake protection. Transactions of the Chinese Society of Agricultural Engineering, 1997(3): 16–20 [尚士友, 杜建民, 張志毅, 等. 沉水植物資源開(kāi)發(fā)與湖泊保護(hù)的研究. 農(nóng)業(yè)工程學(xué)報(bào), 1997(3): 16–20]
Sun J, He F, Zhang Y,. The feeding behavior of grass carp () on different types of submerged plants. Acta Hydrobiologica Sinica, 2015, 39(5): 997–1002 [孫健, 賀鋒, 張義, 等. 草魚對(duì)不同種類沉水植物的攝食研究. 水生生物學(xué)報(bào), 2015, 39(5): 997–1002]
Sun J, Wang L, Ma L,. Determinants of submerged macrophytes palatability to grass carpEcological Indicators, 2018, 85: 657–663
Sun J, Wang L, Ma L,. Factors affecting palatability of four submerged macrophytes for grass carp. Environmental Science and Pollution Research, 2017, 24(36): 1–9
Sun LP, Song XH, Zhu JR,. Effects of submerged plants on growth performance and non-specific immunity of Chinese mitten crab (). Freshwater Fisheries, 2012, 42(1): 35–40 [孫麗萍, 宋學(xué)宏, 朱金榮, 等. 沉水植物對(duì)中華絨螯蟹生長(zhǎng)和非特異性免疫力的影響. 淡水漁業(yè), 2012, 42(1): 35–40]
Sun LP. Assessment of common submerged macrophytes in east Taihu Lake as feed resources for. Master′s Thesis of Soochow University, 2011, 1–65 [孫麗萍.東太湖常見(jiàn)沉水植物作為中華絨螯蟹飼料源的可行性研究. 蘇州大學(xué)碩士研究生學(xué)位論文, 2011, 1–65]
Sun WJ, Sheng JF. A concise manual for natural active ingredients. Beijing: China Medical Science and Technology Press, 1998, 536 [孫文基, 繩金房. 天然活性成分簡(jiǎn)明手冊(cè). 北京: 中國(guó)醫(yī)藥科技出版社, 1998, 536]
Szymonik-Lesiuk S, Czechowska G, Stryjecka-Zimmer M,. Catalase, superoxide dismutase, and glutathione peroxidase activities in various rat tissues after carbon tetrachloride intoxication.Journal of Hepato-Biliary-Pancreatic Surgery, 2003, 10(4): 309–315
Ugolev AM, Egorova VV, Kuzmina VV,. Comparative- molecular characterization of membrane digestion in fish and mammals. Comparative Biochemistry and Physiology, Part B: Comparative Biochemistry, 1983, 76(3): 627–635
Wang YL, Xiao Y, Pan HY,. Analysis of nutrient composition and comprehensive utilization of submersed aquatic macrophytes (). Journal of ecology and rural environment, 2006, 22(4): 45–47, 70 [王艷麗, 肖瑜, 潘慧云, 等. 沉水植物苦草的營(yíng)養(yǎng)成分分析與綜合利用. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 2006, 22(4): 45–47, 70]
Wei LL. Subchronic effects of microcystin-LR on the ultrastructure of liver of grass carp. Acta Agriculturae Universitatis Jiangxiensis, 2009, 31(5): 812–817 [隗黎麗. 微囊藻毒素-LR對(duì)草魚肝臟超微結(jié)構(gòu)的亞急性毒性影響. 江西農(nóng)業(yè)大學(xué)學(xué)報(bào), 2009, 31(5): 812–817]
Wu XY, Liu YJ, Tian LX,. Utilization of several different carbohydrate sources by juvenile yellowfin seabream (). Journal of Fisheries of China, 2007, 31(4): 463–471 [吳小易, 劉永堅(jiān), 田麗霞, 等. 黃鰭鯛幼魚對(duì)幾種不同糖源的利用. 水產(chǎn)學(xué)報(bào), 2007, 31(4): 463–471]
Xian QM, Chen HD, Zhou HX,. Analysis of organic acids in aqueous leachates of three submerged macrophytes. Journal of Plant Resources and Environment, 2004, 13(3): 57–58 [鮮啟鳴, 陳海東, 鄒惠仙, 等. 3種沉水植物水浸提液中有機(jī)酸成分分析. 植物資源與環(huán)境學(xué)報(bào), 2004, 13(3): 57–58]
Xu JM. Effcets of chitosan on growth of grass carps. Master′s Thesis of Hunan Agricultural University, 2008, 1–43 [徐介民. 殼聚糖對(duì)草魚生長(zhǎng)影響的研究. 湖南農(nóng)業(yè)大學(xué)碩士研究生學(xué)位論文, 2008, 1–43]
Xu XX. Effects of high carbohydrate levels in the dietary on growth properties, glucose and lipid metabolisms, intestinal health and immune performance of GIFT,. Master′s Thesis of Shanghai Ocean University, 2017, 1–80 [許霄霄. 高糖飼料對(duì)吉富羅非魚生長(zhǎng)性能、糖脂代謝、腸道健康以及免疫性能的影響. 上海海洋大學(xué)碩士研究生學(xué)位論文, 2017, 1–80]
Yang LY, Zhang W, Chen QK,. Resources utilization of macrophytes. Water Resources Protection, 2016, 32(5): 5–10, 28 [楊柳燕, 張文, 陳乾坤, 等. 大型水生植物的資源化利用. 水資源保護(hù), 2016, 32(5): 5–10, 28]
Yang QX. Ecological functions of aquatic vegetation in east Taihu Lake and its reasonable regulation. Journal of Lake Sciences, 1998, 10(1): 67–72 [楊清心. 東太湖水生植被的生態(tài)功能及調(diào)節(jié)機(jī)制. 湖泊科學(xué), 1998, 10(1): 67–72
Zanotto F, Gouveia S, Simpson S,. Nutritional homeostasis in locusts: Is there a mechanism for increased energy expenditure during carbohydrate overfeeding? Journal of Experimental Biology, 1997, 200(18): 2437–2448
Zha GJ, Zhang WD, Yin F,. Seperating solid and liquid of Dianchi’sfor biogas generation. Chinese Wild Plant Resources, 2008, 27(1): 36–38 [查國(guó)君, 張無(wú)敵, 尹芳, 等. 滇池水葫蘆固液分離后的沼氣發(fā)酵研究. 中國(guó)野生植物資源, 2008, 27(1): 36–38]
Zhang L, Zhang WQ, Wu RF,. The comparasion of nutritional composition of commonly used aquatic plants in aquaculture ponds of adult Chinese mitten crabJournal of Zhejiang Ocean University (Natural Science), 2016, 35(2): 113–121 [張蕾, 章文琪, 吳仁福, 等. 中華絨螯蟹成蟹養(yǎng)殖池塘常用水草的營(yíng)養(yǎng)成分比較. 浙江海洋學(xué)院學(xué)報(bào)(自然科學(xué)版), 2016, 35(2): 113–121]
Zhang XT, Zheng XY. Oxidative free radical scavenger superoxide dismutase and disease. Chinese Journal of Public Health, 2014, 30(10): 1349–1352 [張笑天, 鄭曉瑛. 氧化自由基清除劑超氧化物歧化酶與疾病. 中國(guó)公共衛(wèi)生, 2014, 30(10): 1349–1352]
Effects of AddingMeal to Diet on Growth Performance, Physiological and Biochemical Properties of Juvenile Grass Carps ()
HUANG Zhongyuan1,2,3, HE Wenhui4, PENG Ziran4, LIU Yuchao5, HUA Xueming2,3①, FENG Yue1,2,3, LI Xiang1,2,3, ZUO Lin1,2,3
(1. Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agricultureand Rural Affairs, Shanghai Ocean University, Shanghai 201306; 2. Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agricultureand Rural Affairs, Shanghai Ocean University, Shanghai 201306; 3. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306; 4. College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306; 5. Shanghai Taihe Water Environment Technology Development Co.Ltd., Shanghai 200433)
In this study, the effect ofmeal used as feed ingredient in the diet of grass carp () on growth, physiological, and biochemical properties was evaluated. Four isonitrogenous and isoenergic diets were formulated by replacing the secondary powder and rice bran with 0 (VN0, control), 10% (VN1), 20% (VN2), and 30% (VN3)meal. In addition, a group that was fed only with freshwas designed. Juvenile grass carp of initial weight (18.85±0.20) g were selected to be cultured for 56 days in indoor cement tank cages. The results showed that addition ofmeal did not affect the growth performance, survival rate of grass carp, and feed coefficient. With the increase in the amount ofmeal, the visceral index and hepatopancreas index significantly decreased, the activity of amylase in the foregut was significantly increased, and that in the middle and rear intestines was significantly decreased. In the control group, the protease activity of foregut, and middle and rear intestines, in turn, strengthened, and with the increase in the content ofmeal the activity of foregut protease was significantly increased; meanwhile, midgut proteinase activity increased first, then decreased, and increased again. The highest value was observed in group VN1, and protease activity in the posterior intestine showed a significant decrease trend. The superoxide dismutase (SOD) activity of the hepatopancreas was significantly increased, whereas malondialdehyde (MDA) content decreased first and then increased, and that in group VN3 was the highest. The content of serum total protein increased significantly, whereas the serum albumin content increased first and then decreased, and the highest value was found in group VN1. Compared with the control group, serum alanine aminotransferase (ALT) activity increased and then recovered to the control level, and serum aspartate aminotrasferase (AST) activity significantly decreased inmeal groups, and there was no significant difference among themeal groups. The addition ofmeal resulted in significantly reduced apparent digestibility of the diets and enhanced resistance ability of grass carp toto some extent. Group VN showed negative growth and depressed visceral index, hepatopancreas index, serum albumin, globulin, and ALT. The activity of amylase in the intestinal segments was significantly higher than that in all practical formulated diets. The activity of midgut protease in VN group was significantly higher than that in the control group, and that of hindgut protease was significantly lower than that of the control group. The above results showed that the addition of 10%~30%meal in the diet had no effect on the growth of grass carp, but was beneficial to the health of the fish body. The results indicated thatmeal used as the raw material of grass carp feed for resource utilization would be much better than fresh
Juvenile;; Growth performance; Hepatopancreas index; Apparent digestibility; Ability of anti-infection
S963
A
2095-9869(2020)01-0169-09
10.19663/j.issn2095-9869.20181106001
* 水體污染控制與治理科技重大專項(xiàng)子課題(2014ZX07101-012-04)資助[This work was supported by the Subproject of the National Water Pollution Control and Treatment Science and Technology Major Project (2014ZX07101-012-04)]. 黃仲園,E-mail: 1099889240@qq.com
華雪銘,副教授,E-mail:xmhua@shou.edu.cn
2018-11-06,
2018-12-10
http://www.yykxjz.cn/
黃仲園, 何文輝, 彭自然, 劉玉超, 華雪銘, 馮悅, 李向, 左琳. 苦草粉對(duì)草魚幼魚生長(zhǎng)性能與生理生化性能的影響. 漁業(yè)科學(xué)進(jìn)展, 2020, 41(1): 169–177
Huang ZY, He WH, Peng ZR, Liu YC, Hua XM, Feng Y, Li X, Zuo L. Effects of addingmeal to diet on growth performance, physiological and biochemical properties of juvenile grass carps (). Progress in Fishery Sciences, 2020, 41(1): 169–177
HUA Xueming, E-mail: xmhua@shou.edu.cn
(編輯 陳輝)