朱菊
[摘要]小學(xué)數(shù)學(xué)是素質(zhì)教育初級階段中非常重要的一門學(xué)科。小學(xué)生在解答數(shù)學(xué)問題時出現(xiàn)各類錯誤,究其根本,大多是審題不清導(dǎo)致的。審題是解答數(shù)學(xué)題的基礎(chǔ)和關(guān)鍵環(huán)節(jié),審題不清則代表了學(xué)生對審題方法的掌握及運用不熟練,對數(shù)學(xué)知識的理解不夠透徹。在教學(xué)過程中,教師要注重對學(xué)生審題能力和習(xí)慣的培養(yǎng),從而提升學(xué)生答題的準(zhǔn)確率,提高學(xué)生的數(shù)學(xué)綜合素養(yǎng)。
[關(guān)鍵詞]小學(xué)數(shù)學(xué);審題能力;審題方法
[中圖分類號]G623.5 [文獻標(biāo)識碼]A [文章編號] 1007—9068(2019)32—0077—02
學(xué)生在解答數(shù)學(xué)問題的過程中,很容易出現(xiàn)各種類型的錯誤,且錯誤的原因很大部分源于審題不清。由于傳統(tǒng)教學(xué)方式更注重呈現(xiàn)解題過程,忽視對學(xué)生審題能力的培養(yǎng),給學(xué)生的審題過程造成了一定的障礙。審題是解題的基礎(chǔ)和關(guān)鍵環(huán)節(jié),沒有良好的審題能力,學(xué)生就無法正確分析題干,無法找出對應(yīng)的解題方法,進而直接影響學(xué)生解題的正確率,阻礙學(xué)生養(yǎng)成良好的審題習(xí)慣。因此,教師應(yīng)當(dāng)注重對學(xué)生審題能力的培養(yǎng),從學(xué)生的角度出發(fā),引導(dǎo)學(xué)生關(guān)注題目細(xì)節(jié)、明確相關(guān)概念,甚至利用畫圖來進一步理解題意;也要懂得聯(lián)系生活實際,最大限度地培養(yǎng)學(xué)生的審題能力,從而提高數(shù)學(xué)學(xué)習(xí)的質(zhì)量。
一、明確概念,加強審題能力
傳統(tǒng)教學(xué)中,教師往往忽略學(xué)生對數(shù)學(xué)概念的明確性,事實上,學(xué)生若對數(shù)學(xué)概念沒有明確的認(rèn)識,就容易出現(xiàn)審題不清、審題錯誤的現(xiàn)象。因此,教師首先要做的就是明確相關(guān)的數(shù)學(xué)概念,讓數(shù)學(xué)概念在學(xué)生的大腦中形成一個具體的形象,這樣學(xué)生在審題時遇到類似的情況自然就會有明確的方向。
例如,教學(xué)“長方形、正方形面積的計算”時,教師就要讓學(xué)生首先認(rèn)識長方形與正方形的相關(guān)概念,明確長方形的兩條長和兩條寬分別相等,長方形的面積=長×寬;正方形的長和寬相等,它是特殊的長方形,正方形的面積=邊長×邊長。許多學(xué)生分不清長方形與正方形的計算公式,很容易在求長方形面積時錯用了正方形的面積公式。又如,教學(xué)“圓的認(rèn)識”時,教師要讓學(xué)生理解圓的周長與面積的概念,明確圓的周長公式為C=2πr,圓的面積公式為S=πr2。雖然兩個公式完全不同,但還是有學(xué)生將這兩個概念混淆,在求面積時采用了周長公式。
因此,教師要增強學(xué)生對數(shù)學(xué)概念的明確程度。學(xué)生只有對數(shù)學(xué)概念了如指掌,才能在審題時正確辨別,得出正確答案。明確數(shù)學(xué)概念,不僅能加強學(xué)生的數(shù)學(xué)基礎(chǔ),還能促進學(xué)生審題與解題能力的雙向發(fā)展。
二、注重細(xì)節(jié),促進審題效率
在審題時,學(xué)生常常就快速地看個大概,不會逐字研讀,忽略了很多細(xì)節(jié),導(dǎo)致審題不清。教師在教學(xué)時不妨挑選一些題目,通過標(biāo)注關(guān)鍵字、詞等練習(xí)幫助學(xué)生掌握相關(guān)的審題技巧,從而提高審題的正確率。
例如,教學(xué)“小數(shù)乘法和除法”時,教師出示練習(xí)題:一間房,長約10.2米、寬約8.2米,現(xiàn)在有正方形地磚,每塊邊長約0.8米,如果有120塊這樣的地磚,能鋪滿這個房間嗎?經(jīng)過思考,大部分學(xué)生認(rèn)為能夠鋪滿,其中一名學(xué)生給出了理由:“10.2×8.2=83.64(平方米),0.8×120=96(平方米),83.64<96,因此能夠鋪滿?!焙茱@然,這位學(xué)生錯誤的根源就是審題不清,沒有看清題目中的關(guān)鍵字、詞,錯將“正方形地磚,每塊邊長約0.8米”看成了“面積是0.8平方米”。于是,教師順勢讓全體學(xué)生重新審題,標(biāo)注關(guān)鍵字、詞作為警示。學(xué)生很快就算出了正確的答案:10.2×8.2=83.64(平方米),0.8×0.8×120=76.8(平方米),顯然83.64>76.8,因此不能鋪滿。
以上案例中,教師通過讓學(xué)生注意細(xì)節(jié),學(xué)會找關(guān)鍵字、詞的方法,讓學(xué)生明白了審題的重要性,并學(xué)會了相關(guān)的審題技巧,同時鍛煉了他們的審題能力,讓學(xué)生養(yǎng)成良好的審題習(xí)慣,從而提升審題和解題的效率。
三、數(shù)形結(jié)合,體現(xiàn)直觀審題
一些數(shù)學(xué)題中不單含有非常明顯的已知條件,還含有許多潛在的條件,學(xué)生往往因為忽視了潛在條件而無從下手。遇到這種類型的題目時,教師要引導(dǎo)學(xué)生運用數(shù)形結(jié)合的思想方法,把題中的已知條件和要求的問題圖像化,先用模擬實物圖或線段圖畫出來,再進行觀察思考,那么題中的數(shù)量關(guān)系就能直觀形象地暴露出來。因此,利用畫示意圖,將圖形直觀的特點充分表示出來,也是一個幫助審題、啟發(fā)學(xué)生思維的好途徑。
例如,教師出示題目:某廣場上有一個大鐘,鐘指到6時會敲6下,10秒鐘敲完,鐘指到10時則敲10下,那么10時需要多少秒鐘敲完?學(xué)生可以通過畫線段圖來挖掘題目中的隱藏條件:鐘每敲一下就在線段圖上畫一個點,6下就是6個點。學(xué)生從線段圖上看出,敲6下的這段時間包含了5個間隔,而完成5個間隔需要的時間是10秒鐘,那么,完成一個間隔就需要10÷5=2(秒),即間隔數(shù)要比敲的次數(shù)少1,于是推測出10時敲10下將有9個間隔,而每個間隔需要2秒鐘,9個間隔則需要9x2=18(秒),即需要18秒鐘敲完。
教師運用數(shù)形結(jié)合的思想方法,讓學(xué)生通過畫圖的方式,找出題中的隱藏條件,更加直觀的理解題意。審題正確了,解題就不容易出錯。數(shù)形結(jié)合能引導(dǎo)學(xué)生進行思考,開啟學(xué)生的數(shù)學(xué)思維,從而更好地提升學(xué)生的審題能力。
四、聯(lián)系生活,啟發(fā)審題思維
數(shù)學(xué)知識與我們的現(xiàn)實生活有著緊密的聯(lián)系。有許多數(shù)學(xué)問題過于抽象,對于學(xué)生來說比較難理解。這時,教師就可以聯(lián)系生活,引導(dǎo)學(xué)生根據(jù)自己的生活經(jīng)驗來審題,以此鍛煉學(xué)生的審題能力,讓學(xué)生學(xué)會更加形象地思考。
例如,教學(xué)“小數(shù)加法和減法”時,教師出示了一道練習(xí):2.2=5-( )。這樣一道看起來很簡單的計算題,學(xué)生卻錯漏百出,很多學(xué)生出現(xiàn)了思維定式,認(rèn)為等號必須出現(xiàn)在算式的末尾,于是得出了“2.2=5-(7.2)”的結(jié)果。學(xué)生會出現(xiàn)這樣的錯誤,根本原因就是審題不清,沒有具備良好的審題習(xí)慣。于是,教師導(dǎo)入學(xué)生比較熟悉的購物活動情境:“今天,老師去了超市購物,老師一共有5元錢,在結(jié)賬的時候,收銀員給我找了2元2角錢,大家知道老師一共花了多少錢嗎?”在教師巧妙的引導(dǎo)下,學(xué)生逐漸意識到了自己的錯誤,并了解了這類題應(yīng)該如何更好地審題。隨后,學(xué)生依據(jù)自己的生活經(jīng)驗,得出了正確的結(jié)果2.2=5-2.8。
以上案例中,學(xué)生正是依據(jù)自己的生活經(jīng)驗,才對題目有了更深層次的理解,也尋找到了解題的關(guān)鍵,突破了思維的難點。教學(xué)中,教師通過聯(lián)系學(xué)生的生活實際,拉近了學(xué)生與數(shù)學(xué)題目的關(guān)系,促進學(xué)生對問題的理解,給抽象的數(shù)學(xué)問題賦予了生命,開拓了學(xué)生的數(shù)學(xué)思維,提升了學(xué)生的審題效率。
總之,審題能力是學(xué)生學(xué)好數(shù)學(xué)、正確解題的關(guān)鍵,但良好的審題習(xí)慣不是短時間內(nèi)能形成的,它需要一個長期的學(xué)習(xí)過程,需要學(xué)生不斷進行學(xué)習(xí)、反思以及積累相關(guān)的做題經(jīng)驗,同時還需要教師在平時的教學(xué)中,對學(xué)生的審題能力進行有效的關(guān)注和訓(xùn)練。
(責(zé)編 李琪琦)