黃劍峰 黃?!●R曉娟 黃六蓮 陳禮輝 曹石林
摘 要:以竹片為研究對(duì)象,分析預(yù)水解過(guò)程中半纖維素脫除率與木質(zhì)素脫除率的關(guān)聯(lián)性,特別是預(yù)水解后期木質(zhì)素對(duì)半纖維素溶出的影響。將竹片用植物粉碎機(jī)粉碎后,取40~60 目竹粉模擬預(yù)水解實(shí)驗(yàn),分析竹粉在預(yù)水解過(guò)程中的孔隙變化,結(jié)合預(yù)水解過(guò)程中竹片表面微觀結(jié)構(gòu)變化及木質(zhì)素的遷移行為,探討木質(zhì)素對(duì)半纖維素溶出的抑制作用。結(jié)果表明,預(yù)水解過(guò)程中,半纖維素的脫除率與木質(zhì)素存在一定關(guān)系;預(yù)水解前期,木質(zhì)素和半纖維素同時(shí)降解溶出;預(yù)水解至一段時(shí)間后,木質(zhì)素和半纖維素脫除率均達(dá)到最大值。繼續(xù)預(yù)水解,木質(zhì)素脫除率急劇下降,而半纖維素脫除率不再提高。環(huán)境掃描電子顯微鏡(ESEM)分析顯示預(yù)水解后期的竹片表面基本被疏水木質(zhì)素涂層覆蓋,疏水涂層的存在可能會(huì)阻礙半纖維素的降解溶出。竹粉的模擬實(shí)驗(yàn)結(jié)果也證實(shí)了預(yù)水解后期竹粉的孔體積和孔徑明顯下降。因此,預(yù)水解固體基質(zhì)中較高的木質(zhì)素含量及由木質(zhì)素遷移導(dǎo)致的纖維表面和纖維孔隙結(jié)構(gòu)變化是阻礙預(yù)水解后期半纖維素進(jìn)一步溶出的主要原因。
關(guān)鍵詞:竹材預(yù)水解;半纖維素脫除率;木質(zhì)素;孔隙結(jié)構(gòu)
中圖分類(lèi)號(hào):TS721
文獻(xiàn)標(biāo)識(shí)碼:A
DOI:10.11980/j.issn.0254508X.2019.06.001
The Resistance Effect of Lignin on Hemicelluloses Removal During Bamboo Hydrothermal Prehydrolysis
HUANG Jianfeng1 HUANG Hai2 MA Xiaojuan2 HUANG Liulian2 CHEN Lihui2 CAO Shilin2,*
(1. Fujian Qingshan Paper Industry Co., Ltd., Sanming, Fujian Province, 365507;
2. College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002)
(*Email: scutcsl@163.com)
Abstract:Prehydrolysis is one of the most important steps for dissolving pulp production with an objective of degradation and dissolution of hemicelluloses, but the hemicelluloses removal can only reach to a limit level. In this work, the influence of lignin on the hemicellulose removal especially in the later stage of prehydrolysis was evaluated by the analysis of the relations between lignin and hemicellulose removal. The changes of pore structure of the bamboo powder which was prepared by grinding the bamboo chips and used to implement prehydrolysis simulation, the surface morphology of the bamboo chips, and together with lignin migration were used for elucidating the lignin resistance effect on hemicellulose removal. The results showed that hemicelluloses removal was closely correlated with lignin, both lignin and hemicellulose were degraded and dissolved at the same time in the initial stage of prehydrolysis, most of the hemicelluloses removed when the lignin removal reached to the maximum. As prehydrolysis continued the hemicelluloses removal no longer increased when lignin removal decreased sharply. It was referred from ESEM analysis that extensive pretreatment made the surface of fiber full of hydrophobic lignin coating which hindered the water attack and the diffusion of degradation products. The results from bamboo powder simulation experiment also confirmed that the pore volume and pore diameter of bamboo powder decreased obviously at the later stage of prehydrolysis. The relative high lignin content?and the change of microstructure of the fiber caused by lignin migration were the main reasons for hindering hemicelluloses further removal.
Key words:bamboo prehydrolysis; hemicelluloses removal; lignin; pore structure
溶解漿,即高純度纖維素,是生產(chǎn)黏膠纖維、硝酸纖維素、醋酸纖維等纖維素衍生物的原料,目前已廣泛應(yīng)用于紡織、化工、電子等行業(yè)。溶解漿的質(zhì)量要求高,要盡量除去原料中的半纖維素。預(yù)水解硫酸鹽法制漿是生產(chǎn)溶解漿的方法之一,其預(yù)水解的目的是盡可能地除去木質(zhì)纖維原料中的半纖維素[1]。然而,在間歇反應(yīng)器中,半纖維素的脫除率只能達(dá)到一定值(60%~65%),提高反應(yīng)劇烈程度不僅不能顯著提高半纖維素的脫除效果,還會(huì)引起纖維素的降解和降解木質(zhì)素的縮合與遷移[2]。纖維素的降解不僅使制漿得率下降,成本提高,還會(huì)對(duì)下游產(chǎn)品的強(qiáng)度性能帶來(lái)不利影響,而木質(zhì)素的縮合會(huì)給后續(xù)的蒸煮、漂白帶來(lái)困難[3]。
一般認(rèn)為,預(yù)水解過(guò)程中木質(zhì)纖維原料的半纖維素降解溶出僅受反應(yīng)溫度及酸濃度的影響,即化學(xué)反應(yīng)的影響[4]。但事實(shí)上,木質(zhì)纖維原料尺寸規(guī)格、反應(yīng)器的類(lèi)型、反應(yīng)介質(zhì)的加入方式也會(huì)影響半纖維素的降解及溶出[56]。對(duì)于木質(zhì)纖維原料而言,原料表層的半纖維素首先降解溶出,其次才是原料內(nèi)部半纖維素的降解溶出[7],半纖維素的降解溶出受化學(xué)反應(yīng)和傳質(zhì)因素的共同影響。預(yù)水解初期半纖維素的降解溶出主要由化學(xué)反應(yīng)控制,半纖維素的脫除效率隨著反應(yīng)的劇烈程度提高而增加;預(yù)水解后期半纖維素的降解溶出則主要由傳質(zhì)因素決定[89]。其中,半纖維素降解產(chǎn)物的擴(kuò)散是一個(gè)主要因素,尤其在反應(yīng)中后期擴(kuò)散顯得更為重要[7]。Studer等人[10]發(fā)現(xiàn)原料中半纖維素脫除率和原料的木質(zhì)素含量呈負(fù)相關(guān)性:即原料的木質(zhì)素含量越高,半纖維素的脫除率越低;而Liu等人[9]用穿流反應(yīng)器進(jìn)行水解實(shí)驗(yàn)則發(fā)現(xiàn)半纖維素脫除率隨著木質(zhì)素脫除率的提高而增加。因此,筆者認(rèn)為在木質(zhì)纖維原料預(yù)水解過(guò)程中,木質(zhì)素可能會(huì)對(duì)半纖維素的溶出產(chǎn)生一定的抑制作用。
鑒于此,為了明確預(yù)水解過(guò)程中木質(zhì)素對(duì)半纖維素溶出的抑制作用,本實(shí)驗(yàn)以竹片為研究對(duì)象,分析預(yù)水解過(guò)程中半纖維素脫除率與木質(zhì)素脫除率的變化,明確木質(zhì)素對(duì)半纖維素脫除的影響;用竹粉模擬預(yù)水解實(shí)驗(yàn),分析預(yù)水解過(guò)程中竹粉孔隙的變化,結(jié)合預(yù)水解過(guò)程中竹材形貌變化,探討了木質(zhì)素對(duì)半纖維素溶出的抑制作用。
1 材料與方法
1.1 實(shí)驗(yàn)材料
竹片,三年生叢生綠竹(Dendrocalamopsisoldhami),由福建省南靖林場(chǎng)提供。竹片經(jīng)過(guò)篩選剔除含竹節(jié)(篩選尺寸范圍是20 mm×40 mm×5 mm)的竹片,經(jīng)去皮、去離子水洗滌、去除沙粒后風(fēng)干備用。竹片經(jīng)植物粉碎機(jī)粉碎后,篩取40~60目竹粉供化學(xué)分析用。其中Klason木質(zhì)素含量測(cè)定按照GB/T 2677.8—1994測(cè)定;苯醇抽出物含量按照GB/T 2677.6—1994測(cè)定;灰分含量按照GB/T 2677.3—1993測(cè)定;竹片中各種單糖含量按照GB/T 36058—2018測(cè)定,同時(shí)借鑒了美國(guó)國(guó)家可再生能源實(shí)驗(yàn)室(NREL)的檢測(cè)方法[11],并用離子色譜儀替代高效液相色譜儀,以提高檢測(cè)限,竹片化學(xué)組分檢測(cè)結(jié)果見(jiàn)表1。竹子化學(xué)組分分析所用藥品均為化學(xué)純,購(gòu)自國(guó)藥集團(tuán)化學(xué)試劑有限公司。糖含量分析所用化學(xué)藥品均為色譜純,購(gòu)自阿拉丁試劑(上海)有限公司。
1.2 竹片預(yù)水解
竹片預(yù)水解實(shí)驗(yàn)在油?。ǜ视停┱糁箦佒羞M(jìn)行。蒸煮鍋中配有可轉(zhuǎn)動(dòng)夾套,蒸煮小罐可以置于夾套中,預(yù)水解裝置示意圖如圖1所示。待蒸煮鍋中油溫達(dá)到所需溫度170℃時(shí),將盛有竹片的小罐放至油浴鍋的夾套中,啟動(dòng)轉(zhuǎn)動(dòng)按鈕,使夾套在油浴蒸煮鍋中轉(zhuǎn)動(dòng),此時(shí)水解反應(yīng)開(kāi)始。待反應(yīng)至指定時(shí)間時(shí),關(guān)閉旋轉(zhuǎn)按鈕,從夾套中取出小罐,用冷水冷卻終止反應(yīng)。待小罐冷卻至溫度90℃以下時(shí),用200目的尼龍袋進(jìn)行過(guò)濾,收集預(yù)水解液和預(yù)水解竹片。預(yù)水解竹片風(fēng)干后,計(jì)算預(yù)水解得率并進(jìn)行化學(xué)組成的檢測(cè)。竹片預(yù)水解工藝為:每個(gè)小罐裝料180 g(絕干),液比1∶3,反應(yīng)溫度170℃,反應(yīng)時(shí)間10~240 min。
1.3 分析及檢測(cè)
1.3.1 預(yù)水解基質(zhì)中半纖維素及木質(zhì)素含量測(cè)定
預(yù)水解基質(zhì)中木質(zhì)素(酸不溶木質(zhì)素)含量按照GB/T 2677.8—1994測(cè)定(苯醇抽提步驟省略),綜纖維素含量按照GB/T 2677.10—1995測(cè)定,α纖維素含量參照CB/T 744—1989和FZ/T 50010.4—1998測(cè)定,半纖維素的含量近似地用綜纖維素與α纖維素的差值表示。半纖維素脫除率及木質(zhì)素脫除率計(jì)算參照文獻(xiàn)[1213],計(jì)算見(jiàn)公式(1)~公式(3)。
y=水解后竹片質(zhì)量水解前竹片質(zhì)量×100%(1)
Hremoval=H0-Hsolid×yH0×100%(2)
Lremoval=L0-Lsolid×yL0×100%(3)
式中,y為預(yù)水解得率;H0、L0分別為原料中半纖維素和木質(zhì)素含量;Hsolid、Lsolid分別為預(yù)水解固體基質(zhì)中半纖維素和木質(zhì)素含量;Hremoval、Lremoval分別為半纖維素和木質(zhì)素脫除率。
1.3.2 竹片表面及纖維表面分析
竹片及預(yù)水解竹片經(jīng)鍍金處理后,用環(huán)境掃描電子顯微鏡(XL30 ESEM,PhilipsFEI, Holland)對(duì)其表面形貌進(jìn)行觀察。竹粉及預(yù)水解竹粉,同樣地用ESEM觀察其表面形貌。
1.3.3 孔隙結(jié)構(gòu)分析
為了近似考察竹片在預(yù)水解過(guò)程中孔隙結(jié)構(gòu)的變化,此部分用竹粉模擬竹片的預(yù)水解實(shí)驗(yàn),預(yù)水解實(shí)驗(yàn)工藝與竹片預(yù)水解相同,預(yù)水解所用的竹粉為40~60目竹粉。竹粉及預(yù)水解后竹粉在比表面微孔吸附儀 (ASAP 2020)上分析孔隙結(jié)構(gòu)。
1.3.4 親水性分析
選取表面平整的竹片及預(yù)水解竹片在靜態(tài)接觸角儀(KRUSSDSA30)上進(jìn)行親水性測(cè)試。
2 結(jié)果與討論
2.1 預(yù)水解過(guò)程中半纖維素
的降解溶出行為
預(yù)水解過(guò)程中半纖維素降解溶出行為如圖2所示。由圖2可以看出,半纖維素的相對(duì)分子質(zhì)量在預(yù)水解過(guò)程中逐漸下降,即預(yù)水解過(guò)程中半纖維素的降解是連續(xù)的[14]。預(yù)水解前期半纖維素脫除速率很快,隨著預(yù)水解的進(jìn)行,半纖維素的脫除速率逐漸變小,直到減小至0。在預(yù)水解過(guò)程中,半纖維素的脫除率增加至一定程度后就不再顯著提高。另外,對(duì)預(yù)水解基質(zhì)中半纖維素進(jìn)行分析,發(fā)現(xiàn)預(yù)水解基質(zhì)中仍有部分相對(duì)分子質(zhì)量較低的半纖維素,屬于水溶性半纖維素??梢?jiàn),在預(yù)水解過(guò)程中,一部分半纖維素盡管是水溶的,但由于傳質(zhì)擴(kuò)散方面的阻礙,仍難以從預(yù)水解基質(zhì)中脫除[14]。
2.2 半纖維素溶出與木質(zhì)素溶出的關(guān)系
圖3為竹片預(yù)水解過(guò)程中半纖維素和木質(zhì)素脫除率的變化。由圖3可知,在預(yù)水解前期階段,伴隨著半纖維素的降解溶出,部分木質(zhì)素降解溶出,此結(jié)果與穿流反應(yīng)器中得出的結(jié)果一致[89]。預(yù)水解至120 min時(shí),預(yù)水解基質(zhì)中木質(zhì)素脫除率達(dá)到最大值18%;此時(shí),半纖維素脫除率也基本達(dá)到最大值60%;繼續(xù)進(jìn)行預(yù)水解反應(yīng)至240 min,木質(zhì)素脫除率急劇下降,而半纖維素脫除率不再提高。由此可見(jiàn),在預(yù)水解后期當(dāng)木質(zhì)素的脫除率明顯下降(預(yù)水解固體基質(zhì)中的木質(zhì)素
含量顯著上升)時(shí),半纖維素的脫除率不再有明顯的變化。Studer等人[10]研究了不同木質(zhì)素含量的楊木水解及酶解過(guò)程中糖的溶出規(guī)律,發(fā)現(xiàn)無(wú)論是水解還是酶解,木質(zhì)素含量越高,總糖的脫除率均越低。如果楊木木質(zhì)素紫丁香基與愈創(chuàng)木基比例大于2時(shí),木質(zhì)素對(duì)糖溶出的抑制作用更為顯著。因此,筆者認(rèn)為,在水解后期,基質(zhì)中的木質(zhì)素對(duì)半纖維素的繼續(xù)脫除有抑制作用。
2.3 預(yù)水解過(guò)程中竹片及纖維表面形態(tài)分析
圖4為預(yù)水解前后竹片表面ESEM圖。從圖4可以看出,竹片表面相對(duì)光滑,預(yù)水解后表面覆蓋著一些球狀或片狀物質(zhì)。木質(zhì)素是一種無(wú)定形物質(zhì),在130~160℃時(shí)開(kāi)始軟化熔融[1517]。預(yù)水解過(guò)程中,由于預(yù)水解溫度超過(guò)了木質(zhì)素的玻璃化轉(zhuǎn)變點(diǎn),木質(zhì)素就從竹材纖維內(nèi)部向表面遷移,隨著預(yù)水解時(shí)間的延長(zhǎng),以球形或片狀的形式覆蓋在竹片表面。在預(yù)水解初期,木質(zhì)素的遷移范圍較小。但在預(yù)水解后期,隨著半纖維素的大量脫除,木質(zhì)素的遷移范圍增加,使得更多的木質(zhì)素從纖維細(xì)胞壁(木質(zhì)素主要存在于纖維細(xì)胞壁的次生壁)中遷移至竹材纖維的表面。此外,木質(zhì)素發(fā)生酸性降解后,溶出的木質(zhì)素小分子具有較高的反應(yīng)活性,小分子之間很容易發(fā)生縮合反應(yīng),縮合木質(zhì)素易從水解液中再重新沉淀到竹材表面[1819]。這種疏水性木質(zhì)素片狀涂層的存在可能會(huì)抑制降解的水溶性半纖維素小分子從竹片內(nèi)部向表面擴(kuò)散。
圖5為竹粉及預(yù)水解竹粉纖維表面ESEM圖。由圖5可知,竹粉纖維表面基本光滑,纖維與纖維間結(jié)合緊密,粉碎處理對(duì)纖維基本是切斷處理。竹粉經(jīng)預(yù)水解后,纖維與纖維間結(jié)合力降低,使竹片纖維更容易分絲。木質(zhì)素和半纖維素是纖維、細(xì)纖維及微細(xì)纖維間的填充劑和黏合劑;在纖維細(xì)胞壁的胞間層,尤其是細(xì)胞角隅分布著濃度較高的木質(zhì)素,這部分木質(zhì)素是纖維相互緊密結(jié)合的膠黏劑。預(yù)水解過(guò)程中,木質(zhì)素不僅具有熔融流動(dòng)性,而且還會(huì)發(fā)生酸性降解,使得木質(zhì)素遷移至纖維表面,并重新聚集,使纖維間的結(jié)合力下降。
木質(zhì)素的這種遷移性聚集使得纖維表面覆蓋了高濃度的木質(zhì)素,木質(zhì)素的疏水作用可能會(huì)對(duì)水溶性物質(zhì)(如半纖維素)的擴(kuò)散溶出有抑制作用。筆者嘗試研究預(yù)水解過(guò)程中竹片表面親水性變化,結(jié)果見(jiàn)表2。從表2可以看出,竹片表面由于纖維緊致的結(jié)構(gòu),其接觸角為46.0°。預(yù)水解初期,隨著半纖維素的降解溶出,竹片孔隙結(jié)構(gòu)發(fā)生變化,孔隙率增加。未漂竹漿、楊木等預(yù)水解過(guò)程也類(lèi)似,表面出現(xiàn)裂縫、孔洞和不規(guī)則碎片等[2021];且部分溶出的半纖維素會(huì)隨著水解液的冷卻析出,重新沉淀到竹片上[9,22]。
這雙重作用使得竹片表面的親水性上升,即接觸角下降。在預(yù)水解后期,由于木質(zhì)素片狀涂層的存在,竹片表面的親水性從理論上應(yīng)該會(huì)下降,即接觸角上升。但由于預(yù)水解竹片(尤其是預(yù)水解后期)經(jīng)干燥后,其表面覆蓋的木質(zhì)素片狀涂層變成一層薄薄的木質(zhì)素粉末,而木質(zhì)素粉末的存在提高了竹片表面的比表面積,使竹片的親水性有一定程度的增加。
2.4 預(yù)水解基質(zhì)孔隙結(jié)構(gòu)分析
為了進(jìn)一步說(shuō)明木質(zhì)素遷移對(duì)竹材微觀結(jié)構(gòu),尤其是孔隙結(jié)構(gòu)的影響,此部分用竹粉模擬預(yù)水解實(shí)驗(yàn),分析預(yù)水解過(guò)程中竹粉的孔隙變化。表3為竹粉及竹粉預(yù)水解后的孔隙結(jié)構(gòu)分析結(jié)果。由表3可知,隨著預(yù)水解進(jìn)行,預(yù)水解竹粉比表面積、孔體積及孔徑先急劇上升后下降。在預(yù)水解60 min時(shí),竹粉比表面積、孔體積及孔徑達(dá)到了最大值,分別為1.24 m2/g、4.00 μL/g 和24.4 nm。在預(yù)水解前期,伴隨著半纖維素和木質(zhì)素的降解溶出,預(yù)水解基質(zhì)比表面積、孔徑及孔體積均有一定程度的增加。Xu等人[23]對(duì)楊木木片自催化水解后的孔隙結(jié)構(gòu)進(jìn)行分析(R0=3.54),發(fā)現(xiàn)預(yù)水解木片體積孔隙率從78.34%提高到80.97%。預(yù)水解前期孔體積及孔徑的增大必然也為木質(zhì)素的遷移提供條件,隨著木質(zhì)素的大范圍遷移,一部分孔隙被木質(zhì)素所填充,使孔隙率減少。此結(jié)果與Christos高溫?zé)崴幚砟痉圻^(guò)程中孔隙率變化結(jié)果一致。Christos用高溫水(130~220℃)處理木
粉(孔徑150~500 μm),處理后木粉比表面積和孔隙率比初始原料提高近1~1.5 倍,但如果處理?xiàng)l件比較劇烈,則比表面積和孔隙率又會(huì)有所下降[24]。
綜上所述,預(yù)水解后期,相對(duì)較高的木質(zhì)素含量以及由木質(zhì)素引起的竹片表面微觀結(jié)構(gòu)以及纖維微孔結(jié)構(gòu)的變化,是造成半纖維素脫除率不高的原因之一。為了提高預(yù)水解過(guò)程中半纖維素的脫除率,應(yīng)該
盡量提高預(yù)水解過(guò)程中木質(zhì)素的脫除率。為此,提出以下幾點(diǎn)建議:①助劑水解。利用助劑的作用,減少木質(zhì)素縮合;或者利用助劑的溶解作用,將木質(zhì)素溶解,從而減少木質(zhì)素在纖維內(nèi)部的大范圍遷移。②多段水解。采用多段短時(shí)間水解,及時(shí)移除降解木質(zhì)素。③采用穿流反應(yīng)器或置換水解。
3 結(jié) 論
本實(shí)驗(yàn)以竹片為研究對(duì)象,分析了預(yù)水解過(guò)程中半纖維素脫除率和木質(zhì)素脫除率的關(guān)系,探討了木質(zhì)素對(duì)半纖維素溶出的抑制作用。
3.1 預(yù)水解前期,半纖維素和木質(zhì)素發(fā)生酸性降解溶出;當(dāng)預(yù)水解基質(zhì)中木質(zhì)素脫除率達(dá)到最大值18%時(shí),半纖維素的脫除率也基本達(dá)到最大值60%。繼續(xù)進(jìn)行預(yù)水解反應(yīng),木質(zhì)素脫除率急劇下降,而半纖維素脫除率不再提高;預(yù)水解后期,木質(zhì)素的存在對(duì)半纖維素的溶出有一定的抑制作用。
3.2 預(yù)水解前期,半纖維素及木質(zhì)素的降解溶出,使竹片纖維的孔體積增大,為木質(zhì)素的遷移提供了空間;隨著預(yù)水解時(shí)間的延長(zhǎng),木質(zhì)素的大范圍遷移會(huì)堵塞微孔,使孔體積急劇下降,從而堵塞了半纖維素降解產(chǎn)物的擴(kuò)散通道。
3.3 預(yù)水解后期,由木質(zhì)素遷移引起的竹片表面微觀結(jié)構(gòu)及纖維孔隙結(jié)構(gòu)的變化是抑制半纖維素繼續(xù)脫除的主要原因。
參 考 文 獻(xiàn)
[1] Behin J, Zeyghami M. Dissolving pulp from corn stalk residue and waste water of Merox unit[J]. Chemical Engineering Journal, 2009, 152(1): 26.
[2] Schild G, Sixta H. Sulfurfree dissolving pulps and their application for viscose and lyocell[J]. Cellulose, 2011, 18: 1113.
[3] Huang H, Ma X J, Cao S L, et al. The Effects of Radiata Pine prehydrolysis on the lignin removal of the subsequent Kraft pulping and oxygen delignification[J]. Paper Science & Technology, 2015, 34(2): 1.
黃 海, 馬曉娟, 曹石林, 等. 輻射松預(yù)水解對(duì)后續(xù)蒸煮及氧脫木質(zhì)素過(guò)程木質(zhì)素脫除效果的影響[J]. 造紙科學(xué)與技術(shù), 2015, 34(2): 1.
[4] Tsao G T, Brainard A P, Bungay H R. Recent progress in bioconversion of lignocellulosics[M]// Lee Y Y, Iyer P, Torget R W. Diluteacid hydrolysis of lignocellulosic biomass. Springer Berlin Heidelberg, 1999.
[5] Brennan M A, Wyman C E. Initial evaluation of simple mass transfer models to describe hemicellulose hydrolysis in corn stover[J]. Applied Biochemistry and Biotechnology, 2004(113/116): 965.
[6] Ballesteros I, Oliva J M, Navarro A A, et al. Effect of chip size on steam explosion pretreatment of softwood[J]. Applied Biochemistry and Biotechnology, 2000(84/86): 97.
[7] Hosseini S A, Lambert R, Kucherenko S, et al. Multiscale modeling of hydrothermal pretreatment from hemicellulose hydrolysis to biomass size optimization[J]. Energy & Fuels, 2010, 24(9): 4673.
[8] Liu C, Wyman C E. The effect of flow rate of very dilute sulfuric acid on xylan, lignin, and total mass removal from corn stover[J]. Industrial & Engineering Chemistry Research, 2004, 43(11): 2781.
[9] Liu C, Wyman C E. The effect of flow rate of compressed hot water on xylan, lignin, and total mass removal from corn stover[J]. Industrial & Engineering Chemistry Research, 2003, 42(21): 5409.
[10] Studer M H, Demartini J D, Davis M F, et al. Lignin content in natural populus variants affects sugar release[J]. PNAS, 2011, 108: 6300.
[11] Sluiter A, Hames B, Ruiz R, et al. Determination of structural carbohydrates and lignin in biomass[S]. LAP002 NREL Analytical Procedure National Renewable Energy Laboratory Golden CO, 2008.
[12] Ma X J, Cao S L, Luo X L, et al. Hydrothermal pretreatment of bamboo and cellulose degradation[J]. Bioresource Technology, 2013, 148: 408.
[13] Ma X J, Cao S L, Yang X F, et al. Lignin removal and benzenealcohol extraction effects on lignin measurements of the hydrothermal pretreated bamboo substrate[J]. Bioresource Technology, 2014, 151: 244.
[14] Ma X J, Yang X F, Zheng X, et al. Degradation and dissolution of hemicelluloses during bamboo hydrothermal pretreatment[J]. Bioresource Technology, 2014, 151: 215.
[15] Selig M J, Viamajala S, Decker S R, et al. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose[J]. Biotechnology Progress, 2007, 23(6): 1333.
[16] Brunecky R, Vinzant T B, Porter S E, et al. Redistribution of xylan in maize cell walls during dilute acid pretreatment[J]. Biotechnology and Bioengineering, 2009, 102(6): 1537.
[17] Donohoe B S, Decker S R, Tucker M P, et al. Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment[J]. Biotechnology and Bioengineering, 2008, 101(5): 913.
[18] Leschinsky M, Zuckerst T G, Weber H K, et al. Effect of autohydrolysis of Eucalyptus globulus wood on lignin structure. Part 2: Influence of autohydrolysis intensity[J]. Holzforschung, 2008, 62(6): 653.
[19] DUAN Chao, FENG Wenying, ZHANG Yanling, et al. Impacts of Pfactor on the Properties of Poplar Chips[J]. China Pulp & Paper, 2013, 32(5): 1.
段 超, 馮文英, 張艷玲, 等. 預(yù)水解因子對(duì)楊木木片相關(guān)性能的影響[J]. 中國(guó)造紙, 2013, 32(5): 1.
[20] YUAN Sujuan, Ji Xingxiang, Tian Zhongjian, et al. Changes of Components in Poplar and Its Hydrolyzate During Hot Water Prehydrolysis[J]. China Pulp & Paper, 2018, 37(9): 17.
袁素娟, 吉興香, 田中建, 等. 熱水預(yù)水解過(guò)程楊木及水解液中組分的變化[J]. 中國(guó)造紙, 2018, 37(9): 17.
[21] Peng Y Y, Chen C Y, Wang Y, et al. Effect of Acetic Acid Prehydrolysis on Unbleached Bamboo Pulp Production[J]. Paper and Biomaterials, 2018, 3(3): 26.
[22] Ma X J, Cao S L, Luo X L, et al. Surface characterizations of bamboo substratestreated by hot water extraction[J]. Bioresource Technology, 2013, 136: 757.
[23] Xu N, Liu W, Hou Q, et al. Effect of autohydrolysis on the wettability, absorbility and further alkali impregnation of poplar wood chips[J]. Bioresource Technology, 2016, 216: 317.
[24] Nitsos C K, Matis K A, Triantafyllidis K S. Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process[J]. Chem. Sus Chem., 2013, 6(1): 110.CPP