李靜仁?李婷?何學(xué)敏?周麗?唐喜香?陳燕銘
【摘要】 目的 探討舒洛地特(SDX)治療糖尿病視網(wǎng)膜病變的可能性及分子機(jī)制。方法 將40只C57BL/6J小鼠隨機(jī)分成4組各10只,分別為對(duì)照+生理鹽水(Con + NS)組、對(duì)照+舒洛地特(Con + SDX)組、糖尿病+生理鹽水(DM+NS)組和DM + SDX組,SDX的用量為腹腔注射10 mg/(kg·d)、持續(xù)12周,對(duì)照給予等量生理鹽水。采用高糖(25 mmol/L葡萄糖)處理人視網(wǎng)膜微血管內(nèi)皮細(xì)胞(HRMEC)以模擬糖尿病刺激,并與一系列濃度的SDX(0.125、0.25、0.5、1.0 lsu/ml)共處理。用伊文思藍(lán)法檢測(cè)小鼠視網(wǎng)膜的滲漏情況,用蛋白免疫印跡法、激光共聚焦等技術(shù)檢測(cè)小鼠視網(wǎng)膜組織和HRMEC中的核苷酸結(jié)合寡聚域樣受體蛋白3(NLRP3)炎癥小體的表達(dá)和激活情況,以及凋亡相關(guān)斑點(diǎn)樣蛋白(ASC)、Caspase-1的變化。結(jié)果 DM + NS組伊文思藍(lán)吸光度、NLRP3炎癥小體及ASC的表達(dá)均較Con + NS組高,而DM + SDX組則低于DM + NS組(P均< 0.05)。SDX抑制糖尿病小鼠視網(wǎng)膜滲漏、NLRP3炎癥小體激活和視網(wǎng)膜微血管滲漏。HRMEC的NLRP3炎癥小體組分和cleaved Caspase-1在高糖刺激下表達(dá)上調(diào)(P均< 0.05);經(jīng)不同濃度的SDX處理后,NLRP3炎癥小體的表達(dá)被抑制,抑制程度隨SDX濃度的增加而增加(P均< 0.05)。結(jié)論 舒洛地特能抑制糖尿病誘導(dǎo)的NLRP3炎癥小體激活和視網(wǎng)膜微血管滲漏,可用于治療糖尿病視網(wǎng)膜病。
【關(guān)鍵詞】 舒洛地特;糖尿病視網(wǎng)膜病變;核苷酸結(jié)合寡聚域樣受體蛋白3炎癥小體;
? ? 微血管滲漏;人視網(wǎng)膜微血管內(nèi)皮細(xì)胞
Sulodexide alleviates retinal microvascular leakage by inhibiting the activation of NLRP3 inflamm-asome in diabetic retinopathy Li Jingren, Li Ting, He Xuemin, Zhou Li, Tang Xixiang, Chen Yanming. Department of Endocrinology & Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
Corresponding author, Chen Yanming
【Abstract】 Objective To investigate the feasibility and molecular mechanism of sulodexide in the treatment of diabetic retinopathy. ?Methods Forty C57BL/6J mice were randomly into the control + normal saline (Con + NS group), control + sulodexide (Con + SDX group), diabetes mellitus + normal saline (DM + NS group) and diabetes mellitus + sulodexide groups (DM + SDX group). Sulodexide was intraperitoneal injected at a dose of 10 mg/(kg·d) for 12 weeks, and an equivalent quantity of phosphate buffer saline (PBS) was given in the control group. Human retinal microvascular endothelium cells (HRMECs) were stressed by high glucose (25 mmol/L) to mimic the diabetic conditions, and co-treated with a serial doses of sulodexide (0.125, 0.25, 0.5 and 1.0 lsu/ml). The mouse retinal vascular leakage was evaluated by the Evans blue assay. The expression and activation of nucleotide-binding and oligomerization domain-like receptor protein 3 (NLRP3) inflammasome in the retinal tissues and HRMEC of mouse models, and the changes of the apoptosis-associated speckle-like protein containing CARD (ASC) and caspase-1 were measured by Western blot and laser confocal imaging, etc. ?Results The absorbance value of Evans blue assay and the expression levels of NLRP3 inflammasome and ASC in the DM + NS group were significantly higher compared with those in the Con + NS group, whereas the values in the DM + SDX group were considerably lower than those in the DM + NS group (all P < 0.05). Sulodexide significantly inhibited the increased retinal leakage, the activation of NLRP3 inflammasome and attenuated the retinal vascular leakage in mouse models. The expression levels of NLRP3, Caspase-1 and cleaved Caspase-1 of HRMEC were significantly up-regulated under the condition of high glucose (all P < 0.05). After treatment with different concentrations of sulodexide, the expression levels of NLRP3 and ASC were significantly down-regulated in a dose-dependent manner (both P < 0.05). ?Conclusion Sulodexide can inhibit the DM-induced activation of NLRP3 inflammasome and retinal microvascular leakage, which can be applied to treat diabetic retinopathy.
【Key words】 Sulodexide;Diabetic retinopathy;
Nucleotide-binding and oligomerization domain-like receptor protein 3 inflammasome;
Microvascular leakage;Retinal microvascular endothelial cell
糖尿病視網(wǎng)膜病變(DR)是糖尿病嚴(yán)重的微血管并發(fā)癥之一[1]。視網(wǎng)膜血管內(nèi)皮功能紊亂在DR的發(fā)病中起重要作用[2-3]。核苷酸結(jié)合寡聚域樣受體蛋白3(NLRP3)屬于核苷酸結(jié)合寡聚域樣受體(NLR)家族,其與細(xì)胞凋亡相關(guān)斑點(diǎn)樣蛋白(ASC)和Caspase-1的前體蛋白組合形成NLRP3炎癥小體,激活下游炎癥通路[4]。近期研究顯示,NLRP3炎癥小體在糖尿病小鼠的視網(wǎng)膜和高糖刺激的人視網(wǎng)膜微血管內(nèi)皮細(xì)胞(HRMEC)中均處于激活狀態(tài)[5-6],提示NLRP3炎癥小體可能參與了高血糖導(dǎo)致視網(wǎng)膜血管內(nèi)皮功能紊亂的過(guò)程。舒洛地特(SDX)屬于糖胺聚糖,由低分子肝素和硫酸皮膚素組成[7]。多項(xiàng)研究表明,SDX有內(nèi)皮細(xì)胞保護(hù)作用。我們課題組的前期研究顯示,SDX可阻礙高血糖引起HRMEC的p-NF-κB p6及炎癥因子TNF-α、人單核細(xì)胞趨化蛋白-1(MCP-1)升高[8]。但SDX是否通過(guò)抑制NLRP3炎癥小體的激活和表達(dá)來(lái)改善DR的視網(wǎng)膜微血管內(nèi)皮功能仍有待探討。
材料與方法
一、主要材料與試劑
HRMEC購(gòu)自美國(guó)Sciencell公司。鏈脲佐菌素(STZ,S0130)、D-葡萄糖(G7021)、伊文思藍(lán)(EB,E2129)粉末購(gòu)自美國(guó)Sigma公司;SDX由意大利阿爾法韋士曼制藥公司惠贈(zèng);NLRP3抗體(AG-20B-0014-C100)、ASC抗體(AG-25B-0006 -C100)購(gòu)自瑞士Adipogen公司;pro-Caspase-1 +
p10 + p12抗體(ab179515)、Caspase-1抗體(ab 1872)、辣根過(guò)氧化物酶(HRP)標(biāo)記的兔二抗(ab97051)、Alexa Fluor? 488偶聯(lián)的兔熒光二抗(ab150077)、Alexa Fluor? 647偶聯(lián)的小鼠熒光二抗(ab150115)、含4’,6-二脒基-2-苯基吲哚(DAPI)的固封劑(ab104139) 購(gòu)自英國(guó)Abcam公司;β-actin抗體(A5441)購(gòu)自美國(guó)Sigma公司;HRP標(biāo)記的小鼠二抗(7076P2)購(gòu)自美國(guó) Cell Signaling Technology公司。
二、動(dòng)物模型的分組、建立和處理
C57BL/6小鼠購(gòu)自廣東省醫(yī)學(xué)實(shí)驗(yàn)動(dòng)物中心。C57BL/6J小鼠40只,將其隨機(jī)分成4組各10只,
分別為對(duì)照+生理鹽水(Con + NS)組,對(duì)照+
SDX ?(Con + SDX)組,糖尿病+生理鹽水(DM+ NS)組和DM + SDX組。糖尿病模型是基于60%高脂食物喂養(yǎng)6周后予以單次腹腔注射STZ(100 mg/kg)而建立[9]。處理1周后小鼠血糖值高于16.7 mmol/L的則為糖尿病建模成功。Con + SDX組與DM + SDX組均連續(xù)12周腹腔注射SDX 10 mg/(kg·d);Con + NS組與DM + NS組則注射等量生理鹽水。本研究經(jīng)中山大學(xué)實(shí)驗(yàn)動(dòng)物管理與使用委員會(huì)批準(zhǔn)。
三、EB法檢測(cè)血管通透性
腹腔注射1%戊巴比妥鈉(30 mg/kg)麻醉小鼠,從其尾靜脈注射EB 50 mg/kg后將其置于37℃熱毯上2 h,使EB循環(huán)全身。取其右側(cè)眼球置于4%多聚甲醛中,室溫固定30 min,而后將視網(wǎng)膜鋪片,在激光共聚焦顯微鏡上用405 mm波長(zhǎng)拍攝視網(wǎng)膜微血管滲漏情況。摘取小鼠右側(cè)眼球后用37℃磷酸鹽緩沖液(PBS)灌注其心臟2 min,然后摘取左側(cè)眼球,取視網(wǎng)膜組織置于150 μl甲酰胺中,用超聲裂解,之后將其置于70℃水浴18 h,1 200轉(zhuǎn)/分離心30 min后取上清,用620 mm波長(zhǎng)檢測(cè)其吸光度值[10]。
四、眼球冰凍切片
麻醉小鼠及用PBS灌注心臟操作如上述,之后取其眼球置于OCT膠中包埋,置于干冰上迅速固定。于冰凍切片機(jī)中切片,并置于-80℃保存。
五、免疫熒光染色
將眼球切片放置于室溫15 min晾干,之后將其浸泡于磷酸鹽吐溫緩沖液(PBST)中洗去OCT膠;將接種于玻底培養(yǎng)皿的細(xì)胞用PBST浸洗3次,每次5 min。用4%多聚甲醛室溫固定切片或細(xì)胞10 min,用PBST浸洗3次,每次5 min。將0.2% TritonX-100溶于1% BSA溶液中,破膜1 h,用PBST浸洗3次,每次5 min。加入NLRP3抗體(1∶200)、ASC抗體(1∶200)、Caspase-1抗體(1:200),放置于濕盒中4℃過(guò)夜,然后用PBST浸洗3次,每次5 min。加入帶熒光的二抗,放置于濕盒中室溫孵育1 h,之后用PBST浸洗3次,每次5 min。加入含DAPI的固封劑封片。在激光共聚焦相應(yīng)波長(zhǎng)上拍攝對(duì)應(yīng)蛋白的表達(dá)情況和位置分布。
六、細(xì)胞培養(yǎng)
以1×105細(xì)胞/孔將HRMEC種于6孔板上(6組)。在細(xì)胞完全貼壁后,加入2 ml的PBS洗滌3次,第1組給予低糖培養(yǎng)基(完全ECM培養(yǎng)基含5 mmol/L葡萄糖),第2 ~ 6組給予高糖培養(yǎng)基(完全ECM培養(yǎng)基含25 mmol/L葡萄糖),第3 ~ 6組分別加入不同濃度度的SDX (0.125、0.25、0.5、1.0 lsu/ml)。每24 h換1次培養(yǎng)液, 48 h后收集細(xì)胞進(jìn)行蛋白免疫熒光染色檢測(cè)其中NLRP3炎癥小體相關(guān)蛋白的表達(dá)情況。
七、統(tǒng)計(jì)學(xué)處理
采用SPSS 20.0 進(jìn)行統(tǒng)計(jì)學(xué)分析。實(shí)驗(yàn)重復(fù)3次及以上,計(jì)量資料以表示,多組間均數(shù)比較采用單因素方差分析,兩兩比較采用LSD-t檢驗(yàn)。P < 0.05為差異有統(tǒng)計(jì)學(xué)意義。
結(jié) 果
一、SDX減輕DM小鼠視網(wǎng)膜滲漏
Con+NS組、Con+SDX組視網(wǎng)膜微血管EB滲漏情況無(wú)差異,DM+NS組視網(wǎng)膜微血管EB滲漏較Con+NS組明顯,DM+SDX組視網(wǎng)膜微血管EB滲漏情況優(yōu)于DM+NS組,見(jiàn)圖1A。
EB的定量檢測(cè)結(jié)果顯示,DM+NS組、DM+ SDX組視網(wǎng)膜微血管EB滲漏量均高于其余2組(F = 34.890,P < 0.001),但DM+SDX組視網(wǎng)膜微血管EB滲漏量少于DM+NS組(P < 0.05)。
二、SDX減輕高糖誘導(dǎo)的NLRP3炎癥小體在HRMEC中的表達(dá)增加
高糖組NLRP3炎癥小體成分較低糖組高,加入1.0 lsu/ml的SDX處理后,NLRP3炎癥小體相關(guān)蛋白表達(dá)下調(diào),抑制程度隨SDX濃度的增加而增加(P均< 0.05),見(jiàn)圖2。
三、SDX降低糖尿病小鼠視網(wǎng)膜和高糖誘導(dǎo)的HRMEC中的NLRP3炎癥小體的表達(dá)和激活
糖尿病小鼠NLRP3炎癥小體激活增加,注射SDX后NLRP3、ASC和Caspase-1的表達(dá)和共定位相對(duì)注射生理鹽水的小鼠均有所減少,見(jiàn)圖3A、 B。
高糖刺激的HRMEC中NLRP3炎癥小體激活增加,加入SDX處理后,NLRP3、ASC和Caspase-1的表達(dá)和共定位減少。
討 論
DR作為糖尿病常見(jiàn)的微血管并發(fā)癥之一,已成為成人致盲的首要疾病[11]。我國(guó)2013年的研究調(diào)查顯示,成年人群的糖尿病患病率為10.4%,其中DR的發(fā)病率高達(dá)23.0%[12-13]。了解DR的發(fā)病機(jī)制,尋找無(wú)創(chuàng)、有效的治療手段對(duì)于治療因?yàn)镈R導(dǎo)致的成年人失明具有極其重要的意義。糖胺聚糖是人體中含量最豐富的多糖,由重復(fù)的二糖片段構(gòu)成,主要分布在細(xì)胞外基質(zhì)或細(xì)胞的表面,可以為細(xì)胞提供支撐。SDX屬于糖胺聚糖,多項(xiàng)臨床和基礎(chǔ)研究證實(shí)SDX具有內(nèi)皮細(xì)胞保護(hù)作用[7, 14-16]。我們課題組前期的研究顯示,SDX對(duì)高糖誘導(dǎo)的HRMEC功能紊亂具有保護(hù)作用,可以減輕高糖導(dǎo)致的炎癥反應(yīng)[8]。本研究結(jié)果顯示,在DM + NS組小鼠的視網(wǎng)膜微血管中,EB滲漏情況嚴(yán)重,而DM + SDX組幾乎未見(jiàn)滲漏,表明SDX改善了糖尿病引起的視網(wǎng)膜微血管滲漏情況。另外,視網(wǎng)膜組織裂解液中的EB的吸光度檢測(cè)結(jié)果也表明SDX可以減輕糖尿病小鼠視網(wǎng)膜的滲漏。
研究顯示,NLRP3炎癥小體的激活在糖尿病小鼠的視網(wǎng)膜和高糖刺激的HRMEC中均上調(diào)[5-6, 17]。在內(nèi)皮細(xì)胞中高糖誘導(dǎo)的氧化應(yīng)激可以導(dǎo)致NLRP3炎癥小體的激活,并參與DR的發(fā)病[18-20]。本研究顯示,在糖尿病小鼠的視網(wǎng)膜和高糖處理后的HRMEC中,NLRP3炎癥小體成分的表達(dá)和激活均有上調(diào),這提示NLRP3炎癥小體在DR的發(fā)病過(guò)程中起重要作用。NLRP3炎癥小體的激活可以將Caspase-1切割為cleaved Caspase-1,本研究中高糖處理與低糖處理后的HRMEC中Caspase-1的表達(dá)比較差異無(wú)統(tǒng)計(jì)學(xué)意義,可能是由于上調(diào)的Caspase-1蛋白被切割為cleaved Caspase-1所致。
Giurdanella等[21]發(fā)現(xiàn)SDX可以通過(guò)下調(diào)NF-κB的激活來(lái)下調(diào)HRMEC中的ERK/cPLA2/COX-2/PGE2通路,改善HRMEC在高糖處理后的緊密連接蛋白減少。我們課題組的前期研究也進(jìn)一步佐證了上述發(fā)現(xiàn),即SDX下調(diào)HRMEC中的NF-κB磷酸化,從而減輕HRMEC的炎癥反應(yīng)[8]。又有報(bào)道證實(shí)NLRP3炎癥小體的激活受PGE2調(diào)控[6]。因此,關(guān)于SDX如何抑制NLRP3炎癥小體的表達(dá)和活化,我們推測(cè):SDX可能通過(guò)降低NF-κB的磷酸化,阻礙ERK/cPLA2/COX-2/PGE2通路,減少NLRP3炎癥小體組分的表達(dá)與激活,減輕DR的炎癥反應(yīng)。
綜上所述,本研究首次在小鼠體內(nèi)證實(shí)了SDX改善了DR視網(wǎng)膜微血管滲漏和視網(wǎng)膜的NLRP3炎癥小體的表達(dá)及活化,為SDX應(yīng)用于臨床治療DR提供了進(jìn)一步的證據(jù)。
參 考 文 獻(xiàn)
[1] Zheng Y, He M, Congdon N. The worldwide epidemic of diabetic retinopathy. Indian J Ophthalmol, 2012, 60(5): 428-431.
[2] Chen Y, Wang JJ, Li J, Hosoya KI, Ratan R, Townes T, Zhang SX. Activating transcription factor 4 mediates hyperglycaemia-induced endothelial inflammation and retinal vascular leakage through activation of STAT3 in a mouse ?model of type 1 diabetes. Diabetologia, 2012, 55(9): 2533-2545.
[3] Zhong Y, Li J, Chen Y, Wang JJ, Ratan R, Zhang SX. Activation of endoplasmic reticulum stress by hyperglycemia is essential for Muller cell-derived inflammatory cytokine produc-tion in diabetes. Diabetes, 2012, 61(2):492-504.
[4] Jo EK, Kim JK, Shin DM, Sasakawa C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol, 2016, 13(2): 148-159.
[5] Liu Q, Zhang F, Zhang X, Cheng R, Ma JX, Yi J, Li J. Fenofibrate ameliorates diabetic retinopathy by modulating Nrf2 signaling and NLRP3 inflammasome activation. Mol Cell Biochem, 2018, 445(1-2): 105-115.
[6] Wang Y, Tao J, Yao Y. Prostaglandin E2 activates NLRP3 infla-mmasome in endothelial cells to promote diabetic retinopathy. Horm Metab Res, 2018, 50(9): 704-710.
[7] Lauver DA, Lucchesi BR. Sulodexide: a renewed interest in this glycosaminoglycan. Cardiovasc Drug Rev, 2006, 24(3-4): 214-226.
[8] 文哲瑤,王琪,唐喜香. 舒洛地特對(duì)高糖誘導(dǎo)的人視網(wǎng)膜微血管內(nèi)皮細(xì)胞功能紊亂的作用及其機(jī)制. 中山大學(xué)學(xué)報(bào)(醫(yī)學(xué)科學(xué)版), 2016, 37(3): 376-383.
[9] Li W, Zhang M, Gu J, Meng ZJ, Zhao LC, Zheng YN, Chen L, Yang GL. Hypoglycemic effect of protopanaxadiol-type ginsenosides and compound K on type 2 diabetes mice induced by high-fat diet combining with streptozotocin via suppression of hepatic gluconeogenesis. Fitoterapia, 2012, 83(1): 192-198.
[10] Yang FY, Fu WM, Chen WS, Yeh WL, Lin WL. Quantitative evaluation of the use of microbubbles with transcranial focused ultrasound on blood-brain-barrier disruption. Ultrason Sonoc-hem, 2008, 15(4): 636-643.
[11] Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet, 2010, 376(9735): 124-136.
[12] Wang L, Gao P, Zhang M, Huang Z, Zhang D, Deng Q, Li Y, Zhao Z, Qin X, Jin D, Zhou M, Tang X, Hu Y, Wang L. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA, 2017, 317(24): 2515-2523.
[13] Xu Y, Wang L, He J, Bi Y, Li M, Wang T, Wang L, Jiang Y, Dai M, Lu J, Xu M, Li Y, Hu N, Li J, Mi S, Chen C S, Li G, Mu Y, Zhao J, Kong L, Chen J, Lai S, Wang W, Zhao W, Ning G. Prevalence and control of diabetes in Chinese adults. JAMA, 2013, 310(9): 948-959.
[14] Kristova V, Liskova S, Sotnikova R, Vojtko R, Kurtansky A. Sulodexide improves endothelial dysfunction in streptozotocin-induced diabetes in rats. Physiol Res, 2008, 57(3): 491-494.
[15] Cha JJ, Kang YS, Hyun YY, Han SY, Jee YH, Han KH, Han JY, Cha DR. Sulodexide improves renal function through reduction of vascular endothelial growth factor in type 2 diabetic rats. Life Sci, 2013, 92(23): 1118-1124.
[16] Broekhuizen LN, Lemkes BA, Mooij HL, Meuwese MC, Verberne H, Holleman F, Schlingemann RO, Nieuwdorp M, Stroes ES, Vink H. Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia, 2010, 53(12): 2646-2655.
[17] 王琪,周麗,李靜仁,朱碧連,唐喜香,陳燕銘. 活化轉(zhuǎn)錄因子4參與高糖誘導(dǎo)的人視網(wǎng)膜微血管內(nèi)皮細(xì)胞炎癥. 新醫(yī)學(xué), 2017, 48(7): 455-460.
[18] Li Y, Zhou ZH, Chen MH, Yang J, Leng J, Cao GS, Xin GZ, Liu LF, Kou JP, Liu BL, Li P, Wen XD. Inhibition of mitochondrial fission and nox2 expression prevent NLRP3 inflammasome activation in the endothelium: the role of corosolic acid action in the amelioration of endothelial dysfunction. Antioxid Redox Signal, 2016, 24(16): 893-908.
[19] Chen Y, Wang L, Pitzer AL, Li X, Li PL, Zhang Y. Contri-bution of redox-dependent activation of endothelial Nlrp3 inflammasomes to ?hyperglycemia-induced endothelial dysfun-ction. J Mol Med (Berl), 2016, 94(12): 1335-1347.
[20] Hottz ED, Lopes JF, Freitas C, Valls-de-Souza R, Oliveira MF, Bozza MT, Da PA, Weyrich AS, Zimmerman GA, Bozza FA, Bozza PT. Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation. Blood, 2013, 122(20): 3405-3414.
[21] Giurdanella G, Lazzara F, Caporarello N, Lupo G, Anfuso CD, Eandi CM, Leggio GM, Drago F, Bucolo C, Salomone S. Sulodexide prevents activation of the PLA2/COX-2/VEGF inflammatory pathway in human retinal endothelial cells by blocking the effect of AGE/RAGE. Biochem Pharmacol, 2017, 142: 145-154.
(收稿日期:2019-04-29)
(本文編輯:洪悅民)