王小英
摘 要:數(shù)學(xué)思想的滲透不僅對學(xué)生的數(shù)學(xué)學(xué)習(xí)有很大的幫助,對學(xué)生今后的成長和發(fā)展也有著十分積極的影響。但是當(dāng)前高中數(shù)學(xué)教學(xué)存在著一些問題,學(xué)生在做題的時(shí)候沒有正確的方法引導(dǎo),再加上學(xué)生解題習(xí)慣的不合理,導(dǎo)致學(xué)生對高中數(shù)學(xué)思想很少進(jìn)行深入思考,對數(shù)學(xué)規(guī)律的認(rèn)識(shí)也不明確。再加上學(xué)生對數(shù)學(xué)思想的認(rèn)知不充分,在解決問題的時(shí)候缺少創(chuàng)新意識(shí),導(dǎo)致高中數(shù)學(xué)教學(xué)中很難有效滲透數(shù)學(xué)思想。本文主要分析高中數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)思想的方法及策略。
關(guān)鍵詞:高中數(shù)學(xué);數(shù)學(xué)思想;滲透策略
隨著新課程改革的進(jìn)一步推進(jìn),數(shù)學(xué)教學(xué)的重點(diǎn)不能再放在對學(xué)生數(shù)學(xué)知識(shí)的灌輸上,更重要的是學(xué)科思維和學(xué)科能力的培養(yǎng),這樣才能夠?yàn)閷W(xué)生今后的數(shù)學(xué)學(xué)習(xí)奠定基礎(chǔ)。高中數(shù)學(xué)在高考中處于十分重要的位置,其作為高中教學(xué)的重要組成部分,對學(xué)生今后的成長和發(fā)展有著積極的影響,數(shù)學(xué)學(xué)科因其抽象性、邏輯性以及思維性,相較于其他的學(xué)科而言有著較大的難度,學(xué)生數(shù)學(xué)思維的鍛煉對學(xué)生邏輯推理能力、理解分析能力、實(shí)踐能力等各項(xiàng)能力的提升有著重要的作用。在高中數(shù)學(xué)教學(xué)中教師必須要滲透數(shù)學(xué)思想,這樣才能夠?qū)崿F(xiàn)數(shù)學(xué)教學(xué)的有效性。
一、高中數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)思想方法的現(xiàn)狀分析
1、教師不注重?cái)?shù)學(xué)思想的引導(dǎo)
學(xué)生數(shù)學(xué)思想的培養(yǎng)離不開教師的引導(dǎo),很多教師受到傳統(tǒng)教學(xué)思維的影響,在數(shù)學(xué)課堂上將教學(xué)的重點(diǎn)放在了知識(shí)理論的講解上,認(rèn)為只有這樣學(xué)生才能夠取得一個(gè)優(yōu)異的成績,但是結(jié)果往往與教師的預(yù)期不符。很多教師在高中數(shù)學(xué)教學(xué)中缺少了運(yùn)用數(shù)學(xué)思想的意識(shí),日常教學(xué)過程中還是按照傳統(tǒng)的模式使用黑板、粉筆進(jìn)行教學(xué),很少用到現(xiàn)代化的教學(xué)設(shè)備,這樣的教學(xué)模式對學(xué)生數(shù)學(xué)思維的提升是極其不利的。一部分高中數(shù)學(xué)教師雖然認(rèn)識(shí)到了培養(yǎng)學(xué)生數(shù)學(xué)思想的重要性,但是在實(shí)際的課堂教學(xué)過程中卻沒有進(jìn)行合理的課堂設(shè)定,難以有效滲透數(shù)學(xué)思想,這就使得學(xué)生無法直接接觸到數(shù)學(xué)思想,難以在實(shí)際中應(yīng)用數(shù)學(xué)思想解決問題。[1]很多教師在數(shù)學(xué)教學(xué)中只是按照教材編纂的內(nèi)容進(jìn)行講解,很少對教材中的數(shù)學(xué)思想和數(shù)學(xué)方法進(jìn)行整合提煉,這就使得教師在教學(xué)過程中只是具體的講解相關(guān)題型和知識(shí)點(diǎn),很少引導(dǎo)學(xué)生思考其中所蘊(yùn)含的數(shù)學(xué)思想。
2、學(xué)生對數(shù)學(xué)思想的認(rèn)知不足
長期處于應(yīng)試教育的背景下,高中時(shí)期的學(xué)生需要面臨著較大的升學(xué)壓力,數(shù)學(xué)學(xué)科在高考中占有的分值比重較大,學(xué)生一位的通過練習(xí)、做題想要提升數(shù)學(xué)成績。很多學(xué)生在學(xué)習(xí)過程中將重點(diǎn)放在了考試成績上,很少主動(dòng)的結(jié)合數(shù)學(xué)思想來解決問題,在遇到數(shù)學(xué)問題的時(shí)候,只是按照傳統(tǒng)的做題方式,依據(jù)教師所講的步驟解決問題,很少思考做題的過程,無法得出相關(guān)的結(jié)論和數(shù)學(xué)規(guī)律。學(xué)生在做題的時(shí)候沒有正確的方法引導(dǎo),再加上學(xué)生解題習(xí)慣的不合理,導(dǎo)致學(xué)生對高中數(shù)學(xué)思想很少進(jìn)行深入思考,對數(shù)學(xué)規(guī)律的認(rèn)識(shí)也不明確。教師在教學(xué)過程中沒有針對學(xué)生的實(shí)際情況開展課堂教學(xué),難以將數(shù)學(xué)思想融入到數(shù)學(xué)教學(xué)中,使得學(xué)生對數(shù)學(xué)思想的學(xué)習(xí)意識(shí)和應(yīng)用意識(shí)較差,再加上學(xué)生對數(shù)學(xué)思想的認(rèn)知不充分,在解決問題的時(shí)候缺少創(chuàng)新意識(shí),導(dǎo)致高中數(shù)學(xué)教學(xué)中很難有效滲透數(shù)學(xué)思想。
二、常見的高中數(shù)學(xué)思想
1、數(shù)形結(jié)合的數(shù)學(xué)思想
數(shù)形結(jié)合思想我們可以簡單的理解為數(shù)字和圖形相結(jié)合的思想,主要可分為兩種情形,分別是借助于數(shù)的精確性來闡明形的某些屬性,或者借助形的幾何直觀性來闡明數(shù)之間某種關(guān)系,即數(shù)形結(jié)合包括兩個(gè)方面:第一種情形是“以數(shù)解形”,而第二種情形是“以形助數(shù)”。數(shù)學(xué)結(jié)合的應(yīng)用范圍十分廣泛,能夠?qū)?shù)學(xué)問題具體化、形象化,有效降低理解的難度。
2、分類討論的數(shù)學(xué)思想
分類討論指的是先將問題分類,然后再進(jìn)行討論,很多數(shù)學(xué)結(jié)論都要在一定的條件下才能夠成立,數(shù)學(xué)方法也有其適用的范圍。有些問題的結(jié)論不是唯一確定的,此時(shí)就需要我們進(jìn)行分類討論,將數(shù)學(xué)研究對象按照異同進(jìn)行合理的劃分比較,對不同的類型采取合適的數(shù)學(xué)思想進(jìn)行討論,這樣的方式能夠避免所得結(jié)論的片面性,具體問題具體分析可以全面的解決問題、避免漏解。[2]分類思想在高中數(shù)學(xué)中有著十分廣泛的應(yīng)用,數(shù)學(xué)對象的合理劃分,能夠幫助學(xué)生解決思維的片面性問題,提升學(xué)生的數(shù)學(xué)能力。
三、高中數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)思想的策略
1、數(shù)學(xué)思想在高中數(shù)學(xué)知識(shí)中的滲透
學(xué)生高中時(shí)期所接觸到的數(shù)學(xué)知識(shí)需要對數(shù)學(xué)知識(shí)具有一定的認(rèn)識(shí),然后能夠進(jìn)行轉(zhuǎn)化,這就要求教師在課堂教學(xué)過程中,必須要有意識(shí)的向?qū)W生滲透數(shù)學(xué)思想。尤其是一些數(shù)學(xué)概念、數(shù)學(xué)共識(shí)的教學(xué)中,教師可以引導(dǎo)學(xué)生進(jìn)行公式的推理,在此過程中培養(yǎng)學(xué)生的數(shù)學(xué)思想,教師可以引導(dǎo)學(xué)生進(jìn)行概念和公式的分類與討論,讓學(xué)生通過對比能夠深入的理解這些概念,從而形成深刻的認(rèn)識(shí),分類和討論的過程中就很好的用到了“分類討論數(shù)學(xué)思想”。這樣的過程中就做到了數(shù)學(xué)思想的滲透,不僅可以幫助學(xué)生鞏固基礎(chǔ)知識(shí),還能夠提升學(xué)生的數(shù)學(xué)思維能力。
2、數(shù)學(xué)思想在解決問題中的滲透
在解決實(shí)際數(shù)學(xué)問題的時(shí)候,教師可以引導(dǎo)學(xué)生利用數(shù)學(xué)思想解決問題,讓學(xué)生將抽象的問題轉(zhuǎn)化成形象直觀的數(shù)學(xué)模型,有效降低學(xué)生的理解難度。就像是在學(xué)習(xí)立體幾何的時(shí)候,很多學(xué)生的空間想象力不足,很難根據(jù)題目所給的已知條件在腦海中構(gòu)建相關(guān)的數(shù)學(xué)模型,此時(shí)教師就可以帶領(lǐng)學(xué)生,讓學(xué)生根據(jù)題意畫出圖形,然后再分析題目中給出的已知條件,進(jìn)行推斷,將得到的信息標(biāo)注在圖形上,之后再用自己已經(jīng)掌握的理論知識(shí)進(jìn)行分析和推理,找出問題的答案。這樣的過程就很好的將圖形和數(shù)字聯(lián)系了起來,將數(shù)字信息轉(zhuǎn)化為圖形能夠讓學(xué)生直觀的感受到題目給出的條件,有效解決學(xué)生空間思維不足的問題。
結(jié)束語:綜上所述,在高中數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)思想是十分有必要的。學(xué)生數(shù)學(xué)能力的提升需要建立在數(shù)學(xué)思想的基礎(chǔ)上,教師必須要注重學(xué)生數(shù)學(xué)思想的培養(yǎng),還需要明確高中數(shù)學(xué)思想的內(nèi)容,在數(shù)學(xué)教學(xué)中要始終將學(xué)生數(shù)學(xué)思想的培養(yǎng)放在首位,教師可以在概念的形成、知識(shí)點(diǎn)的講解和做題中訓(xùn)練學(xué)生,幫助學(xué)生構(gòu)建完整的知識(shí)體系,讓學(xué)生能夠具備相關(guān)的數(shù)學(xué)思想,為學(xué)生今后的數(shù)學(xué)學(xué)習(xí)奠定良好的基礎(chǔ)。
參考文獻(xiàn)
[1]胡兵.高中數(shù)學(xué)課堂教學(xué)中滲透數(shù)學(xué)思想的策略與方法[J].現(xiàn)代交際,2017(13):166.
[2]焦洋.數(shù)學(xué)思想方法在高中數(shù)學(xué)教學(xué)中的滲透[J].課程教育研究,2017(5):152.