国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

抗癌肽的作用機(jī)制研究進(jìn)展

2019-08-27 01:23喬雪王義鵬于海寧
生物工程學(xué)報(bào) 2019年8期
關(guān)鍵詞:抗菌肽抗癌癌細(xì)胞

喬雪,王義鵬,于海寧

抗癌肽的作用機(jī)制研究進(jìn)展

喬雪1,王義鵬2,于海寧1

1 大連理工大學(xué) 生物工程學(xué)院,遼寧 大連 116024 2 蘇州大學(xué) 生命科學(xué)學(xué)院,江蘇 蘇州 215123

近年來癌癥的發(fā)生率和死亡率呈現(xiàn)逐漸上升的趨勢(shì),是威脅人類生命的主要疾病之一。抗癌肽 (Anticancer peptides,ACPs) 即具有抗腫瘤活性的生物活性肽,其廣泛存在于多種生物體內(nèi),包括哺乳動(dòng)物、兩棲類動(dòng)物、昆蟲、植物和微生物等??拱╇脑谥委熌[瘤方面具有眾多優(yōu)勢(shì),如分子量低、結(jié)構(gòu)簡(jiǎn)單、高抗癌活性、高選擇性、較少的副作用、多種給藥方式、不易引起多重耐藥性等。文中結(jié)合本課題組相關(guān)工作,歸納了目前所發(fā)現(xiàn)的抗癌肽的作用機(jī)制,以期為新型肽類抗腫瘤藥物的研發(fā)提供一定的方向。

抗癌肽,膜裂解機(jī)制,非膜裂解機(jī)制,新型抗腫瘤藥物

癌癥也稱為惡性腫瘤,是一種由調(diào)控細(xì)胞分裂增殖機(jī)制失常而引起的疾病。據(jù)國際癌癥研究機(jī)構(gòu)估計(jì),在全世界范圍內(nèi),2018年新增癌癥患者約為1 810萬,死亡人數(shù)約960萬[1]。據(jù)估計(jì)在2025年全球每年的新增癌癥病例將超過2 000萬[2]。目前,手術(shù)治療、放射治療(放療) 和化學(xué)藥物治療(化療) 是主要的傳統(tǒng)癌癥治療方法。然而傳統(tǒng)的抗癌類藥物雖然抗癌效率較高,但是也存在一些缺點(diǎn),如低選擇性、副作用明顯、免疫抑制、神經(jīng)和腸胃損傷等[3-4];更重要的是,這些抗癌類藥物的聯(lián)合使用極易引起腫瘤的多藥耐藥性(MDR)[5]。因此,腫瘤的藥物治療期待著新的突破??咕?AMPs) 是一類天然產(chǎn)生的先天免疫的重要防御物質(zhì),抗菌肽功能多樣,其中將具有抗腫瘤活性的抗菌肽叫做抗癌肽(ACPs)。而抗癌肽的特殊作用機(jī)制,使其成為近年來生物藥物研究中的一個(gè)熱點(diǎn),也為新型抗癌藥物的研究提供了新方向。

1 抗癌肽的基本特征

目前發(fā)現(xiàn)的抗癌肽可分為兩類:一類是對(duì)細(xì)菌和癌細(xì)胞有殺傷作用,但是對(duì)正常細(xì)胞沒有毒性,如cecropins和magainins。另一類是對(duì)細(xì)菌、癌細(xì)胞和正常細(xì)胞均有破壞作用,如昆蟲defensins和tachyplesin Ⅱ等[6]。因此第一類抗癌肽具有很好的研究?jī)r(jià)值和應(yīng)用前景。抗癌肽的長(zhǎng)度和序列多樣,但大部分抗癌肽都有兩個(gè)共同特征:陽離子性和兩親性??拱╇耐ǔS?–40個(gè)氨基酸組成,其中精氨酸、賴氨酸和組氨酸的存在使其表現(xiàn)出較強(qiáng)的陽離子特性,表面凈電荷范圍為+2–+9[7-8]??拱╇募染哂杏H水性又具有親脂性,主要是因?yàn)槠浣Y(jié)構(gòu)上具有親水性和疏水性的側(cè)鏈結(jié)構(gòu),而絕大多數(shù)的抗癌肽含有α-螺旋或β-折疊結(jié)構(gòu),這種兩親性側(cè)鏈在具有α-螺旋結(jié)構(gòu)的抗癌肽鏈上分別排布在螺旋的兩側(cè),或者集中于兩端,因此可形成親水面和疏水面或者明顯的親水端和疏水端[9]。當(dāng)抗癌肽與癌細(xì)胞膜相互作用時(shí),疏水區(qū)域與胞膜脂質(zhì)結(jié)合,帶正電荷的親水區(qū)域與帶有負(fù)電荷的癌細(xì)胞膜表面通過靜電吸附而有效結(jié)合,這為抗癌肽能夠選擇性作用于癌細(xì)胞奠定了基礎(chǔ)[10]。

2 抗癌肽的作用機(jī)制

2.1 抗癌肽的膜裂解機(jī)制

抗癌肽能夠靶向作用于癌細(xì)胞,而不損傷正常組織細(xì)胞的主要原因在于癌細(xì)胞膜表面一些陰離子成分的特異性表達(dá),包括磷脂酰絲氨酸、-糖基化粘蛋白、唾液酸神經(jīng)節(jié)苷脂和肝素等[11]。大量研究表明,抗癌肽的作用機(jī)制可以分為膜裂解機(jī)制和非膜裂解機(jī)制(圖1和圖2)。其中抗癌肽的膜裂解機(jī)制主要有以下3種,分別是“桶板模型”、“氈毯模型”和“環(huán)形孔模型”(圖1)[12-13]。

圖1 抗癌肽的膜裂解機(jī)制[13]

圖2 抗癌肽的抗腫瘤機(jī)制

2.1.1 桶板模型

1977年Ehrenstein等首次提出了抗菌肽的桶板模型(圖1)[14]??拱╇脑诎┘?xì)胞膜表面通過疏水作用寡聚體化,其中抗癌肽的疏水面向外朝向細(xì)胞膜的酰基鏈,而親水面形成孔或槽,最終在不斷的聚集過程中形成穿透質(zhì)膜離子孔道,進(jìn)而導(dǎo)致癌細(xì)胞內(nèi)容物流出,失去大量離子和能量,胞內(nèi)滲透壓改變,進(jìn)而瓦解細(xì)胞膜。理論上這種孔道至少由3個(gè)抗癌肽分子組成,并且要求它們有一定的二級(jí)結(jié)構(gòu),比如兩親性的α-螺旋、β-折疊或同時(shí)含有α-螺旋和β-折疊[15]。很多抗癌肽均被證明是通過桶板模型來發(fā)揮其抗癌作用的。如在1994年,Sui等證明了分離自意蜂的Melittin可以通過桶板模型破壞癌細(xì)胞膜的完整性[16]。Melittin又名蜂毒肽,是蜂毒的主要成分,由26個(gè)氨基酸殘基組成,其功能多樣,如有抗炎、鎮(zhèn)痛、抗菌、抗HIV及抗腫瘤等多種藥理活性[17]。蜂毒肽具有廣譜的抗腫瘤活性,包括人肝細(xì)胞癌、白血病、乳腺癌等,桶板模型是其多種抗腫瘤機(jī)制之一[18-19]。來自咆哮草蛙的抗癌肽Aurein1.2對(duì)白血病、肺癌、結(jié)腸癌等均有殺傷作用,其主要機(jī)制也是通過桶板模型來破壞腫瘤細(xì)胞[20]。

2.1.2 氈毯模型

1992年P(guān)ouny等提出了抗菌肽的“氈毯”模型[21]。陽離子抗癌肽也可以通過靜電作用結(jié)合到帶負(fù)離子的癌細(xì)胞膜上,以類似氈毯的結(jié)構(gòu)平行排列,當(dāng)抗癌肽達(dá)到臨界濃度時(shí),細(xì)胞膜能量惡化,穩(wěn)定性降低而出現(xiàn)顯著的彎曲從而破裂(圖1)。區(qū)別于桶板模型,氈毯模型不需要抗癌肽具有特殊結(jié)構(gòu),并且不形成跨膜通道[15]。Cecropins類抗癌肽,又名天蠶素,是第一個(gè)被發(fā)現(xiàn)的動(dòng)物抗菌肽,在昆蟲和哺乳類動(dòng)物中均有發(fā)現(xiàn),其對(duì)白血病、膀胱癌等均有強(qiáng)殺傷作用,可通過氈毯模型發(fā)揮作用[22]。Chuang等報(bào)道了人體唯一一種Cathelicidin類抗菌肽LL-37,也可以通過氈毯模型選擇性地裂解卵巢癌[23]。另外,Magainins (來自非洲爪蟾,)[24]、Citropin 1.1 (來自雨濱蛙,)[25]、Gaegurins (來自皺皮蛙,)[26]等多種抗癌肽,均可通過氈毯模型來發(fā)揮其抗癌作用。

2.1.3 環(huán)形孔模型

在環(huán)形孔模型中,抗癌肽的疏水區(qū)與癌細(xì)胞膜上的疏水區(qū)相互移動(dòng)而導(dǎo)致胞膜破裂缺失,最終形成跨膜孔道(圖1)。其與桶板模型最主要的區(qū)別在于抗癌肽始終與磷脂的頭部結(jié)合而一起構(gòu)成跨膜通道。1997年,Matsuzaki等報(bào)道了Magainin-2可以“環(huán)形孔”模型發(fā)揮抗菌作用[27]。Magainins,又名爪蟾素,分離自非洲爪蟾的皮膚,是較早發(fā)現(xiàn)的兩棲動(dòng)物抗菌肽,其具有廣譜的抗菌抗癌活性,其中可以通過環(huán)形孔模型破壞人的宮頸癌細(xì)胞HeLa的細(xì)胞膜[28]。

除了上述3種機(jī)制外,還有一種破膜機(jī)制叫做Shai-Huang-Matsuzaki (SHM) 模型,被認(rèn)為是氈毯模型和環(huán)形孔模型的結(jié)合[29]。這些模型雖然都是抗癌肽與癌細(xì)胞膜的相互作用導(dǎo)致細(xì)胞膜裂解,但是其內(nèi)在的分子機(jī)制有所不同。但是,大量報(bào)道證明,許多抗癌肽可以通過不同的作用方式應(yīng)對(duì)不同的癌細(xì)胞,以Magainin類抗癌肽為例,其抗癌作用方式既有環(huán)形孔又有氈毯模型,甚至還有非膜裂解機(jī)制[24,28,30]。

2.2 抗癌肽的非膜裂解機(jī)制

抗癌肽的作用機(jī)制除了改變癌細(xì)胞膜通透性以外,還可以與癌細(xì)胞的內(nèi)源靶標(biāo)相互作用,進(jìn)而誘導(dǎo)癌細(xì)胞的死亡(圖2)。

2.2.1 誘導(dǎo)凋亡途徑

大量的研究證實(shí)抗癌肽可通過激活凋亡通路來執(zhí)行功能,凋亡細(xì)胞表現(xiàn)出一系列形態(tài)和生化特征的變化,如胞質(zhì)皺縮、磷脂酰絲氨酸外翻、染色質(zhì)凝聚、DNA片段化、核膜核仁破碎等[31]。一般來說凋亡分為內(nèi)源性凋亡即線粒體途徑和外源性凋亡即死亡受體途徑,其中半胱天冬酶(Caspase)-9和-8分別是二者標(biāo)志性中間激活物,caspase-3,6,7是二者共同的凋亡執(zhí)行者[32]。Lee等發(fā)現(xiàn)來自中華大蟾蜍的抗癌肽BuforinⅡb對(duì)多達(dá)62株癌細(xì)胞都有強(qiáng)殺傷作用,其可破壞線粒體膜,釋放細(xì)胞色素,進(jìn)而激活caspase級(jí)聯(lián),誘導(dǎo)一系列蛋白水解反應(yīng)導(dǎo)致細(xì)胞瓦解(內(nèi)源性凋亡)[33]。Chen等將tachyplesinⅠ的C端連接一段帶有RGD的短肽,發(fā)現(xiàn)獲得的RGD-tachyplesinⅠ在體內(nèi)外均可抑制腫瘤生長(zhǎng),并且激活caspase-3,6,7,8,9以及fas配體相關(guān)死亡域表達(dá),也就是說其可同時(shí)激活線粒體途徑和死亡受體途徑[34]。不僅如此,近年來相繼出現(xiàn)很多報(bào)道證明抗癌肽還能夠激活不依賴于caspase的凋亡通路。這種凋亡通路不需要caspase的激活,而是促使存在于線粒體內(nèi)外膜間隙的細(xì)胞凋亡誘導(dǎo)因子(AIF) 和核酸內(nèi)切酶G (EndoG) 核轉(zhuǎn)移,進(jìn)而引起DNA裂解和染色質(zhì)凝集等[35]。Ren等發(fā)現(xiàn)LL-37是通過激活caspase非依賴性的凋亡通路抑制人結(jié)腸癌細(xì)胞的生長(zhǎng)。LL-37有效激活細(xì)胞中的抑癌基因p53的表達(dá),進(jìn)而誘導(dǎo)多種轉(zhuǎn)錄靶標(biāo)的表達(dá)包括Bcl-2家族的促凋亡蛋白如BAX、Bak和Puma,這些因子能促進(jìn)線粒體生理機(jī)能的改變,進(jìn)而釋放AIF和EndoG進(jìn)入細(xì)胞核執(zhí)行凋亡功能[36]。本實(shí)驗(yàn)室前期工作從海南湍蛙中提取到了一種抗菌肽HN-1具有廣譜的抗菌活性[37],后續(xù)實(shí)驗(yàn)發(fā)現(xiàn)其對(duì)癌細(xì)胞具有選擇性殺傷作用,且有效激活了caspase非依賴性的凋亡通路抑制人乳腺癌細(xì)胞MCF-7的生長(zhǎng)(圖3)。

2.2.2 阻止細(xì)胞周期于G0、G1或S期

細(xì)胞周期是細(xì)胞生命活動(dòng)的基本過程,其依賴于各級(jí)調(diào)控因子的精確調(diào)控。大量報(bào)道指出抗癌肽可阻滯癌細(xì)胞于不同時(shí)期,從而抑制癌細(xì)胞的增殖。Li等[38]發(fā)現(xiàn)TachyplesinⅠ使人肝癌細(xì)胞SMMC-7721細(xì)胞阻滯在G0/G1期,實(shí)驗(yàn)中TachyplesinⅠ下調(diào)突變p53、細(xì)胞周期蛋白D1和CDK4的蛋白水平,降低c-Myc的mRNA 水平,并且促進(jìn)p16 和p21WAF1/CIP1的表達(dá),可見TachyplesinⅠ通過對(duì)這些細(xì)胞周期相關(guān)基因表達(dá)的調(diào)節(jié),進(jìn)而抑制SMMC-7721的增殖。Zhao等利用原核表達(dá)獲得抗癌肽AGAP的重組體rAGAP,發(fā)現(xiàn)rAGAP能夠抑制人膠質(zhì)瘤細(xì)胞SHG-44的增殖和遷移,其機(jī)理是通過抑制G1細(xì)胞周期調(diào)控蛋白CDK2、CDK6和p-RB的表達(dá),使SHG-44細(xì)胞周期被阻滯在G1階段,進(jìn)而顯著抑制其增殖[39]。將胡桃肽WP1與納米硒結(jié)合能夠阻滯MCF-7細(xì)胞于S期,進(jìn)而抑制其增殖[40]。

2.2.3 破壞溶酶體

癌細(xì)胞中溶酶體的通透性通常會(huì)發(fā)生改變,并且合成分泌大量的組織蛋白酶,它們與腫瘤的生長(zhǎng)、侵襲和轉(zhuǎn)移息息相關(guān)[41]。據(jù)報(bào)道一些抗癌肽可以破壞溶酶體膜,釋放溶酶體內(nèi)容物,導(dǎo)致細(xì)胞內(nèi)環(huán)境酸化,直至癌細(xì)胞死亡[42]。如來自一種海參的抗癌肽Kahalalide F (KF),可以通過破壞癌細(xì)胞溶酶體結(jié)構(gòu)來殺死癌細(xì)胞,其抑制的細(xì)胞株包括結(jié)腸癌、乳腺癌、非小細(xì)胞肺癌、前列腺癌、黑色素瘤等[43]。宿主防御肽模擬物OAK對(duì)小鼠前列腺腺癌細(xì)胞TRAMP-C2及其動(dòng)物模型均有良好的抑制作用,并且可以克服多藥耐藥性。Held-Kuznetsov等發(fā)現(xiàn),OAK的作用機(jī)制是通過破壞線粒體和溶酶體發(fā)揮作用[44]。

2.2.4 增加鈣離子內(nèi)流

癌細(xì)胞中Ca2+穩(wěn)態(tài)會(huì)發(fā)生改變,這些改變與腫瘤的發(fā)生、增殖、代謝和血管的生成有關(guān)[45]??拱╇目筛淖兗?xì)胞膜通透性而進(jìn)入細(xì)胞,并且可增加細(xì)胞內(nèi)Ca2+內(nèi)流,隨后通過靜電吸附作用于線粒體,在Ca2+的協(xié)同下作用于線粒體通透性轉(zhuǎn)換孔 (PTP),導(dǎo)致內(nèi)容物外流引起癌細(xì)胞死亡。蜂毒肽Melittin可以通過增強(qiáng)Ca2+的流入和桶板模型等機(jī)制來殺死人的肝癌細(xì)胞[46]。另外,Risso等也發(fā)現(xiàn)來自家牛的BMAP-27/28對(duì)白血病、淋巴癌等都有很好的抑制作用,其機(jī)制就是改變細(xì)胞膜的通透性和提高細(xì)胞中Ca2+內(nèi)流,并伴隨著DNA的片段化,進(jìn)而誘導(dǎo)癌細(xì)胞的死亡[47]。

2.2.5 抑制DNA合成

誘導(dǎo)靶細(xì)胞DNA片段化是多種抗癌肽的作用效果,但不一定是抗癌肽直接作用于DNA,比如凋亡通路也會(huì)引起DNA斷裂。近年來研究發(fā)現(xiàn)有些抗癌肽可以直接與癌細(xì)胞染色體DNA或相關(guān)酶相互作用,進(jìn)而干擾或抑制癌細(xì)胞的DNA合成。Gower等[48]發(fā)現(xiàn)4種利尿鈉肽(LANP、ANP、BNP和CNP) 對(duì)人的結(jié)腸癌細(xì)胞有抑制作用,其抗腫瘤機(jī)制就是通過抑制環(huán)磷酸鳥苷(Cyclic GMP) 介導(dǎo)的癌細(xì)胞DNA合成來阻止癌細(xì)胞增殖的。Hariton-Gazal等[49]通過實(shí)驗(yàn)發(fā)現(xiàn)經(jīng)過加工改造后的抗癌肽PV-S4和RR-S4可以結(jié)合到Hela細(xì)胞核染色體上,使其DNA出現(xiàn)斷裂,進(jìn)而誘導(dǎo)腫瘤細(xì)胞死亡。另外,分離自的抗癌肽Kahalalide F (KF)、來自淀粉核小球藻的CPAP等均能通過阻止DNA復(fù)制來殺死腫瘤細(xì)胞[18]。

2.2.6 促使癌細(xì)胞自噬

細(xì)胞自噬也稱Ⅱ型程序性細(xì)胞死亡,是細(xì)胞中高度保守的自行降解過程,自噬使饑餓或缺乏生長(zhǎng)因子的細(xì)胞得以暫時(shí)成活,而那些持續(xù)不能獲得營養(yǎng)的細(xì)胞將消化所有可獲得的基質(zhì),最終導(dǎo)致自噬相關(guān)性細(xì)胞死亡。近年來發(fā)現(xiàn)其也是抗癌肽的腫瘤抑制機(jī)制之一[50-51]。Ren等[52]報(bào)道了LL-37的片段FK-16 (第17–32個(gè)氨基酸) 可誘導(dǎo)結(jié)腸癌細(xì)胞HCT116凋亡和自噬,但是對(duì)正常結(jié)腸上皮細(xì)胞NCM460毒性很小。FK-16提高了結(jié)腸癌細(xì)胞中自噬相關(guān)蛋白LC3-Ⅰ/Ⅱ、Atg5和Atg7的表達(dá)量,同時(shí)在共聚焦和電子顯微鏡下觀察到LC3陽性的自噬體的形成。當(dāng)敲除掉Atg5和Atg7后,大大降低了FK-16對(duì)結(jié)腸癌細(xì)胞的殺傷作用,說明誘導(dǎo)癌細(xì)胞自噬是FK-16發(fā)揮作用的重要機(jī)制。

2.2.7 激活腫瘤免疫

免疫系統(tǒng)在機(jī)體控制和清除腫瘤方面起到了至關(guān)重要的作用,但仍難以阻止腫瘤的發(fā)生和發(fā)展。這與復(fù)雜的腫瘤微環(huán)境密不可分,一方面,腫瘤細(xì)胞可分泌促進(jìn)腫瘤生長(zhǎng)、轉(zhuǎn)移的細(xì)胞因子,如轉(zhuǎn)化生長(zhǎng)因子-β、血管內(nèi)皮生長(zhǎng)等[53];另一方面,惡性腫瘤可以通過多重機(jī)制免疫應(yīng)答,從而逃逸免疫系統(tǒng)的攻擊作用,如使腫瘤浸潤的 CD8+CTLs和CD4+Th1細(xì)胞處于一種功能耗竭或無能狀態(tài),無法對(duì)腫瘤進(jìn)行免疫監(jiān)視和清除[54]。因此誘導(dǎo)免疫活化、打破免疫耐受等已成為熱門的免疫治療方向,如免疫檢查點(diǎn)抑制劑[55]。有研究證明有些抗癌肽可以調(diào)節(jié)機(jī)體的免疫應(yīng)答發(fā)揮其抗腫瘤作用。Chen等[56]報(bào)道TachyplesinⅠ能夠促使細(xì)胞表面的透明質(zhì)烷和血清中補(bǔ)體途徑的關(guān)鍵成分C1q補(bǔ)體相互作用,并且激活其下游的C3和C4的裂解和沉積,以及C5b-9的形成,激活典型補(bǔ)體途徑從而破壞癌細(xì)胞的完整性。Chernysh等報(bào)道了來自紅頭麗蠅的抗菌肽alloferon可通過激活免疫應(yīng)答抑制腫瘤生長(zhǎng)。通過體外將小鼠淋巴細(xì)胞或人的血液?jiǎn)魏思?xì)胞進(jìn)行試驗(yàn),發(fā)現(xiàn)alloferon可激活自然殺傷 (NK) 細(xì)胞和干擾素 (IFN) 的表達(dá)[57]。Huang等[58]發(fā)現(xiàn)從比目魚豹鰨分離的抗癌肽GE33可以作為疫苗佐劑提升滅活膀胱癌細(xì)胞 (MBT-2) 的免疫原性,在小鼠體內(nèi)顯著提高了CTL細(xì)胞和NK細(xì)胞數(shù)量以及特異性抗體水平等,證明了抗癌肽的免疫調(diào)節(jié)潛能。本課題組發(fā)現(xiàn)的抗癌肽HN-1在動(dòng)物體內(nèi)激活了CD4+T細(xì)胞和巨噬細(xì)胞在腫瘤中的浸潤,并且提高了腫瘤相關(guān)細(xì)胞因子在血清中的水平(圖3)。

圖3 抗癌肽HN-1的抗腫瘤機(jī)制

2.2.8 抑制腫瘤血管新生

新生血管形成與腫瘤侵襲和轉(zhuǎn)移息息相關(guān),其為腫瘤組織提供氧氣和營養(yǎng),促進(jìn)腫瘤細(xì)胞迅速增殖,同時(shí)為腫瘤的遠(yuǎn)端轉(zhuǎn)移提供轉(zhuǎn)運(yùn)[59]。因此靶向腫瘤新生血管生成或相關(guān)因子的抗癌類藥物研發(fā)具有重大意義。Mader等[60]通過實(shí)驗(yàn)發(fā)現(xiàn)Lactoferricin B在體外通過阻止細(xì)胞生長(zhǎng)因子 (bFGF) 和血管內(nèi)皮生長(zhǎng)因子 (VEGF165)與受體結(jié)合而抑制人臍靜脈內(nèi)皮細(xì)胞 (HUVECs) 增殖,并且在C57BL/6小鼠體內(nèi)抑制二者誘導(dǎo)的血管生成。Hou等[61]將人工設(shè)計(jì)抗菌肽與靶向給藥序列DGR相連接,發(fā)現(xiàn)其能夠與αvβ3+(腫瘤細(xì)胞過表達(dá)) 結(jié)合從而抑制血管的生成,充分證明了抗癌肽具有抑制血管新生的潛能。

3 總結(jié)與展望

在過去的20年中,天然活性分子的多種治療潛能的持續(xù)發(fā)現(xiàn)引發(fā)了科學(xué)界的廣泛注意??拱╇挠捎谄涮厥獾年栯x子和兩親性的結(jié)構(gòu)特征以及其眾多的抗癌機(jī)制,使其發(fā)揮了良好的抗癌作用或者增強(qiáng)化療藥物的效果,因而有望用于提高化療藥物的敏感性,同時(shí)減少對(duì)正常組織的毒副作用。目前已有大量不同治療目的肽類藥物進(jìn)入臨床或批準(zhǔn)上市,如表1所示,當(dāng)前已有部分處于臨床試驗(yàn)階段的抗癌肽,并取得了一定的效果[62]。但是抗癌肽的應(yīng)用和研發(fā)仍面臨一些挑戰(zhàn),如合成成本較高、易被蛋白酶水解、易聚合、半衰期較短等[63]。因而當(dāng)前抗癌肽的設(shè)計(jì)也集中于截短序列等,以降低成本[64];解決蛋白酶的水解問題,可以通過將天然氨基酸替換成非天然氨基酸,比如設(shè)計(jì)D-對(duì)映體肽、β2,2氨基酸替換、肽骨干環(huán)化、end-capping 如c-酰胺化、糖類coating等[65-67];提高半衰期可以將抗癌肽聚乙二醇修飾(PEGylation),結(jié)合到血清白蛋白或抗體片段等[68]。由此可見雖然抗癌肽在腫瘤治療方面有很好臨床應(yīng)用價(jià)值,但是仍需克服這些缺陷和挑戰(zhàn),才能在腫瘤藥物治療領(lǐng)域有一席之地。因此,進(jìn)一步確定和發(fā)現(xiàn)更多抗癌肽模板和抗腫瘤機(jī)制以及克服肽類藥物缺點(diǎn)的新方法對(duì)抗腫瘤臨床治療藥劑的發(fā)展具有重大意義。

表1 部分處于臨床試驗(yàn)不同時(shí)期或臨床前研究的抗癌肽[62]

The search was carried out in the drug databases Pharmaprojects (www. pharmaprojects. com) and Pharmacodia (https: //data. pharmacodia. com/web/home/index).

[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394–424.

[2] Zugazagoitia J, Guedes C, Ponce S, et al. Current challenges in cancer treatment. Clin Ther, 2016, 38(7): 1551–1566.

[3] Thundimadathil J. Cancer treatment using peptides: current therapies and future prospects. J Amino Acids, 2012, 2012: 967347.

[4] Mitchell EP. Gastrointestinal toxicity of chemotherapeutic agents. Semin Oncol, 2006, 33(1): 106–120.

[5] Wijdeven RH, Pang B, Assaraf YG, et al. Old drugs, novel ways out: Drug resistance toward cytotoxic chemotherapeutics. Drug Resist Update, 2016, 28(1): 65–81.

[6] Schweizer F. Cationic amphiphilic peptides with cancer-selective toxicity. Eur J Pharmacol, 2009, 625(1/3): 190–194.

[7] Chan DI, Prenner EJ, Vogel HJ. Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochim Biophys Acta Biomembr, 2006, 1758(9): 1184–1202.

[8] Wei LY, Zhou C, Chen HR, et al. ACPred-FL: a sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides. Bioinformatics, 2018, 34(23): 4007–4016.

[9] Hammami R, Fliss I. Current trends in antimicrobial agent research: chemo- and bioinformatics approaches. Drug Discov Today, 2010, 15(13/14): 540–546.

[10] Do N, Weindl G, Grohmann L, et al. Cationic membrane-active peptides-anticancer and antifungal activity as well as penetration into human skin. Experim Dermatol, 2014, 23(5): 326–331.

[11] Gaspar D, Veiga AS, Castanho MARB. From antimicrobial to anticancer peptides: a review. Front Microbiol, 2013, 4: 294.

[12] Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta Biomembr, 1999, 1462(1/2): 55–70.

[13] Gabernet G, Müller AT, Hiss JA, et al. Membranolytic anticancer peptides. Medchemcomm, 2016, 7(12): 2232–2245.

[14] Ehrenstein G, Lecar H. Electrically gated ionic channels in lipid bilayers. Quart Rev Biophys, 1977, 10(1): 1–34.

[15] Shai Y, Oren Z. From “carpet” mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides, 2001, 22(10): 1629–1641.

[16] Sui SF, Wu H, Guo Y, et al. Conformational changes of melittin upon insertion into phospholipid monolayer and vesicle. J Biochem, 1994, 116(3): 482–487.

[17] Chen J, Guan SM, Sun W, et al. Melittin, the major pain-producing substance of bee venom. Neurosc Bull, 2016, 32(3): 265–272.

[18] Mulder KCL, Lima LA, Miranda VJ, et al. Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides. Front Microbiol, 2013, 4: 321.

[19] Wimley WC. How does melittin permeabilize membranes? Biophys J, 2018, 114(2): 251–253.

[20] Rozek T, Wegener KL, Bowie JH, et al. The antibiotic and anticancer active aurein peptides from the Australian Bell Frogsand-The solution structure of aurein 1.2. Eur J Biochem, 2000, 267(17): 5330–5341.

[21] Pouny Y, Rapaport D, Mor A, et al. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogs with phospholipid membranes. Biochemistry, 1992, 31(49): 12416–12423.

[22] Chen HM, Wang W, Smith D, et al. Effects of the anti-bacterial peptide cecropin B and its analogs, cecropins B-1 and B-2, on liposomes, bacteria, and cancer cells. Biochim Biophys Acta Gen Subjects, 1997, 1336(2): 171–179.

[23] Chuang CM, Monie A, Wu AN, et al. Treatment with LL-37 peptide enhances antitumor effects induced by CpG oligodeoxynucleotides against ovarian cancer. Human Gene Therapy, 2009, 20(4): 303–313.

[24] Lehmann J, Retz M, Sidhu SS, et al. Antitumor activity of the antimicrobial peptide Magainin II against bladder cancer cell lines. Eur Urol, 2006, 50(1): 141–147.

[25] Doyle J, Brinkworth CS, Wegener KL, et al. nNOS inhibition, antimicrobial and anticancer activity of the amphibian skin peptide, citropin 1.1 and synthetic modifications. The solution structure of a modified citropin 1.1. Eur J Biochem, 2003, 270(6): 1141–1153.

[26] Won HS, Seo MD, Jung SJ, et al. Structural determinants for the membrane interaction of novel bioactive undecapeptides derived from gaegurin 5. J Med Chem, 2006, 49(16): 4886–4895.

[27] Matsuzaki K, Sugishita KI, Harada M, et al. Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. Biochim Biophys Acta Biomembr, 1997, 1327(1): 119–130.

[28] Takeshima K, Chikushi A, Lee KK, et al. Translocation of analogues of the antimicrobial peptides magainin and buforin across human cell membranes. J Biol Chem, 2003, 278(2): 1310–1315.

[29] Neuhaus CS, Gabernet G, Steuer C, et al. Simulated molecular evolution for anticancer peptide design. Angew Chem Int Ed, 2019, 58(6): 1674–1678.

[30] Pino-Angeles A, Leveritt III JM, Lazaridis T. Pore structure and synergy in antimicrobial peptides of the magainin family. PLoS Comput Biol, 2016, 12(1): e1004570.

[31] Nagata S. Apoptosis and clearance of apoptotic cells. Ann Rev Immunol, 2018, 36: 489–517.

[32] Soengas MS, Lowe SW. Apoptosis and melanoma chemoresistance. Oncogene, 2003, 22(20): 3138–3151.

[33] Lee HS, Park CB, Kim JM, et al. Mechanism of anticancer activity of buforin IIb, a histone H2A-derived peptide. Cancer Lett, 2008, 271(1): 47–55.

[34] Chen YX, Xu XM, Hong SG, et al. RGD-tachyplesin inhibits tumor growth. Cancer Res, 2001, 61(6): 2434–2438.

[35] Giampazolias E, Tait SWG. Caspase-independent cell death: An anti-cancer double whammy. Cell Cycle, 2018, 17(3): 269–270.

[36] Ren SX, Cheng ASL, To KF, et al. Host immune defense peptide LL-37 activates caspase-independent apoptosis and suppresses colon cancer. Cancer Res, 2012, 72(24): 6512–6523.

[37] Zhang SY, Guo HH, Shi F, et al. Hainanenins: A novel family of antimicrobial peptides with strong activity from Hainan cascade-frog,. Peptides, 2012, 33(2): 251–257.

[38] Li QF, Ouyang GL, Peng XX, et al. Effects of tachyplesin on the regulation of cell cycle in human hepatocarcinoma SMMC-7721 cells. World J Gastroenterol, 2003, 9(3): 454–458.

[39] Zhao YL, Cai XT, Ye TM, et al. Analgesic-antitumor peptide inhibits proliferation and migration of SHG-44 human malignant glioma cells. J Cell Biochem, 2011, 112(9): 2424–2434.

[40] Liao WZ, Zhang R, Dong CB, et al. Novel walnut peptide-selenium hybrids with enhanced anticancer synergism: facile synthesis and mechanistic investigation of anticancer activity. Int J Nanomed, 2016, 11: 1305–1321.

[41] Dielschneider RF, Henson ES, Gibson SB. Lysosomes as oxidative targets for cancer therapy. Oxidat Med Cell Long, 2017, 2017: 3749157.

[42] Adak A, Mohapatra S, Mondal P, et al. Design of a novel microtubule targeted peptide vesicle for delivering different anticancer drugs. Chem Commun, 2016, 52(48): 7549–7552.

[43] Singh R, Sharma M, Joshi P, et al. Clinical status of anti-cancer agents derived from marine sources. Anti-Cancer Agent Med Chem, 2008, 8(6): 603–617.

[44] Held-Kuznetsov V, Rotem S, Assaraf YG, et al. Host-defense peptide mimicry for novel antitumor agents. FASEB J, 2009, 23(12): 4299–4307.

[45] Cui CC, Merritt R, Fu LW, et al. Targeting calcium signaling in cancer therapy. Acta Pharm Sin B, 2017, 7(1): 3–17.

[46] Wang C, Chen TY, Zhang N, et al. Melittin, a major component of bee venom, sensitizes human hepatocellular carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)- induced apoptosis by activating CaMKII-TAK1-JNK/ p38 and inhibiting IκBα Kinase-NFκB. J Biol Chem, 2009, 284(6): 3804–3813.

[47] Risso A, Braidot E, Sordano MC, et al. BMAP-28, an antibiotic peptide of innate immunity, induces cell death through opening of the mitochondrial permeability transition pore. Mol Cell Biol, 2002, 22(6): 1926–1935.

[48] Gower WR Jr, Vesely BA, Alli AA, et al. Four peptides decrease human colon adenocarcinoma cell number and DNA synthesis via cyclic GMP. Int J Gastrointest Cancer, 2005, 36(2): 77–87.

[49] Hariton-Gazal E, Feder R, Mor A, et al. Targeting of nonkaryophilic cell-permeable peptides into the nuclei of intact cells by covalently attached nuclear localization signals. Biochemistry, 2002, 41(29): 9208–9214.

[50] Levine B, Abrams J. p53: The Janus of autophagy? Nat Cell Biol, 2008, 10(6): 637–639.

[51] Katheder NS, Khezri R, O’Farrell F, et al. Microenvironmental autophagy promotes tumour growth. Nature, 2017, 541(7637): 417–420.

[52] Ren SX, Shen J, Cheng AS, et al. FK-16 derived from the anticancer peptide LL-37 induces caspase- independent apoptosis and autophagic cell death in colon cancer cells. PLoS ONE, 2013, 8(5): e63641.

[53] Drake CG, Jaffee E, Pardoll DM. Mechanisms of immune evasion by tumors. Adv Immunol, 2006, 90: 51–81.

[54] Fuller MJ, Khanolkar A, Tebo AE, et al. Maintenance, loss, and resurgence of T cell responses during acute, protracted, and chronic viral infections. J Immunol, 2004, 172(7): 4204–4214.

[55] Byun DJ, Wolchok JD, Rosenberg LM, et al. Cancer immunotherapy-immune checkpoint blockade and associated endocrinopathies. Nat Rev Endocrinol, 2017, 13(4): 195–207.

[56] Chen JG, Xu XN, Underhfll CB, et al. Tachyplesin activates the classic complement pathway to kill tumor cells. Cancer Res, 2005, 65(11): 4614–4622.

[57] Chernysh S, Kim SI, Bekker G, et al. Antiviral and antitumor peptides from insects. Proc Natl Acad Sci USA, 2002, 99(20): 12628–12632.

[58] Huang HN, Rajanbabu V, Pan CY, et al. A cancer vaccine based on the marine antimicrobial peptide pardaxin (GE33) for control of bladder-associated tumors. Biomaterials, 2013, 34(38): 10151–10159.

[59] Mafu TS, September AV, Shamley D. The potential role of angiogenesis in the development of shoulder pain, shoulder dysfunction, and lymphedema after breast cancer treatment. Cancer Manag Res, 2018, 10: 81–90.

[60] Mader JS, Smyth D, Marshall J, et al. Bovine lactoferricin inhibits basic fibroblast growth factor- and vascular endothelial growth factor 165-induced angiogenesis by competing for heparin-like binding sites on endothelial cells. Am J Pathol, 2006, 169(5): 1753–1766.

[61] Hou L, Zhao XH, Wang P, et al. Antitumor activity of antimicrobial peptides containingDGRC in CD13 negative breast cancer cells. PLoS ONE, 2013, 8(1): e53491.

[62] Leite ML, Da Cunha NB, Costa FF, et al. Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treatment. Pharmacol Ther, 2018, 183: 160–176.

[63] Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today, 2015, 20(1): 122–128.

[64] Domalaon R, Findlay B, Ogunsina M, et al. Ultrashort cationic lipopeptides and lipopeptoids: Evaluation and mechanistic insights against epithelial cancer cells. Peptides, 2016, 84: 58–67.

[65] de La Fuente-Nú?ez C, Reffuveille F, Mansour SC, et al. D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethalinfections. Chem Biol, 2015, 22(9): 1280–1282.

[66] T?rfoss V, Ausbacher D, Cavalcanti-Jacobsen C, et al. Synthesis of anticancer heptapeptides containing a unique lipophilic2,2-amino acid building block. J Pept Sci, 2012, 18(3): 170–176.

[67] Svenson J, Stensen W, Brandsdal BO, et al. Antimicrobial peptides with stability toward tryptic degradation. Biochemistry, 2008, 47(12): 3777–3788.

[68] Kelly GJ, Kia AFA, Hassan F, et al. Polymeric prodrug combination to exploit the therapeutic potential of antimicrobial peptides against cancer cells. Org Biomol Chem, 2016, 14(39): 9278–9286.

Progress in the mechanisms of anticancer peptides

Xue Qiao1, Yipeng Wang2, and Haining Yu1

1 School of Biological Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China 2 School of Life Sciences, Suzhou University, Suzhou 215123, Jiangsu, China

In recent years, cancer has become a major concern in relation to human morbidity and mortality. Anticancer peptides (ACPs) are the bioactive peptide with antitumor activity and found in many organisms, including mammals, amphibians, insects, plants and microorganisms. ACPs have been suggested as promising agents for antitumor therapy due to their numerous advantages over traditional chemical agents such as low molecular masses, relatively simple structures, greater tumor selectivity, fewer adverse reactions, ease of absorption, a variety of routes of administration and low risk for inducing multi-drug resistance. Combining with the related research in our group, we summarized the mechanisms of ACPs to provide some directions for research and development of peptide-based anticancer drugs.

anticancer peptides, membranolytic mechanism, non-membranolytic mechanisms, novel anti-tumor drug

January 17, 2019;

April 16, 2019

Supported by: National Natural Science Foundation of China (Nos. 31872223, 31772455).

Haining Yu. Tel/ Fax: +86-411-84708850; E-mail: joannyu@live.cn

國家自然科學(xué)基金(Nos. 31872223, 31772455) 資助。

2019-05-27

http://kns.cnki.net/kcms/detail/11.1998.Q.20190524.1603.002.html

喬雪, 王義鵬, 于海寧. 抗癌肽的作用機(jī)制研究進(jìn)展. 生物工程學(xué)報(bào), 2019, 35(8): 1391–1400.Qiao X, Wang YP, Yu HN. Progress in the mechanisms of anticancer peptides. Chin J Biotech, 2019, 35(8): 1391–1400.

(本文責(zé)編 陳宏宇)

猜你喜歡
抗菌肽抗癌癌細(xì)胞
乳酸菌抗菌肽的純化過程及其影響因素
黑水虻抗菌肽研究進(jìn)展
黑水虻抗菌肽研究進(jìn)展
Fuzheng Kang' ai decoction (扶正抗癌方) inhibits cell proliferation,migration and invasion by modulating mir-21-5p/human phosphatase and tensin homology deleted on chromosome ten in lung cancer cells
小巷中的“抗癌廚房”
教研中Excel對(duì)抗菌肽分子設(shè)計(jì)的輔助研究
抗癌之窗快樂攝影
癌細(xì)胞最怕LOVE
假如吃下癌細(xì)胞
三十年跑成抗癌明星
胶南市| 黑河市| 资源县| 天祝| 青海省| 潮安县| 湖州市| 皋兰县| 兴宁市| 宁都县| 宜宾县| 平阳县| 新丰县| 伊宁县| 乡宁县| 肇东市| 泗洪县| 长治县| 长治市| 紫云| 江城| 即墨市| 东海县| 万载县| 宜黄县| 介休市| 克拉玛依市| 商都县| 葵青区| 东明县| 山阳县| 兴化市| 金阳县| 芦溪县| 若尔盖县| 盐山县| 京山县| 韶山市| 崇信县| 花莲市| 黑水县|