劉旭慶,高宇幫,2,趙良真,蔡宇晨,王匯源,苗苗,顧連峰,張航曉
?
環(huán)狀RNA的產(chǎn)生、研究方法及功能
劉旭慶1,高宇幫1,2,趙良真1,蔡宇晨1,王匯源1,苗苗1,顧連峰1,張航曉1
1. 福建農(nóng)林大學(xué)林學(xué)院,基礎(chǔ)林學(xué)與蛋白質(zhì)組學(xué)中心,福州 350002 2. 福建農(nóng)林大學(xué)生命科學(xué)學(xué)院,福州 350002
隨著高通量測序技術(shù)的發(fā)展,環(huán)狀RNA (circular RNAs, circRNAs)逐漸成為非編碼RNA研究領(lǐng)域的熱點。本文系統(tǒng)綜述了環(huán)狀RNA側(cè)翼內(nèi)含子自身互補配對驅(qū)動、RNA結(jié)合蛋白驅(qū)動以及套索驅(qū)動這3種環(huán)狀RNA形成模型,并從高通量文庫構(gòu)建、生物信息學(xué)鑒別和常用的實驗驗證等3個方面對環(huán)狀RNA的研究方法進行了介紹。同時,本文詳細歸納了環(huán)狀RNA作為microRNA (miRNA)或蛋白的海綿體、調(diào)控宿主基因的選擇性剪接和表達、翻譯成多肽等多種功能。最后通過系統(tǒng)綜述植物環(huán)狀RNA的特征及最新研究進展,為環(huán)狀RNA在植物學(xué)中的進一步研究提供了新的視野。
環(huán)狀RNA;反向剪接;選擇性剪接;海綿體
環(huán)狀RNA(circular RNAs, circRNAs)是一類由mRNA前體(pre-mRNA)經(jīng)反向剪接(back-splicing)形成的共價閉合環(huán)狀非編碼RNA[1]。1976年,Sanger等[2]首先在植物類病毒中發(fā)現(xiàn)了共價閉合的環(huán)狀RNA。Hsu等[3]和Arnberg等[4]分別通過電鏡在HeLa細胞和酵母()線粒體中也發(fā)現(xiàn)了類似的環(huán)狀轉(zhuǎn)錄本。1981年,在四膜蟲()中發(fā)現(xiàn)一種核糖體RNA (rRNA)基因含有一段能在剪接后形成環(huán)狀RNA的內(nèi)含子序列[5]。1988年,在古細菌()中發(fā)現(xiàn)23S rRNA的內(nèi)含子序列在特定位點發(fā)生剪接形成穩(wěn)定的環(huán)狀RNA并發(fā)揮類似轉(zhuǎn)座子的功能[6]。1991年,Nigro等[7]在研究人類()抑癌基因()時發(fā)現(xiàn)了由于不同剪接方式形成的幾種環(huán)狀轉(zhuǎn)錄本,隨后陸續(xù)在人類()基因[8,9]、小鼠()()基因[10]、大鼠()細胞色素基因[11]及人類基因[12]中都發(fā)現(xiàn)環(huán)狀RNA的存在。2010年,Burd等[13]發(fā)現(xiàn)環(huán)狀RNA(cANRIL)會影響抑癌基因的表達,表明其可能具有生化和表型效應(yīng)。
雖然早在幾十年前就已發(fā)現(xiàn)環(huán)狀RNA,但由于環(huán)狀RNA不具有游離的3′和5′末端[14],無法通過依賴于富集poly (A)的分子技術(shù)檢測到;同時,可環(huán)化外顯子是經(jīng)反向剪接接合的,異于經(jīng)典的線性剪接,早期轉(zhuǎn)錄組分析的映射算法無法直接將測序得到的片段聯(lián)配到基因組,使得人們一度認為環(huán)狀RNA只是錯誤剪接的副產(chǎn)物。隨著高通量測序和生物信息學(xué)分析技術(shù)的發(fā)展,2012年,Salzman等[15]首次指出環(huán)狀RNA是由mRNA前體經(jīng)反向剪接產(chǎn)生的環(huán)狀轉(zhuǎn)錄本,并且發(fā)現(xiàn)其大量存在于人類的不同類型細胞中;Hansen等[16]發(fā)現(xiàn)環(huán)狀RNA可以作為microRNA (miRNA)的海綿體,調(diào)控生物體的生長發(fā)育過程。自此,環(huán)狀RNA的研究迅速成為研究的焦點(圖1)。本文系統(tǒng)綜述了環(huán)狀RNA的形成機制、研究方法及主要功能,概述了植物環(huán)狀RNA的主要特征及最新研究進展,并對環(huán)狀RNA研究有待進一步提高的幾個方面進行了展望。
根據(jù)基因結(jié)構(gòu)注釋信息,環(huán)狀RNA的來源主要有:(1)僅外顯子來源的環(huán)狀RNA (exon circRNA)[1,15];(2)上下游外顯子反向剪接且內(nèi)含子保留形成的外顯子-內(nèi)含子環(huán)狀RNA (exon-intron circRNA, EIciRNA)[17];(3)僅內(nèi)含子來源的環(huán)狀RNA (circular intronic RNA, ciRNA)[18];(4)融合基因來源的環(huán)狀RNA(fusion-circRNA, f-circRNA)[19,20];(5)聚合酶Ⅱ (Pol Ⅱ)的轉(zhuǎn)錄通讀形成的通讀環(huán)狀RNA (read-through circRNA, rt-circRNA)[21]。盡管環(huán)狀RNA的來源不同,但主要是通過頭對尾的反向剪接方式產(chǎn)生的,其形成受到順式和反式作用元件的調(diào)控[22],但對其生物形成機制的研究并不完善。目前報道的驅(qū)動環(huán)狀RNA形成的方式主要有:內(nèi)含子配對驅(qū)動、RNA結(jié)合蛋白(RBPs)驅(qū)動以及套索驅(qū)動環(huán)化這3種模型(圖2),除此之外,Pol Ⅱ的轉(zhuǎn)錄、剪接體的活性及Poly (A)的延伸等因素也會影響環(huán)狀RNA的形成。
圖1 環(huán)狀RNA研究的關(guān)鍵事件
1.1.1 內(nèi)含子配對驅(qū)動環(huán)化
由于環(huán)化外顯子兩側(cè)的內(nèi)含子序列互補配對(圖2A),使得mRNA前體下游5′剪接供體位點直接與上游3′剪接受體位點接合形成環(huán)狀RNA,所以內(nèi)含子配對驅(qū)動又叫做直接反向剪接模型[23]。研究發(fā)現(xiàn),含30~40 nt的反向互補重復(fù)序列的微型內(nèi)含子(<100 nt)就可促進外顯子的環(huán)化[24]。RCMs (rev-erse complementary matches)、ICSs (intr-onic comple-mentary sequences)及元件等是可環(huán)化外顯子側(cè)翼內(nèi)含子上含量豐富的互補配對序列,能有效促進側(cè)翼內(nèi)含子配對進而環(huán)化。例如秀麗隱桿線蟲()側(cè)翼內(nèi)含子上的RCMs可促進轉(zhuǎn)錄本形成發(fā)夾結(jié)構(gòu),從而促進外顯子的環(huán)化[25]。來源于的融合基因f-circM9,是由于和基因上存在ICSs而有效環(huán)化的[19];在人類circGCN1L1的研究中,通過CRISPR/Cas9敲除ICS序列,則無法檢測到circGCN1L1的表達[26],暗示該基序?qū)ircGCN1L1的生成至關(guān)重要。元件是哺乳動物尤其是人基因中驅(qū)動成環(huán)的主要方式,已成為分析和預(yù)測環(huán)狀RNA形成的重要基礎(chǔ)[1,27,28]。長側(cè)翼內(nèi)含子有助于外顯子環(huán)狀RNA的環(huán)化[17,27],原因可能是等互補元件的數(shù)量隨著內(nèi)含子長度的增加而增加。
圖2 環(huán)狀RNA形成的環(huán)化模型
A:內(nèi)含子自身互補配對。RCMs/ICSs/等互補配對元件促進側(cè)翼內(nèi)含子配對進而環(huán)化。B:RNA結(jié)合蛋白驅(qū)動。大多數(shù)RNA結(jié)合蛋白通過結(jié)合到可環(huán)化外顯子的側(cè)翼內(nèi)含子上來促進環(huán)化。C:套索驅(qū)動。mRNA前體剪接時會發(fā)生外顯子跳讀事件,產(chǎn)生包含內(nèi)含子-外顯子的套索中間體,隨后該中間體發(fā)生反向剪接形成環(huán)狀RNA。
1.1.2 RNA結(jié)合蛋白驅(qū)動環(huán)化
RNA結(jié)合蛋白伴隨RNA的生命始終[29],是促進組織特異性環(huán)狀RNA形成的關(guān)鍵[30]。RNA結(jié)合蛋白通過結(jié)合側(cè)翼內(nèi)含子序列中的特殊基序參與環(huán)狀RNA的形成(圖2B)。在果蠅()和人基因中,基因的第2個外顯子可形成環(huán)狀RNA,其形成依賴于側(cè)翼內(nèi)含子上MBL的特異性結(jié)合基序[31]。NF90/NF110 (nuclear factor 90/ 110)具有雙鏈RNA結(jié)合域(double-strand RNA-binding domain, dsRBD),通過結(jié)合至等互補重復(fù)序列而促進環(huán)化[32~34]。HRNPL (heterogeneous nuclear ribon-ucleoprotein L)通過與可環(huán)化外顯子的側(cè)翼序列結(jié)合來促進環(huán)狀RNA的形成[35]。相似的,F(xiàn)US (fused in sarcoma)傾向于結(jié)合到環(huán)化接合位點兩側(cè)的內(nèi)含子序列來影響環(huán)狀RNA的形成[36]。QKI (quaking)是一個二聚體,通過與可環(huán)化外顯子的側(cè)翼內(nèi)含子結(jié)合而促進兩翼內(nèi)含子互相靠近,進而連接成環(huán)[37,38]。RBM20 (RNA-binding motif protein 20)參與小鼠基因的I-band區(qū)域的選擇性剪接,敲除基因位點后,無法形成與RBM20相關(guān)的環(huán)狀RNA[39]。hnRNP (heterogenous nucear ribonuceoprotein)和SR (serine–arginine)蛋白通過與內(nèi)含子重復(fù)序列協(xié)作,共同調(diào)節(jié)環(huán)狀RNA的表達[40]。上述RNA結(jié)合蛋白對環(huán)狀RNA的生成起到促進作用,也有RNA結(jié)合蛋白抑制環(huán)化的報道。例如ADAR1 (adenosine deaminase 1 acting on RNA)通過與雙鏈RNA相結(jié)合,能將腺嘌呤核苷編輯為次黃嘌呤核苷(即A-I RNA編輯)[41]。元件是ADAR的主要結(jié)合靶位點,A-I RNA編輯可打亂等配對元件的穩(wěn)定性進而抑制環(huán)狀RNA的形成[25,42,43]。除此之外,DHX9 (DEAH-box helicase 9)是通過與反向互補元件相結(jié)合,導(dǎo)致元件的解旋進而抑制了環(huán)狀RNA的形成[44]。
1.1.3 套索驅(qū)動環(huán)化
當(dāng)mRNA前體進行經(jīng)典的GU/AG剪接時,可以發(fā)生跨外顯子的剪接方式,即外顯子跳讀(exon skipping),產(chǎn)生包含內(nèi)含子-外顯子的套索中間體,隨后該中間體發(fā)生反向剪接形成環(huán)狀RNA[23](圖2C)。在人體中普遍存在GU/AG經(jīng)典剪接信號,也存在如GC/AG或AU/AC等的非經(jīng)典剪接信號[21]。然而,這種依賴于GU/AG經(jīng)典剪接信號的驅(qū)動模式在水稻()中卻非常少,其普遍存在如GC/ GG、CA/GC及GG/AG等非經(jīng)典剪接信號[45]。內(nèi)含子環(huán)狀RNA是套索驅(qū)動模型中的特殊方式,其依賴于5′剪接位點的7 nt GU-rich基序和分支位點(bran-chpoint site)的11 nt C-rich基序,通過聚合酶Ⅱ的轉(zhuǎn)錄形成一個套索內(nèi)含子,最終通過2′, 5′-磷酸二酯鍵共價連接而環(huán)化,接著從內(nèi)含子3′端到分支位點的多余序列被降解[18]。在人和小鼠中發(fā)現(xiàn),內(nèi)含子環(huán)狀RNA的數(shù)量要遠遠超過外顯子環(huán)狀RNA的數(shù)量[46],并且在其他脊椎動物細胞的細胞質(zhì)中也發(fā)現(xiàn)了穩(wěn)定的內(nèi)含子環(huán)狀RNA[47]。目前在擬南芥()、番茄()、水稻和玉米()中的研究表明這種套索結(jié)構(gòu)在植物中也是廣泛存在的[48]。
Pol Ⅱ的轉(zhuǎn)錄伸長率(transcription elongation rates, TER)能影響剪接體的組裝和特異性序列的剪接調(diào)控位點,進而影響了剪接事件的發(fā)生[49]。研究發(fā)現(xiàn),環(huán)狀RNA的形成與Pol Ⅱ的轉(zhuǎn)錄伸長率成正相關(guān)[26],并且抑制Pol Ⅱ的轉(zhuǎn)錄終止會促進轉(zhuǎn)錄通讀進而促進了環(huán)狀RNA的生成[50],通讀環(huán)狀RNA就是由于Pol Ⅱ的通讀而產(chǎn)生的[21]。值得一提的是,另一種常見的聚合酶,即聚合酶Ⅲ(Pol Ⅲ),具有催化合成如tRNA,5S rRNA及snRNA等小分子RNA的特性[51],于是Schmidt等[52]運用Pol Ⅲ型啟動子構(gòu)建了一種高效的環(huán)化體系,該體系的環(huán)化效率要明顯優(yōu)于運用Pol Ⅱ型啟動子構(gòu)建的環(huán)化體系。最近,Litke等[53]基于核酶(ribosome)自剪切作用將Pol Ⅲ型環(huán)化體系的環(huán)化效率大大提高,實現(xiàn)了環(huán)狀RNA的適體(aptamer)過表達。研究還發(fā)現(xiàn),抑制核心剪接體如SF3b/SF3a復(fù)合體的活性,可促進mRNA前體反向剪接形成環(huán)狀RNA[50];再者,存在于內(nèi)含子中的G-U擺動配對及poly (A)的延伸也會抑制環(huán)狀RNA的形成[24]。在細菌和古細菌中缺少剪接體,其通過特殊的內(nèi)切酶識別切割BHB (bulge-helix-bulge)結(jié)構(gòu),然后通過連接酶形成環(huán)狀RNA[54]。在真核生物如真菌、脊椎動物、植物及人體中,tRNA前體在成熟過程中通過特異性蛋白也可形成環(huán)狀RNA[55,56]。
2.1.1 生物信息學(xué)鑒別方法
早期普通RNA-Seq文庫構(gòu)建方法無法揭示環(huán)狀RNA的全貌,只能捕捉少量的環(huán)狀RNA[21]。當(dāng)前采用的環(huán)狀RNA建庫方法是:(1)不經(jīng)過poly (A)篩選的文庫構(gòu)建方法,去除rRNA后進行轉(zhuǎn)錄組測序;(2) rRNA去除并結(jié)合RNase R處理的文庫構(gòu)建方法[1,57](圖3A)。然而,一些不含poly (A)尾且RNase R處理后未完全降解的線性轉(zhuǎn)錄本通常會干擾環(huán)狀RNA的下游分析[58]。為解決這一問題,Panda等[46]利用RPAD (RNase R treatment followed by Polyade-nylation and poly (A) + RNA Depletion)這一新方法,鑒定到了大量高富集的環(huán)狀RNA。另外,研究者根據(jù)不同的實驗?zāi)康?,會采用不同的?jīng)過優(yōu)化的RNA- Seq文庫構(gòu)建方法。例如Vo等[21]采用的外顯子捕獲技術(shù)(exome capture RNA-seq),利用探針準確捕獲到了大量的環(huán)狀RNA,而且保留了線性mRNA。另外,超深度非poly (A) RNA-seq (ultra-deep non-poly- A RNA-seq)能深層次鑒別到更多的環(huán)狀RNA,包括大量融合環(huán)狀RNA[59]。
圖3 環(huán)狀RNA的文庫構(gòu)建和生物信息學(xué)研究方法
A:RNase R處理的高通量測序文庫構(gòu)建。B:基于反向剪接位點測序片段的環(huán)狀RNA識別方法。
環(huán)狀RNA的反向剪接位點(back-splicing junction, BSJ)是鑒別和定量環(huán)狀RNA的關(guān)鍵[60],測序后獲得的讀段(reads)需經(jīng)過環(huán)狀RNA識別軟件進行基因組比對和校正[61](圖3B)。Hansen等[62]對多種環(huán)狀RNA檢測工具進行了比較,發(fā)現(xiàn)單個軟件往往因為算法的設(shè)計問題在某些方面存在著一定的局限性,建議同時使用2個及以上的軟件進行環(huán)狀RNA的預(yù)測。例如Ji等[30]在識別人、獼猴()及小鼠的環(huán)狀RNA時,同時使用CIRI2、DCC、MapSplice、CircExplore2及CIRI-full等5種軟件。值得一提的是,研究者雖然可以通過二代測序獲得大量的反向剪接位點,卻無法高通量獲得環(huán)狀RNA的完整內(nèi)部信息,也無法對不同的選擇性剪接產(chǎn)物進行精準定量。于是,Zheng等[63]提出了基于環(huán)狀轉(zhuǎn)錄本測序中的反向重疊區(qū)特征獲取全長序列的方法CIRI-full,其不僅可以判斷雙端測序獲得的環(huán)狀序列是否覆蓋整個環(huán)狀RNA,而且可以重組每個反向剪接位點產(chǎn)生的多個選擇性剪接產(chǎn)物的全長序列,并精準預(yù)測選擇性剪接產(chǎn)物的相對豐度。另外,對于環(huán)狀RNA的選擇性剪接事件研究的匱乏,F(xiàn)eng等[64]開發(fā)的軟件CircSplice,可以在短時間內(nèi)特異性地識別環(huán)狀RNA的內(nèi)部選擇性剪接事件,并發(fā)現(xiàn)這些由于選擇性剪接產(chǎn)生的環(huán)狀RNA異構(gòu)體對癌癥有一定的調(diào)控功能。目前已知的環(huán)狀RNA識別軟件超過20種,應(yīng)用于識別、可視化及組裝人、動物、植物等生物體中的環(huán)狀RNA[61,65](表1)。
隨著大量的環(huán)狀RNA被鑒定出來,急需界面友好的數(shù)據(jù)庫存儲并可視化這些環(huán)狀RNA數(shù)據(jù),目前已公布了超過15種環(huán)狀RNA的數(shù)據(jù)庫,包括人、小鼠、擬南芥和水稻等動植物(表2)。其中與植物環(huán)狀RNA相關(guān)的數(shù)據(jù)庫有5個,本實驗室建立的ASmiR數(shù)據(jù)庫存儲了目前常見的幾種植物的環(huán)狀RNA數(shù)據(jù),并呈現(xiàn)了miRNA靶位點和線性RNA及環(huán)狀RNA的選擇性剪接之間的相互調(diào)控[80]。
2.1.2 分子生物學(xué)鑒別和驗證方法
由于環(huán)狀RNA沒有游離的3′和5′端,因而無法應(yīng)用基于poly (A)的分子生物學(xué)技術(shù),如RACE (rapid amplification of cDNA end),也無法通過普通的電泳遷移率和片段大小來區(qū)分。目前在實驗室中主要有以下幾種鑒別方法:(1) RT-PCR定量法:針對環(huán)狀RNA的反向剪接位點設(shè)計一對發(fā)散引物(divergent primer),只有環(huán)狀RNA才可得到預(yù)期擴增片段。并進一步對該擴增產(chǎn)物進行Sanger測序確認環(huán)狀RNA的真實性[93]。但由于PCR方法可能會發(fā)生模板的切換或mRNA之間的反式剪接(trans-splicing)等情況,一般采用RNase R消化線性轉(zhuǎn)錄本,富集環(huán)狀RNA的定量PCR方法來鑒別環(huán)狀轉(zhuǎn)錄本[94]。(2)探針雜交法:RNase H是一個可以降解RNA-DNA中RNA分子的核酸內(nèi)切酶。當(dāng)兩個短的DNA探針雜交至目的RNA分子時,若該RNA分子為線性,則在RNase H消化后電泳出現(xiàn)三條帶;若該RNA分子為環(huán)狀,則為兩條帶(一個DNA探針時,同理推測)[95]。RNA印跡[10,95]也是高頻率使用的一種方法,值得注意的是,探針設(shè)計要跨越反向剪接位點(內(nèi)含子環(huán)狀RNA的探針根據(jù)內(nèi)含子序列設(shè)計)。(3)二維變性聚丙烯酰胺凝膠(2D-PAGE)電泳:環(huán)狀RNA的遷移率比線性RNA分子要慢,在2D-PAGE中線性RNA沿對角線遷移而環(huán)狀RNA則弧向遷移[96]。在研究中往往結(jié)合以上多種方法來驗證環(huán)狀RNA。如Ghorbani等[97]在研究受脅迫下玉米的環(huán)狀RNA的表達情況時,同時使用了RT-PCR、RNase R、2D-PAGE及RNA印跡等多種方法來鑒別環(huán)狀RNA。
表1 環(huán)狀RNA的識別軟件
2.2.1 構(gòu)建環(huán)狀RNA缺陷型突變體
突變體的構(gòu)建主要有物理誘導(dǎo)、化學(xué)誘變及基因編輯等,CRISPR/Cas9就是基因編輯中高效又低成本的一種方法,已大量運用于人[98]、動物[99]、植物[100]及果蠅[101]基因的定向精準修飾。Cdrlas是哺乳動物大腦中高表達的一種環(huán)狀RNA,能吸附miR-7和miR-671。Piwecka等[102]利用CRISPR/Cas9在小鼠基因組中敲除基因座,獲得了缺陷型突變體(-KO)。研究發(fā)現(xiàn)敲除后,miR-7的表達量顯著降低,而miR-671顯著上調(diào)。在- KO小鼠大腦中的進一步研究發(fā)現(xiàn),由miR-7調(diào)控的靶基因如、及等的表達水平升高,這暗示了Cdrlas在行為應(yīng)激方面的作用。有趣的是,Csy4是CRISPR家族中Cas9的同源蛋白,能切割RNA分子且維持5′端產(chǎn)物的穩(wěn)定性,Borchardt等[103]利用該特性構(gòu)建了具有Csy4識別位點的環(huán)狀RNA過表達體系。目前針對環(huán)狀RNA基因編輯技術(shù)在植物中的應(yīng)用還比較少。
表2 環(huán)狀RNA存放數(shù)據(jù)庫
2.2.2 環(huán)狀RNA過表達載體
根據(jù)內(nèi)源外顯子環(huán)化的原理,構(gòu)建環(huán)狀RNA過表達載體,研究側(cè)翼內(nèi)含子序列、蛋白因子等對環(huán)化的促進或抑制作用,探索環(huán)狀RNA的功能[22]。環(huán)狀RNA過表達載體包含可環(huán)化外顯子和具有反向互補序列的側(cè)翼內(nèi)含子來促使環(huán)化剪接,其轉(zhuǎn)染到細胞中可以主動促進成環(huán)。Ashwal-Fluss等[31]為了探究環(huán)狀RNA的形成機制,構(gòu)建了不同長度側(cè)翼內(nèi)含子序列的circLuna和circMbl的環(huán)狀RNA過表達載體,發(fā)現(xiàn)側(cè)翼內(nèi)含子對環(huán)狀RNA的形成具有重要作用。Conn等[37]通過研究QKI對基因的某一區(qū)段形成環(huán)狀RNA的影響時,構(gòu)建具有熒光蛋白GFP和mCherry的環(huán)狀RNA過表達載體,探究QKI對環(huán)狀RNA形成的影響。
2.2.3 RNA干擾技術(shù)
為驗證目的環(huán)狀RNA的功能,可以使用RNA干擾技術(shù)來有效沉默或抑制環(huán)狀RNA的表達,即由siRNA/shRNA與環(huán)狀RNA結(jié)合并使之降解[104,105]。首先在不影響線性mRNA的基礎(chǔ)上,針對特定的環(huán)狀RNA序列設(shè)計跨越反向剪接位點的siRNA/shRNA,以敲低環(huán)狀RNA的表達,觀察其產(chǎn)生的生物效應(yīng)或表型變化。同時需要針對環(huán)狀RNA的線性宿主基因設(shè)計專門的siRNA/shRNA進行敲除,確保該生物效應(yīng)或表型是由所對應(yīng)的環(huán)狀RNA被干擾后所引起的,經(jīng)過這兩步得到環(huán)狀RNA特有的調(diào)控功能的結(jié)論。例如,Legnini等[106]用RNA干擾技術(shù)敲低circ-ZNF609,發(fā)現(xiàn)明顯抑制了肌細胞的增殖。Zhu等[107]通過構(gòu)建shRNA載體敲除與腸道干細胞(intestinal stem cells, ISCs)器官形成密切相關(guān)的circPan3,發(fā)現(xiàn)circPan3在體內(nèi)參與了免疫細胞介導(dǎo)的腸道干細胞自我更新。
環(huán)狀RNA在早期被認為是一種剪接副產(chǎn)物,不具有任何功能。隨著人們的深入研究,發(fā)現(xiàn)環(huán)狀RNA并非是剪接副產(chǎn)物,其來源廣泛、保守、穩(wěn)定、具有組織特異性,并且在生物體的生長發(fā)育過程中扮演著多種功能角色[1,22,108]。本文從環(huán)狀RNA作為miRNA或蛋白的海綿體、調(diào)控宿主基因的選擇性剪接和表達、翻譯成多肽等幾個方面描述其功能(圖4)。
環(huán)狀RNA上存在miRNA的結(jié)合位點,可作為miRNA的海綿體[109](圖4A)。例如小鼠上有16個miR-138的結(jié)合位點;ciRS-7上含有超過70個miR-7的結(jié)合位點,通過AGO2蛋白實現(xiàn)競爭性吸附miR-7[110]。在癌癥中越來越多的報道表明環(huán)狀RNA充當(dāng)miRNA的海綿體并參與轉(zhuǎn)錄調(diào)控的功能,如circRNA-cTFRC[111]、circPSMC3[112]和circSETD3[113]等,其中circRNA-cTFRC充當(dāng)miR-107的海綿體,促進宿主基因的表達。研究者分別在水稻[114]、小麥(L)[115]、番茄[116]、枸橘(L)[117]及擬南芥[114]等植物中也發(fā)現(xiàn)了一些具有miRNA海綿體功能的環(huán)狀RNA。但是,Ye等[114]發(fā)現(xiàn)擬南芥中僅約5.0%的環(huán)狀RNA可以預(yù)測到miRNA的靶位點,而在水稻中該比例也僅為6.6%。可能原因是,植物中環(huán)狀RNA內(nèi)部要有足夠的miRNA結(jié)合位點或環(huán)狀RNA的表達量足夠高,才能實現(xiàn)對靶基因的調(diào)控功能[114]。另外在水稻中發(fā)現(xiàn)Os08circ16564存在OsmiR172的結(jié)合位點,當(dāng)過表達Os08circ16564并保持OsmiR172的表達水平不變的情況下,其線性基因的表達水平降低[93]。
有些環(huán)狀RNA上有一個或者多個RNA結(jié)合蛋白的結(jié)合位點,可作為蛋白分子的海綿體(圖4A)。MBL能促進circMbl的合成,且合成的circMbl上存在特異性的MBL結(jié)合位點[31]。當(dāng)MBL高表達時,會促進circMbl的生成而抑制了線性轉(zhuǎn)錄本的表達;并且circMbl會與過量的MBL結(jié)合,使其含量趨于穩(wěn)定[31]。circPABPN1來源于基因,HuR是調(diào)控線性轉(zhuǎn)錄本合成的蛋白,對circPABPN1的豐度無影響。有趣的是,circPABPN1能與HuR結(jié)合,進而顯著影響了HuR與的結(jié)合,使得的表達水平降低[118]。CircFoxo3上同時存在MDM2 (mouse double-minute 2)和p53的結(jié)合位點,circFoxo3能促使MDM2誘導(dǎo)的p53的泛素化,導(dǎo)致p53蛋白的整體降解[119]。最新研究發(fā)現(xiàn),m6A (N6-methyladenosine)修飾的環(huán)狀RNA能與m6A識別蛋白YTHDF2結(jié)合,YTHDF2通過募集HRSP12,介導(dǎo)RNA內(nèi)切核酸酶RNase P/MRP復(fù)合物降解環(huán)狀RNA[120]。另外,在擬南芥中發(fā)現(xiàn),內(nèi)含子套索RNA能與切割復(fù)合物DCL1/HYL1結(jié)合,進而抑制了miRNA的合成[121]。
擬南芥()基因的第6外顯子可生成環(huán)狀RNA,該環(huán)狀RNA可強烈結(jié)合宿主基因的DNA基因座,形成一個RNA:DNA雜合體的R-loop結(jié)構(gòu)(圖4B)。該R-loop結(jié)構(gòu)可抑制該區(qū)段的轉(zhuǎn)錄,于是發(fā)生了跨外顯子的選擇性剪接事件,促進產(chǎn)生選擇性剪接轉(zhuǎn)錄本變體,影響其開花表型[122]。在毛竹中的數(shù)據(jù)表明,在產(chǎn)生環(huán)狀RNA的基因中發(fā)生選擇性剪接事件的頻率顯著高于隨機選擇的基因,說明環(huán)狀RNA可能調(diào)控其線性基因的選擇性剪接過程[123]。
環(huán)狀RNA除了作為miRNA或蛋白的海綿體參與調(diào)控宿主基因的表達外[68,110],還能通過與RNA互作參與轉(zhuǎn)錄后調(diào)控[17]。Li等[17]在人類細胞核中發(fā)現(xiàn)EIciRNA能與U1 snRNA互作形成復(fù)合物EIciRNA-U1 snRNP,該復(fù)合物再與Pol Ⅱ轉(zhuǎn)錄復(fù)合物相互作用而促進宿主基因的表達(圖4C,左圖)。另外,Zhang等[18]通過敲低ci-ankrd52、ci-mcm5和ci-sirt7這3種內(nèi)含子環(huán)狀RNA的表達,發(fā)現(xiàn)相應(yīng)的宿主基因表達量都降低了,說明內(nèi)含子環(huán)狀RNA能順式調(diào)控宿主基因的表達。環(huán)狀RNA還可以通過與線性轉(zhuǎn)錄本競爭性剪接,從而影響宿主基因的表達[31]。Lu等[93]通過構(gòu)建水稻過表達遺傳轉(zhuǎn)化體系,發(fā)現(xiàn)環(huán)狀RNA及它的線性異構(gòu)體可能抑制宿主基因的轉(zhuǎn)錄后表達。環(huán)狀RNA還能通過表觀遺傳修飾來調(diào)控宿主基因的表達。m6A是腺嘌呤重要的甲基化修飾[124],Zhou等[125]在人類細胞中發(fā)現(xiàn)了大量m6A修飾的環(huán)狀RNA,該環(huán)狀RNA會影響宿主基因的穩(wěn)定性(圖4C,右圖)。來源于基因的環(huán)狀RNA(FECR1),能特異性地與啟動子區(qū)域結(jié)合,并招募去甲基酶TET1誘導(dǎo)該區(qū)域的去甲基化,進而調(diào)控靶基因表達[126]。DNMT1是哺乳動物DNA甲基化維持所必需的關(guān)鍵甲基轉(zhuǎn)移酶,研究者檢測到DNMT1參與了FECR1誘導(dǎo)啟動子的去甲基化過程,還發(fā)現(xiàn)FECR1能與啟動子結(jié)合,從而下調(diào)的轉(zhuǎn)錄[126]。另外,Wei等[127]在擬南芥中鑒定了首個m6A結(jié)合蛋白ECT2,ECT2能在細胞核中調(diào)節(jié)3′ UTR的修飾,亦可在細胞質(zhì)中調(diào)節(jié)線性RNA的穩(wěn)定性。
圖4 環(huán)狀RNA的功能
A:充當(dāng)miRNA或蛋白的海綿體。B:通過R-loop介導(dǎo)調(diào)控宿主基因的選擇性剪接事件。C:調(diào)控宿主基因的表達。左圖為環(huán)狀RNA通過與U1 snRNA及Pol Ⅱ轉(zhuǎn)錄復(fù)合物互作,進而調(diào)控宿主基因的表達;右圖為m6A修飾的環(huán)狀RNA會影響宿主基因的穩(wěn)定性。D:翻譯功能。環(huán)狀RNA能翻譯多肽。E:衍生假基因。環(huán)狀RNA經(jīng)反轉(zhuǎn)錄衍生假基因,并整合進基因組。
環(huán)狀RNA不僅能調(diào)控線性轉(zhuǎn)錄本的轉(zhuǎn)錄,還能翻譯產(chǎn)生蛋白[106,128](圖4D)。m6A修飾的環(huán)狀RNA可能在轉(zhuǎn)錄后調(diào)控水平上參與靶基因的轉(zhuǎn)錄。Yang等[129]發(fā)現(xiàn)在人類細胞中的環(huán)狀RNA上存在大量一致性的m6A基序,并且在多種蛋白的參與下,一個m6A位點便可啟動環(huán)狀RNA的翻譯。環(huán)狀RNA不僅可以通過m6A修飾進行翻譯,有研究表明含有IRES (internal ribosomal entry site)的環(huán)狀RNA也可以在體內(nèi)或體外翻譯[130],在果蠅中還發(fā)現(xiàn)一類可利用宿主基因的起始子與核糖體結(jié)合而行使翻譯功能的環(huán)狀RNA[128]。Zhang等[131]發(fā)現(xiàn)p53誘導(dǎo)轉(zhuǎn)錄的長鏈非編碼RNA ()的第2個外顯子可形成環(huán)狀RNA (circPINTexon2),circPINTexon2可翻譯87個氨基酸的多肽(PINT87aa),該多肽能直接與轉(zhuǎn)錄伸長因子PAF1復(fù)合物互作而阻止了mRNA的轉(zhuǎn)錄伸長。最新研究發(fā)現(xiàn),高富集的體外環(huán)化的環(huán)狀RNA可在小鼠體內(nèi)穩(wěn)定地表達蛋白,說明環(huán)狀RNA可作為一種有效的蛋白表達工具[132]。
線性mRNA會經(jīng)過反轉(zhuǎn)錄衍生得到與外顯子先后順序相同的假基因,穩(wěn)定的環(huán)狀RNA也可以經(jīng)過反轉(zhuǎn)錄后衍生出倒序的假基因并整合進入基因組[133](圖4E)。Dong等[133]在小鼠參考基因組中通過CIR-Cpseudo鑒別到至少33個來源于同一環(huán)狀RNA (circRFWD2)的假基因,還鑒別到了來源于circ-SATB1和circDIAP3的假基因;還發(fā)現(xiàn)來源于人類circPRKDC和circCAMSAP1的假基因在大猩猩()和黑猩猩()的基因組中也存在。更有趣的是,在來源于小鼠circSATB1的假基因上發(fā)現(xiàn)了能影響染色體構(gòu)型和調(diào)控基因表達的CTCF結(jié)合位點,而在對應(yīng)的的外顯子上卻沒有該結(jié)合位點,這預(yù)示著環(huán)狀RNA可能通過衍生假基因?qū)ι矬w的生長發(fā)育有著一定的生物效應(yīng)。然而,這些假基因是如何被反轉(zhuǎn)錄并整合到基因組中仍然是未知的。
目前對環(huán)狀RNA的研究大部分集中在動物上,植物環(huán)狀RNA的研究還不夠廣泛。在擬南芥[134]、水稻[93]、玉米[135,136]、番茄[137]、大麥[138]、小麥[115]、獼猴桃()[139]、沙棘()[140]和毛竹[123]等植物中都鑒別到了環(huán)狀RNA。與動物中環(huán)狀RNA一樣,植物中的環(huán)狀RNA也會由于選擇性反向剪接及選擇性剪接而產(chǎn)生多種類型[141]。并且,植物中的環(huán)狀RNA也具有保守性[114]、發(fā)育階段特異性[114]和物種特異性[142]。
在動物中的大多數(shù)研究表明環(huán)狀RNA的形成與內(nèi)含子反向互補序列、RNA結(jié)合蛋白、堿基配對的穩(wěn)定性和側(cè)翼內(nèi)含子的長度等密切相關(guān)[17,22,27]。植物中環(huán)狀RNA的形成與動物是有相似之處的。在玉米中發(fā)現(xiàn),可環(huán)化外顯子的側(cè)翼內(nèi)含子上的反向互補序列參與環(huán)狀RNA的形成[135,136]。在水稻和擬南芥中發(fā)現(xiàn)可環(huán)化外顯子的側(cè)翼內(nèi)含子序列普遍長于非可環(huán)化外顯子的側(cè)翼內(nèi)含子序列[93,114],說明長側(cè)翼內(nèi)含子也是促進植物環(huán)狀RNA形成的因素。然而,研究發(fā)現(xiàn)影響環(huán)狀RNA形成的重復(fù)序列及反向互補序列在水稻和擬南芥中都是非常少量的[93,114,134],這說明在植物中除了內(nèi)含子反向互補序列外,可能還有其他的因素影響植物環(huán)狀RNA的形成。另外,在水稻中鑒別到將近2806個全長環(huán)狀RNA,但僅有206個擁有經(jīng)典的GU/AG剪接信號[45],說明在水稻中大多數(shù)環(huán)狀RNA的形成可能并不依賴于經(jīng)典的GU/AG剪接信號。
環(huán)狀RNA對生物體的生長發(fā)育研究大多數(shù)集中在動物上,隨著環(huán)狀RNA研究的深入,植物環(huán)狀RNA的研究也越來越多。Chen等[135]在玉米中發(fā)現(xiàn),重復(fù)序列LLEs (LINE1-like element)與其反向互補配對序列在環(huán)狀RNA側(cè)翼序列中顯著富集,并且發(fā)現(xiàn)這些序列與circ1690的表達緊密相關(guān),并且circ1690通過與線性RNA相互作用可影響玉米的穗高。當(dāng)玉米和擬南芥在受到不同程度的干旱脅迫時,環(huán)狀RNA發(fā)生了不同程度的變化,說明環(huán)狀RNA可以作為植物干旱響應(yīng)的有效分子標(biāo)記信號[136]。另外,研究者在擬南芥中過表達circGORK,發(fā)現(xiàn)轉(zhuǎn)基因植株的種子萌發(fā)對脫落酸(ABA)超敏感,且植株表現(xiàn)出更加耐旱的表型,這為環(huán)狀RNA直接調(diào)控干旱脅迫應(yīng)答提供了有力證據(jù)[136]。植物環(huán)狀RNA不僅能在干旱脅迫下起作用,而且Ye等[114]發(fā)現(xiàn)水稻中的環(huán)狀RNA與其宿主基因能協(xié)作響應(yīng)磷脅迫。隨著番茄的成熟,反向剪接位點數(shù)量逐漸上升,并且過表達circPSY1使得番茄紅素和β-胡蘿卜素降低,說明環(huán)狀RNA對果實成熟也有潛在的功能[141]。Zhou等[142]在馬鈴薯細菌性軟腐病(,)研究中發(fā)現(xiàn),在mRNA、環(huán)狀RNA及l(fā)incRNA (long intergenic non-coding RNA)之間存在一定的共表達關(guān)系,說明環(huán)狀RNA在植物體的疾病響應(yīng)過程中對轉(zhuǎn)錄組重編程發(fā)揮著一定的作用。相信隨著研究的深入化,更多的植物環(huán)狀RNA及其功能將被揭示。
得益于二代高通量測序技術(shù)的不斷改進(圖3),環(huán)狀RNA的神秘面紗逐漸被揭開。目前檢測環(huán)狀RNA普遍采用二代短片段高通量測序方法,如需要獲得全長的環(huán)狀RNA,研究者需要根據(jù)短片段進行RNA組裝,然而組裝是個易錯過程,并存在線性轉(zhuǎn)錄本的污染問題,所以開發(fā)基于Pacific BioSciences (PacBio)和Oxford Nanopore Technologies (ONT)的環(huán)狀RNA長片段測序方法是未來研究復(fù)雜環(huán)狀RNA的關(guān)鍵技術(shù)。獲得全長環(huán)狀RNA將打開研究其內(nèi)部復(fù)雜選擇性剪接類型的大門,更多環(huán)狀RNA的調(diào)控功能將被揭示。
與環(huán)狀RNA形成機制研究相比較,環(huán)狀RNA如何被降解的相關(guān)報道十分匱乏。Hansen等[104]發(fā)現(xiàn)Cdrlas上有miR-671的互補序列,Cdr1as通過吸附miR-671而導(dǎo)致了Ago2介導(dǎo)的Cdr1as的降解,那么其他的環(huán)狀RNA是否也以相同的機制被降解以維持環(huán)狀RNA在生物體內(nèi)的表達平衡?常規(guī)的降解組測序只適用于線性轉(zhuǎn)錄本,需要開發(fā)針對環(huán)狀RNA的特異降解組文庫構(gòu)建方法來大規(guī)模解析環(huán)狀RNA的降解機制。m6A修飾的環(huán)狀RNA會影響相應(yīng)宿主基因的穩(wěn)定性[125],那么m6A修飾是否會影響環(huán)狀RNA自身的穩(wěn)定性?這些都是環(huán)狀RNA降解需要解決的問題。但目前環(huán)狀RNA的修飾檢測仍然處于瓶頸之中,已有報道用基于m6A抗體免疫沉淀(immunoprecipitation, IP)后深度測序的方法來檢測環(huán)狀RNA修飾[129],通過反向剪接位點來識別環(huán)狀RNA的序列,但是由于線性轉(zhuǎn)錄本很難用RNase R去除完全,所以如何識別環(huán)狀RNA反向剪接位點外的序列修飾依然是一個急需解決的問題。
在環(huán)狀RNA的功能方面,環(huán)狀RNA在生物體中動態(tài)表達,與miRNA、mRNA及l(fā)ncRNA等形成互作網(wǎng)絡(luò),參與調(diào)控宿主基因的轉(zhuǎn)錄及轉(zhuǎn)錄后表達,環(huán)狀RNA并非錯誤剪接的副產(chǎn)物,而是具有重要調(diào)控功能的RNA分子[22]。目前大部分研究集中于環(huán)狀RNA的海綿體功能,而其翻譯功能是一個重要的被忽視的方向。現(xiàn)有的大部分研究是基于預(yù)測的方法來研究環(huán)狀RNA的翻譯功能,但在準確性上還有待進一步提高。基于蛋白質(zhì)組學(xué)的方法將是未來研究環(huán)狀RNA的高效而準確的技術(shù)手段,通過構(gòu)建反向剪接位點的特征氨基酸數(shù)據(jù)庫,重新進行蛋白搜庫,可能會發(fā)現(xiàn)非常有價值的環(huán)狀RNA翻譯調(diào)控問題。
盡管環(huán)狀RNA在生物體的不同組織或細胞中都廣泛存在,但事實上形成環(huán)狀RNA的反向剪接效率是遠低于經(jīng)典線性剪接的[26,31,95,130],導(dǎo)致大多數(shù)環(huán)狀RNA的表達豐度較線性基因低,然而細胞是通過何種信號及何種方式調(diào)節(jié)同一基因座上的環(huán)狀RNA與線性轉(zhuǎn)錄本的比例仍需進一步地研究;并且,選擇性反向剪接會形成不同的環(huán)狀RNA異構(gòu)體[72],但是何種類別的剪接因子通過特異性結(jié)合何種類別的基序來進行精準剪接形成環(huán)狀RNA的仍需進一步地研究。隨著多組學(xué)的結(jié)合使用,相信在將來人們對表觀遺傳學(xué)所涉及的長鏈環(huán)狀RNA會有全新的認知。
[1] Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE. Circular RNAs are abundant, conserved, and associated with ALU repeats., 2013, 19(2): 426–426.
[2] Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures., 1976, 73(11): 3852–3856.
[3] Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells., 1979, 280(5720): 339–340.
[4] Arnberg AC, Van Ommen GJ, Grivell LA, Van Bruggen EF, Borst P. Some yeast mitochondrial RNAs are circular., 1980, 19(2): 313–319.
[5] Grabowski PJ, Zaug AJ, Cech TR. The intervening sequence of the ribosomal RNA precursor is converted to a circular RNA in isolated nuclei of tetrahymena., 1981, 23(2): 467–476.
[6] Kjems J, Garrett RA. Novel splicing mechanism for the ribosomal RNA intron in the archaebacterium desulfurococcus mobilis., 1988, 54(5): 693–703.
[7] Nigro JM, Cho K, Fearon ER, Kern SE, Ruppert JM, Oliner JD, Kinzler KW, Vogelstein B. Scrambled exons., 1991, 64(3): 607–613.
[8] Cocquerelle C, Daubersies P, Majérus MA, Kerckaert JP, Bailleul B. Splicing with inverted order of exons occurs proximal to large introns., 1992, 11(3): 1095– 1098.
[9] Cocquerelle C, Mascrez B, Hétuin D, Bailleul B. Mis-splicing yields circular RNA molecules., 1993, 7(1): 155–160.
[10] Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, Goodfellow P, Lovell-Badge R. Circular transcripts of the testis-determining gene sry in adult mouse testis., 1993, 73(5): 1019–1030.
[11] Zaphiropoulos PG. Circular RNAs from transcripts of the rat cytochromegene: correlation with exon skipping., 1996, 93(13): 6536–6541.
[12] Zaphiropoulos PG. Exon skipping and circular RNA formation in transcripts of the human cytochromegene in epidermis and of the rat androgen binding protein gene in testis., 1997, 17(6): 2985– 2993.
[13] Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE. Expression of linear and novel circular forms of an-associated non-coding RNA correlates with atherosclerosis risk., 2010, 6(12): e1001233.
[14] Luo J, Wang XL, Sun ZC, Wu D, Zhang W, Wang ZJ. Progress in circular RNAs of plants., 2018, 40(6): 467–477.駱甲, 王型力, 孫志超, 吳迪, 張瑋, 王正加. 植物環(huán)狀RNA研究進展. 遺傳, 2018, 40(6): 467–477.
[15] Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types., 2012, 7(2): e30733.
[16] Hansen TB, Ven? MT, Damgaard CK, Kjems J. Comparison of circular RNA prediction tools., 2015, 44(6): e58.
[17] Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, Zhu P, Chang Z, Wu Q, Zhao Y, Jia Y, Xu P, Liu H, Shan G. Exon-intron circular RNAs regulate transcription in the nucleus., 2015, 22(3): 256–264.
[18] Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L, Chen LL. Circular intronic long noncoding RNAs., 2013, 51(6): 792–806.
[19] Guarnerio J, Bezzi M, Jeong JC, Paffenholz SV, Berry K, Naldini MM, Lo-Coco F, Tay Y, Beck AH, Pandolfi PP. Oncogenic role of fusion-circRNAs derived from cancer- associated chromosomal translocations., 2016, 165(2): 289–302.
[20] Tan S, Sun D, Pu W, Gou Q, Guo C, Gong Y, Li J, Wei YQ, Liu L, Zhao Y. Circular RNA F-circEA-2a derived fromfusion gene promotes cell migration and invasion in non-small cell lung cancer., 2018, 17(1):138.
[21] Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, Wu YM, Dhanasekaran SM, Engelke CG, Cao X, Robinson DR, Nesvizhskii AI, Chinnaiyan AM. The landscape of circular RNA in cancer., 2019, 176(4): 869–881.e13.
[22] Li X, Yang L, Chen LL. The biogenesis, functions, and challenges of circular RNAs., 2018, 71(3): 428–442.
[23] Chen LL, Yang L. Regulation of circRNA biogenesis., 2015, 12(4): 381–388.
[24] Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production., 2014, 28(20): 2233–2247.
[25] Ivanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR, Piechotta M, Levanon EY, Landthaler M, Dieterich C, Rajewsky N. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals., 2014, 10(2): 170–177.
[26] Zhang Y, Xue W, Li X, Zhang J, Chen S, Zhang JL, Yang L, Chen LL. The biogenesis of nascent circular RNAs., 2016, 15(3): 611–624.
[27] Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L. Complementary sequence-mediated exon circularization., 2014, 159(1): 134–147.
[28] Dong R, Ma XK, Chen LL, Yang L. Increased complexity of circRNA expression during species evolution., 2016, 14(8): 1064–1074.
[29] Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp A, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP., 2010, 141(1): 129–141.
[30] Ji P, Wu W, Chen S, Zheng Y, Zhou L, Zhang J, Cheng H, Yan J, Zhang S, Yang P, Zhao F. Expanded expressionlandscape and prioritization of circular RNAs in mammals., 2019, 26(12): 3444–3460.e5.
[31] Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S. CircRNA biogenesis competes with pre-mRNA splicing., 2014, 56(1): 55–66.
[32] Duchange N, Pidoux J, Camus E, Sauvaget D. Alternative splicing in the human interleukin enhancer binding factor 3 (ILF3) gene., 2000, 261(2): 345–353.
[33] Urcuqui-Inchima S, Casta?o ME, Hernandez-Verdun D, St-Laurent G, Kumar A. Nuclear factor 90, a cellular dsRNA binding protein inhibits the HIV Rev-export function., 2006, 3: 83.
[34] Li X, Liu CX, Xue W, Zhang Y, Jiang S, Yin QF, Wei J, Yao RW, Yang L, Chen LL. Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection., 2017, 67(2): 214–227.e7.
[35] Fei T, Chen Y, Xiao T, Li W, Cato L, Zhang P, Cotter MB, Bowden M, Lis RT, Zhao SG, Wu Q, Feng FY, Loda M, He HH, Liu XS, Brown M. Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing., 2017, 114(26): E5207–E5215.
[36] Errichelli L, Dini Modigliani S, Laneve P, Colantoni A, Legnini I, Capauto D, Rosa A, De Santis R, Scarfò R, Peruzzi G, Lu L, Caffarelli E, Shneider NA, Morlando M, Bozzoni I. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons., 2017, 8: 14741.
[37] Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA, Goodall GJ. The RNA binding protein quaking regulates formation of circRNAs., 2015, 160(6): 1125–1134.
[38] Teplova M, Hafner M, Teplov D, Essig K, Tuschl T, Patel DJ. Structure-function studies of STAR family Quaking proteins bound to theirRNA target sites., 2013, 27(8): 928–940.
[39] Khan MA, Reckman YJ, Aufiero S, van den Hoogenhof MM, van der Made I, Beqqali A, Koolbergen DR, Rasmussen TB, van der Velden J, Creemers EE, Pinto YM. RBM20 regulates circular RNA production from the titin gene., 2016, 119(9): 996–1003.
[40] Kramer MC, Liang D, Tatomer DC, Gold B, March ZM, Cherry S, Wilusz JE. Combinatorial control ofcircular RNA expression by intronic repeats, hnRNPs, and SR proteins., 2015, 29(20): 2168–2182.
[41] Nishikura K. Functions and regulation of RNA editing by ADAR deaminases., 2010, 79: 321–349.
[42] Kim DD, Kim TT, Walsh T, Kobayashi Y, Matise TC, Buyske S, Gabriel A. Widespread RNA editing of embedded alu elements in the human transcriptome., 2004, 14(9): 1719–1725.
[43] Rybak-Wolf A, Stottmeister C, Gla?ar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, Herzog M, Schreyer L, Papavasileiou P, Ivanov A, ?hman M, Refojo D, Kadener S, Rajewsky N. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed., 2015, 58(5): 870–885.
[44] Akta? T, Av?ar Il?k ?, Maticzka D, Bhardwaj V, Pessoa Rodrigues C, Mittler G, Manke T, Backofen R, Akhtar A. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome., 2017, 544(7648): 115–119.
[45] Ye CY, Zhang X, Chu Q, Liu C, Yu Y, Jiang W, Zhu QH, Fan L, Guo L. Full-length sequence assembly reveals circular RNAs with diverse non-GT/AG splicing signals in rice., 2016, 14(8): 1055–1063.
[46] Panda AC, De S, Grammatikakis I, Munk R, Yang X, Piao Y, Dudekula DB, Abdelmohsen K, Gorospe M. High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs., 2017, 45(12): e116.
[47] Talhouarne GJS, Gall JG. Lariat intronic RNAs in the cytoplasm of vertebrate cells., 2018, 115(34): E7970–E7977.
[48] Zhang X, Zhang Y, Wang T, Li Z, Cheng J, Ge H, Tang Q, Chen K, Liu L, Lu C, Guo J, Zheng B, Zheng Y. A comprehensive map of intron branchpoints and lariat RNAs in plants., 2019, 31(5): 956–973.
[49] Bentley DL. Coupling mRNA processing with transcription in time and space., 2014, 15(3): 163–175.
[50] Liang D, Tatomer DC, Luo Z, Wu H, Yang L, Chen LL, Cherry S, Wilusz JE. The output of protein-coding genes shifts to circular RNAs when the pre-mRNA processing machinery is limiting., 2017, 68(5): 940–954.e3.
[51] Abascal-Palacios G, Ramsay EP, Beuron F, Morris E, Vannini A. Structural basis of RNA polymerase Ⅲ transcription initiation., 2018, 553(7688): 301– 306.
[52] Schmidt CA, Noto JJ, Filonov GS, Matera AG. A method for expressing and imaging abundant, stable, circular RNAsusing tRNA splicing., 2016, 572: 215–236.
[53] Litke JL, Jaffrey SR. Highly efficient expression of circular RNA aptamers in cells using autocatalytic transcripts., 2019, doi: 10.1038/s41587- 019-0090-6.
[54] Salgia SR. Two reactions of Haloferax volcanii RNA splicing enzymes: joining of exons and circularization of introns., 2003, 9(3): 319–330.
[55] Englert M, Sheppard K, Gundllapalli S, Beier H S?lla D. Branchiostoma floridae has separate healing and sealing enzymes for 5'-phosphate RNA ligation., 2010, 107(39): 16834–16839.
[56] Noto JJ, Schmidt CA, Matera AG. Engineering and expressing circular RNAs via tRNA splicing., 2017, 14(8): 978–984.
[57] Szabo L, Salzman J. Detecting circular RNAs: bioinformatic and experimental challenges., 2016, 17(11): 679–692.
[58] Vincent HA, Deutscher MP. Substrate recognition and catalysis by the exoribonuclease RNase R., 2006, 281(40): 29769–29775.
[59] Chen S, Huang V, Xu X, Livingstone J, Soares F, Jeon J, Zeng Y, Hua JT, Petricca J, Guo H, Wang M, Yousif F, Zhang Y, Donmez N, Ahmed M, Volik S, Lapuk A, Chua MLK, Heisler LE, Foucal A, Fox NS, Fraser M, Bhandari V, Shiah YJ, Guan J, Li J, Orain M, Picard V, Hovington H, Bergeron A, Lacombe L, Fradet Y, Têtu B, Liu S, Feng F, Wu X, Shao YW, Komor MA, Sahinalp C, Collins C, Hoogstrate Y, de Jong M, Fijneman RJA, Fei T, Jenster G, van der Kwast T, Bristow RG, Boutros PC, He HH. Widespread and functional RNA circularization in localized prostate cancer., 2019, 176(4): 831–843.e22.
[60] Pandey PR, Rout PK, Das A, Gorospe M, Panda AC. RPAD (RNase R treatment, polyadenylation, and poly(A)+RNA depletion) method to isolate highly pure circular RNA., 2018, 155: 41–48.
[61] Jakobi T, Dieterich C. Computational approaches for circular RNA analysis., 2019, 10(3): e1528.
[62] Hansen TB. Improved circRNA identification by combining prediction algorithms., 2018, 6: 20.
[63] Zheng Y, Ji P, Chen S, Hou L, Zhao F. Reconstruction of full-length circular RNAs enables isoform-level quantification., 2019, 11(1): 2.
[64] Feng J, Chen K, Dong X, Xu X, Jin Y, Zhang X, Chen W, Han Y, Shao L, Gao Y, He C. Genome-wide identification of cancer-specific alternative splicing in circRNA., 2019, 18(1): 35.
[65] Sharma D, Sehgal P, Hariprakash J, Sivasubbu S, Scaria V. Methods for annotation and validation of circular RNAs from RNAseq data., 2019, 1912: 55–76.
[66] Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, He X, Mieczkowski P, Grimm SA, Perou CM, Macleod JN, Chiang DY, Prins JF, Liu J. MapSplice: accurate mapping of RNA-seq reads for splice junction discovery., 2010, 38(18): e178.
[67] Chen L, Yu Y, Zhang X, Liu C, Ye C, Fan L. PcircRNA_finder: a software for circRNA prediction in plants., 2016, 32(22): 3528–3529.
[68] Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N. Circular RNAs are a large class of animal RNAs with regulatory potency., 2013, 495(7441): 333–338.
[69] Metge F, Czaja-Hasse LF, Reinhardt R, Dieterich C. FUCHS-towards full circular RNA characterization using RNAseq., 2017, 5: e2934.
[70] Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, Celniker SE, Graveley BR, Lai EC. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation., 2014, 9(5): 1966–1980.
[71] Hoffmann S, Otto C, Doose G, Tanzer A, Langenberger D, Christ S, Kunz M, Holdt LM, Teupser D, Hackermüller J. A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection., 2014, 15(2): R34.
[72] Zhang XO, Dong R, Zhang Y, Zhang JL, Luo Z, Zhang J, Chen LL, Yang L. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs., 2016, 26(9): 1277–1287.
[73] Szabo L, Morey R, Palpant NJ, Wang PL, Afari N, Jiang C, Parast MM, Murry CE, Laurent LC, Salzman J. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development., 2015, 16: 126.
[74] Gao Y, Zhang J, Zhao F. Circular RNA identification based on multiple seed matching., 2018, 19(5): 803–810.
[75] Cheng J, Metge F, Dieterich C. Specific identification and quantification of circular RNAs from sequencing data., 2016, 32(7): 1094–1096.
[76] Feng J, Xiang Y, Xia S, Liu H, Wang J, Ozguc FM, Lei L, Kong R, Diao L, He C, Han L. Circview: a visualization and exploration tool for circular RNAs., 2018, 19(6): 1310–1316.
[77] You X, Conrad TO. Acfs: accurate circRNA identification and quantification from RNA-Seq data., 2016, 6(1): 38820.
[78] Gao Y, Wang H, Zhang H, Wang Y, Chen J, Gu L. PRAPI: post-transcriptional regulation analysis pipeline for Iso-Seq., 2018, 34(9): 1580–1582.
[79] Song X, Zhang N, Han P, Moon BS, Lai RK, Wang K, Lu W. Circular RNA profile in gliomas revealed by identification tool UROBORUS., 2016, 44(9): e87.
[80] Wang H, Wang H, Zhang H, Liu S, Wang Y, Gao Y, Xi F, Zhao L, Liu B, Reddy ASN, Lin C, Gu L. The interplay between microRNA and alternative splicing of linear and circular RNAs in eleven plant species., 2019, doi: 10.1093/bioinformatics/btz038.
[81] Xia S, Feng J, Chen K, Ma Y, Gong J, Cai F, Jin Y, Gao Y, Xia L, Chang H, Wei L, Han L, He C. CSCD: a database for cancer-specific circular RNAs., 2018, 46(D1): D925–D929.
[82] Gla?ar P, Papavasileiou P, Rajewsky N. CircBase: a database for circular RNAs., 2014, 20(11): 1666– 1670.
[83] Fan C, Lei X, Fang Z, Jiang Q, Wu FX. CircR2Disease: a manually curated database for experimentally supported circular RNAs associated with various diseases., 2018, 2018: bay044.
[84] Xia S, Feng J, Lei L, Hu J, Xia L, Wang J, Xiang Y, Liu L, Zhong S, Han L, He C. Comprehensive characterization of tissue-specific circular RNAs in the human and mouse genomes., 2017, 18(6): 984–992.
[85] Ye J, Wang L, Li S, Zhang Q, Zhang Q, Tang W, Wang K, Song K, Sablok G, Sun X, Zhao H. AtCircDB: a tissue-specific database for arabidopsis circular RNAs., 2019, 20(1): 58–65.
[86] Ghosal S, Das S, Sen R, Basak P, Chakrabarti J. Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits., 2013, 4: 283.
[87] Zhang P, Meng X, Chen H, Liu Y, Xue J, Zhou Y, Chen M. PlantCircNet: a database for plant circRNA–miRNA– mRNA regulatory networks.,2017, 2017: bax089.
[88] Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, Gorospe M. CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs., 2016, 13(1): 34–42.
[89] Chu Q, Zhang X, Zhu X, Liu C, Mao L, Ye C, Zhu QH, Fan L. PlantcircBase: a database for plant circular RNAs., 2017, 10(8): 1126–1128.
[90] Liu YC, Li JR, Sun CH, Andrews E, Chao RF, Lin FM, Weng SL, Hsu SD, Huang CC, Cheng C, Liu CC, Huang HD. CircNet: a database of circular RNAs derived from transcriptome sequencing data., 2015, 44(D1): D209–D215.
[91] Meng X, Hu D, Zhang P, Chen Q, Chen M. CircFunBase: a database for functional circular RNAs., 2019, 2019: baz003.
[92] Chen X, Han P, Zhou T, Guo X, Song X, Li Y. CircRNADb: a comprehensive database for human circular RNAs with protein-coding annotations., 2016, 6: 34985.
[93] Lu T, Cui L, Zhou Y, Zhu C, Fan D, Gong H, Zhao Q, Zhou C, Zhao Y, Lu D, Luo J, Wang Y, Tian Q, Feng Q, Huang T, Han B. Transcriptome-wide investigation of circular RNAs in rice., 2015, 21(12): 2076–2087.
[94] Suzuki H, Zuo Y, Wang J, Zhang MQ, Malhotra A, Mayeda A. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing., 2006, 34(8): e63.
[95] Starke S, Jost I, Rossbach O, Schneider T, Schreiner S, Hung LH, Bindereif A. Exon circularization requires canonical splice signals., 2014, 10(1): 103– 111.
[96] Awan AR, Manfredo A, Pleiss JA. Lariat sequencing in a unicellular yeast identifies regulated alternative splicing of exons that are evolutionarily conserved with humans., 2013, 110(31): 12762–12767.
[97] Ghorbani A, Izadpanah K, Peters JR, Dietzgen RG, Mitter N. Detection and profiling of circular RNAs in uninfected and maize Iranian mosaic virus-infected maize., 2018, 274: 402–409.
[98] Cong L, Zhang F. Genome engineering using CRISPR- Cas9 system., 2015, 1239: 197–217.
[99] Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas- mediated genome engineering., 2013, 153(4): 910– 918.
[100] Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu JK. Efficient genome editing in plants using a CRISPR/Cas system., 2013, 23(10): 1229–1232.
[101] Wang Y, Huang J, Xu R. Seamless genome editing inby combining CRISPR/Cas9 and piggyBac technologies., 2019, 41 (5): 422– 429.王玨, 黃娟, 許蕊. 利用CRISPR/Cas9和piggyBac實現(xiàn)果蠅基因組無縫編輯. 遺傳, 2019, 41 (5): 422–429.
[102] Piwecka M, Gla?ar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, Filipchyk A, Klironomos F, Cerda Jara CA, Fenske P, Trimbuch T, Zywitza V, Plass M, Schreyer L, Ayoub S, Kocks C, Kühn R, Rosenmund C, Birchmeier C, Rajewsky N. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function., 2017, 357(6357): eaam8526.
[103] Borchardt EK, Meganck RM, Vincent HA, Ball CB, Ramos SBV, Moorman NJ, Marzluff WF, Asokan A. Inducing circular RNA formation using the CRISPR endoribonuclease Csy4., 2017, 23(5): 619–627.
[104] Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ, Kjems J. MiRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA., 2011, 30(21): 4414– 4422.
[105] O’keefe E. SiRNAs and shRNAs: tools for protein knockdown by gene silencing., 2013, 3: 197.
[106] Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, Laneve P, Rajewsky N, Bozzoni I. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis., 2017, 66(1): 22–37.e9.
[107] Zhu P, Zhu X, Wu J, He L, Lu T, Wang Y, Liu B, Ye B, Sun L, Fan D, Wang J, Yang L, Qin X, Du Y, Li C, He L, Ren W, Wu X, Tian Y, Fan Z. IL-13 secreted by ILC2s promotes the self-renewal of intestinal stem cells through circular RNA circPan3., 2019, 20(2): 183–194.
[108] Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Cell-type specific features of circular RNA expression., 2013, 9(9): e1003777.
[109] Guo JU, Agarwal V, Guo H, Bartel DP. Expanded identification and characterization of mammalian circular RNAs., 2014, 15(7): 409.
[110] Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. Natural RNA circles function as efficient microRNA sponges., 2013, 495(7441): 384–388.
[111] Su H, Tao T, Yang Z, Kang X, Zhang X, Kang D, Wu S, Li C. Circular RNA cTFRC acts as the sponge of MicroRNA-107 to promote bladder carcinoma progression., 2019, 18(1): 27.
[112] Rong D, Lu C, Zhang B, Fu K, Zhao S, Tang W, Cao H. CircPSMC3 suppresses the proliferation and metastasis of gastric cancer by acting as a competitive endogenous RNA through sponging miR-296-5p., 2019, 18(1): 25.
[113] Xu L, Feng X, Hao X, Wang P, Zhang Y, Zheng X, Li L, Ren S, Zhang M, Xu M. CircSETD3 (Hsa_circ_0000567) acts as a sponge for microRNA-421 inhibiting hepatocellular carcinoma growth., 2019, 38(1): 98.
[114] Ye CY, Chen L, Liu C, Zhu QH, Fan L. Widespread noncoding circular RNAs in plants., 2015, 208(1): 88–95.
[115] Wang Y, Yang M, Wei S, Qin F, Zhao H, Suo B. Identification of circular RNAs and their targets in leaves ofLunder dehydration stress., 2016, 7: 2024.
[116] Yin J, Liu M, Ma D, Wu J, Li S, Zhu Y, Han B. Identification of circular RNAs and their targets during tomato fruit ripening., 2018, 136: 90–98.
[117] Zeng RF, Zhou JJ, Hu CG, Zhang JZ. Transcriptome- wide identification and functional prediction of novel and flowering-related circular RNAs from trifoliate orange (L. Raf.)., 2018, 247(5): 1191–1202.
[118] Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, Kim J, Noh JH, Kim KM, Martindale JL, Gorospe M . Identification of HuR target circular RNAs uncovers suppression oftranslation by circPABPN1., 2017, 14(3): 361–369.
[119] Du WW, Fang L, Yang W, Wu N, Awan FM, Yang Z, Yang BB. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity., 2016, 24(2): 357.
[120] Park OH, Ha H, Lee Y, Boo SH, Kwon DH, Song HK, Kim YK. Endoribonucleolytic cleavage of m6A-containing RNAs by RNase P/MRP complex., 2019, 74(3): 494–507.e8.
[121] Li Z, Wang S, Cheng J, Su C, Zhong S, Liu Q, Fang Y, Yu Y, Lv H, Zheng Y, Zheng B. Intron lariat RNA inhibits microRNA biogenesis by sequestering the dicing complex in., 2016, 12(11): e1006422.
[122] Conn VM, Hugouvieux V, Nayak A, Conos SA, Capovilla G, Cildir G, Jourdain A, Tergaonkar V, Schmid M, Zubieta C, Conn SJ. A circRNA fromregulates splicing of its cognate mRNA through R-loop formation., 2017, 3: 17053.
[123] Wang Y, Gao Y, Zhang H, Wang H, Liu X, Xu X, Zhang Z, Markus VK, Kaiqiang H, Wang H, Xi F, Zhao L, Lin C, Gu L. Genome-wide profiling of circular RNAs in the rapidly growing shoots of moso bamboo ()., 2019,doi: 10.1093/pcp/ pcz043.
[124] Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation., 2017, 169(7): 1187–1200.
[125] Zhou C, Molinie B, Daneshvar K, Pondick JV, Wang J, Van Wittenberghe N, Xing Y, Giallourakis CC, Mullen AC. Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs., 2017, 20(9): 2262–2276.
[126] Chen N, Zhao G, Yan X, Lv Z, Yin H, Zhang S, Song W, Li X, Li L, Du Z, Jia L, Zhou L, Li W, Hoffman AR, Hu JF, Cui J. A novelexonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1., 2018, 19(1): 218.
[127] Wei LH, Song P, Wang Y, Lu Z, Tang Q, Yu Q, Xiao Y, Zhang X, Duan HC, Jia G. The m6A reader ECT2 controls trichome morphology by affecting mRNA stability in., 2018, 30(5): 968–985.
[128] Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez- Hernandez D, Ramberger E, Shenzis S, Samson M, Dittmar G, Landthaler M, Chekulaeva M, Rajewsky N, Kadener S. Translation of circRNAs., 2017, 66(1): 9–21.e7.
[129] Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, Wong CC, Xiao X, Wang Z. Extensive translation of circular RNAs driven by N6-methyladenosine., 2017, 27(5): 626–641.
[130] Wang Y, Wang Z. Efficient backsplicing produces translatable circular mRNAs., 2014, 21(2): 172– 179.
[131] Zhang M, Zhao K, Xu X, Yang Y, Yan S, Wei P, Liu H, Xu J, Xiao F, Zhou H, Yang X, Huang N, Liu J, He K, Xie K, Zhang G, Huang S, Zhang N. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma., 2018, 9(1): 4475.
[132] Wesselhoeft RA, Kowalski PS, Parker-Hale FC, Huang Y, Bisaria N, Anderson DG. RNA circularization diminishes immunogenicity and can extend translation duration., 2019, 74(3): 508–529.e4.
[133] Dong R, Zhang XO, Zhang Y, Ma XK, Chen LL, Yang L. CircRNA-derived pseudogenes., 2016, 26(6): 747–750.
[134] Sun X, Wang L, Ding J, Wang Y, Wang J, Zhang X, Che Y, Liu Z, Zhang X, Ye J, Wang J, Sablok G, Deng Z. Integrative analysis oftranscriptomics reveals intuitive splicing mechanism for circular RNA., 2016, 590(20): 3510–3516.
[135] Chen L, Zhang P, Fan Y, Lu Q, Li Q, Yan J, Muehlbauer GJ, Schnable PS, Dai M, Li L. Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize., 2017, 217(3): 1292–1306.
[136] Zhang P, Fan Y, Sun X, Chen L, Terzaghi W, Bucher E, Li L, Dai M. A large-scale circular RNA profiling reveals universal molecular mechanisms responsive to drought stress in maize and., 2019, 98(4): 697–713.
[137] Zuo J, Wang Q, Zhu B, Luo Y, Gao L. Deciphering the roles of circRNAs on chilling injury in tomato., 2016, 479(2): 132–138.
[138] Darbani B, Noeparvar S, Borg S. Identification of circular RNAs from the parental genes involved in multiple aspects of cellular metabolism in barley., 2016, 7: 776.
[139] Wang Z, Liu Y, Li D, Li L, Zhang Q, Wang S, Huang H. Identification of circular RNAs in kiwifruit and their species-specific response to bacterial canker pathogen invasion., 2017, 8: 413.
[140] Zhang G, Duan A, Zhang J, He C. Genome-wide analysis of long non-coding RNAs at the mature stage of sea buckthorn () fruit., 2016, 596: 130–136.
[141] Tan J, Zhou Z, Niu Y, Sun X, Deng Z. Identification and functional characterization of tomato circRNAs derived from genes involved in fruit pigment accumulation., 2017, 7(1): 8594.
[142] Zhou R, Zhu Y, Zhao J, Fang Z, Wang S, Yin J, Chu Z, Ma D. Transcriptome-wide identification and charact-erization of potato circular RNAs in response to pectobacterium carotovorum subspecies brasiliense infection., 2018, 19(1): 71.
Biogenesis, research methods, and functions of circular RNAs
Xuqing Liu1, Yubang Gao1,2, Liangzhen Zhao1, Yuchen Cai1, Huiyuan Wang1, Miao Miao1, Lianfeng Gu1, Hangxiao Zhang1
The field of circular non-coding RNAs have been gradually attracted wide attention with the developments of high-throughput sequencing. In this review, we systematically summarize three driving models for circRNAs biogenesis: intron-pairing-driven, RNA binding protein-driven and lariat-driven. In addition, we also briefly introduce the current research methods of circRNAs, which include high-throughput library construction methods, identification through bioinformatics and common experimental verification. Here, we also systematically summarize the functions of circRNAs, including microRNA (miRNA) or protein sponges, regulating the alternative splicing (AS) and expression of host genes, and extensive translation. Finally, we provide a systematic characterization and the latest research progress of circRNAs, which provide a new perspective for further studies of circRNAs in plants.
circular RNAs; back-splicing; alternative splicing; sponge
2019-04-09;
2019-05-07
國家自然科學(xué)基金項目(編號:31800566),福建省自然科學(xué)基金項目(編號:2018J01608),國家重點研發(fā)計劃項目(編號:2016YFD0600106、2018YFD0600101), 校國際合作(編號:KXGH17016)和福建省科技創(chuàng)新團隊項目(編號:118/KLA18069A)資助[Supported by the National Natural Science Foundation of China (No. 31800566), Fujian Provincial Natural Science Foundation (No. 2018J01608), the National Key R&D Program of China (Nos. 2016YFD0600106, 2018YFD0600101), the International Science and Technology Cooperation and Exchange Fund (No. KXGH17016), and Fujian Provincial Science and Technology Innovation Team Project (No. 118/KLA18069A)]
劉旭慶,碩士研究生,專業(yè)方向:林木遺傳育種。E-mail: 1752501050@qq.com
顧連峰,博士,教授,博士生導(dǎo)師,研究方向:生物信息學(xué)和林木遺傳改良。E-mail: lfgu@fafu.edu.cn
張航曉,博士,講師,研究方向:林木遺傳改良。E-mail: hxzhang@fafu.edu.cn
10.16288/j.yczz.19-061
2019/5/8 13:48:21
URI: http://kns.cnki.net/kcms/detail/11.1913.R.20190508.1346.004.html
(責(zé)任編委: 趙方慶)