国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

對(duì)接粘接結(jié)構(gòu)的扭轉(zhuǎn)疲勞損傷行為研究

2019-06-11 02:37李海宇申浩中
關(guān)鍵詞:棘輪黏劑剪應(yīng)力

李?慧,張?軍,李海宇,申浩中

?

對(duì)接粘接結(jié)構(gòu)的扭轉(zhuǎn)疲勞損傷行為研究

李?慧,張?軍,李海宇,申浩中

(鄭州大學(xué)化工與能源學(xué)院,鄭州 450001)

通過(guò)圓柱對(duì)接試件的扭轉(zhuǎn)疲勞實(shí)驗(yàn),分析了平均剪應(yīng)力、剪應(yīng)力幅值和循環(huán)周期3個(gè)因素對(duì)粘接結(jié)構(gòu)的應(yīng)變變程、應(yīng)變率和疲勞壽命的影響.結(jié)果表明:平均剪應(yīng)力對(duì)粘接結(jié)構(gòu)的循環(huán)加載應(yīng)力-應(yīng)變響應(yīng)影響很大.在平均剪應(yīng)力非零的情況下,有棘輪應(yīng)變出現(xiàn),并且棘輪應(yīng)變隨著平均剪應(yīng)力的增加而增加,棘輪應(yīng)變率也隨之增加;在改變剪應(yīng)力幅值,而平均剪應(yīng)力為零的情況下,雖然粘接試件沒(méi)有出現(xiàn)棘輪效應(yīng),但由于循環(huán)蠕變和循環(huán)軟化的原因,循環(huán)加載的應(yīng)力-應(yīng)變的曲線斜率隨著剪應(yīng)力幅值的增加出現(xiàn)下降的趨勢(shì),剪應(yīng)力幅值增加,應(yīng)變變程也隨之增加,同時(shí)剪應(yīng)力幅值越高應(yīng)變穩(wěn)定期越短;在改變循環(huán)周期情況下,應(yīng)變變程影響不大,只是隨著循環(huán)周期的縮短,后期的循環(huán)軟化略有增加;在疲勞壽命影響方面,隨著平均剪應(yīng)力和剪應(yīng)力幅值的增加,疲勞壽命都明顯下降,但循環(huán)周期對(duì)粘接試件的扭轉(zhuǎn)疲勞壽命的影響不大.

對(duì)接粘接結(jié)構(gòu);單軸棘輪;扭轉(zhuǎn)循環(huán);疲勞壽命

由于粘接結(jié)構(gòu)使用簡(jiǎn)單、質(zhì)量輕、有較好的抗腐蝕和抗疲勞等優(yōu)點(diǎn),被廣泛地應(yīng)用在汽車(chē)、航空、建筑和微電子等領(lǐng)域[1-4].粘接結(jié)構(gòu)在應(yīng)用中會(huì)承受循環(huán)載荷、交變載荷等復(fù)雜載荷作用.其疲勞性能是影響粘接結(jié)構(gòu)穩(wěn)定性的關(guān)鍵性因素.因此,為了使粘接結(jié)構(gòu)能有更廣泛、更可靠的工程應(yīng)用,對(duì)膠粘結(jié)構(gòu)的疲勞性能的研究是非常重要的.

近年來(lái),由于粘接材料、復(fù)合材料和粘接結(jié)構(gòu)的廣泛應(yīng)用,國(guó)內(nèi)外學(xué)者對(duì)其疲勞性能研究越來(lái)越重視.Tao等[5-7]研究了不同力學(xué)參數(shù)對(duì)環(huán)氧樹(shù)脂膠黏劑疲勞壽命和棘輪效應(yīng)的影響.Wang等[8]研究了增強(qiáng)型環(huán)氧樹(shù)脂復(fù)合材料的單軸拉伸疲勞性能,揭示了不同應(yīng)力水平下材料的循環(huán)載荷損傷機(jī)理.Gao等[9]對(duì)超高分子量聚乙烯材料進(jìn)行了單軸和雙軸的循環(huán)實(shí)驗(yàn),分析了不同力學(xué)參數(shù)和分子質(zhì)量的變化對(duì)其棘輪應(yīng)變和應(yīng)變率的影響.Kang及其團(tuán)隊(duì)[10-14]分別對(duì)環(huán)氧樹(shù)脂基的玻璃纖維復(fù)合材料和聚酰胺-6進(jìn)行了疲勞實(shí)驗(yàn),并分析平均應(yīng)力、應(yīng)力幅值和加載速率對(duì)疲勞壽命的影響.Wang等[15]使用搭接試件研究了濕熱環(huán)境對(duì)粘接結(jié)構(gòu)的疲勞裂紋擴(kuò)展行為的影響. Tang等[16]通過(guò)實(shí)驗(yàn)和數(shù)值分析研究了復(fù)合材料層壓板搭接接頭的靜態(tài)和疲勞性能,粘接層厚度對(duì)疲勞壽命的影響很大,隨著粘接層厚度的增加,靜態(tài)強(qiáng)度和疲勞強(qiáng)度都降低.Zheng等[17]對(duì)聚四氟乙烯進(jìn)行了壓縮疲勞實(shí)驗(yàn),研究了溫度、加載速率以及平均應(yīng)力對(duì)其疲勞性能的影響.筆者[18-20]曾對(duì)環(huán)氧樹(shù)脂膠的蠕變行為及拉伸疲勞做了研究,并采用了3種類(lèi)型的內(nèi)聚力模型分別對(duì)兩種類(lèi)型的膠黏劑進(jìn)行數(shù)值模擬,內(nèi)聚力模型的形狀對(duì)粘接接頭的性能有著顯著的影響. Shrestha等[21]對(duì)聚醚醚酮高分子材料進(jìn)行了疲勞實(shí)驗(yàn),討論了加載路徑和加載順序?qū)ζ谧冃魏推谛袨榈挠绊懀瓸outar等[22]研究了被粘材料表面粗糙度和膠黏劑厚度對(duì)搭接接頭單軸疲勞性能的影響. Shahverdi等[23]研究了比值對(duì)膠黏劑粘接復(fù)合材料的搭接接頭拉伸疲勞實(shí)驗(yàn)的裂紋擴(kuò)展和斷裂行為的影響.Wahab等[24]采用雙懸臂梁試件,對(duì)環(huán)氧樹(shù)脂膠基的碳纖維復(fù)合材料的疲勞壽命進(jìn)行了實(shí)驗(yàn)研究,并用有限元方法分析了裂紋擴(kuò)展規(guī)律和疲勞壽命變化. Reis等[25]研究了加載頻率對(duì)鋼材搭接接頭疲勞性能的影響,結(jié)果表明:高幅值的剪應(yīng)力,加載頻率對(duì)疲勞壽命影響很??;低幅值的剪應(yīng)力,加載頻率對(duì)疲勞壽命影響顯著.Jen[26]對(duì)4種斜接角度的膠-鋁試件的疲勞壽命進(jìn)行了實(shí)驗(yàn),結(jié)果顯示,其主要失效為界面和膠體開(kāi)裂,疲勞壽命隨著斜接角度的增加而增加.Zielecki等[27]研究了環(huán)氧樹(shù)脂膠加入納米碳中對(duì)其疲勞性能的影響,結(jié)果表明,環(huán)氧樹(shù)脂膠加入納米碳后其疲勞壽命顯著提高.通過(guò)以上分析,很多學(xué)者對(duì)于粘接結(jié)構(gòu)的接頭形式、粘接方式、表面處理、粘接厚度和加載過(guò)程等對(duì)疲勞強(qiáng)度和壽命的影響做了研究.然而,由于用于扭轉(zhuǎn)疲勞實(shí)驗(yàn)的對(duì)接試件制作難度很大,其要求高同軸度、相同的粘接厚度和近似的粘接強(qiáng)度,所以,對(duì)粘接結(jié)構(gòu)的扭轉(zhuǎn)疲勞性能研究鮮見(jiàn)報(bào)道.

本文采用環(huán)氧樹(shù)脂膠黏劑粘接的圓柱對(duì)接試件,對(duì)其進(jìn)行了的扭轉(zhuǎn)疲勞實(shí)驗(yàn),通過(guò)對(duì)實(shí)驗(yàn)數(shù)據(jù)計(jì)算,分析了平均剪應(yīng)力、剪應(yīng)力幅值和循環(huán)周期3種因素對(duì)對(duì)接結(jié)構(gòu)的應(yīng)力-應(yīng)變曲線響應(yīng)、應(yīng)變變程和疲勞壽命的影響,并對(duì)這些影響的原因進(jìn)行了分析和總結(jié),研究結(jié)果對(duì)粘接結(jié)構(gòu)的使用提供了進(jìn)一步的理論指導(dǎo).

1 ?試件制備和實(shí)驗(yàn)過(guò)程

1.1 ?對(duì)接試件的制備

實(shí)驗(yàn)選用的膠黏劑為環(huán)氧樹(shù)脂膠黏劑,型號(hào)為DP460 Off-White.由美國(guó)3M公司生產(chǎn).基材選用鋁合金管6061-T6.鋁合金管的粘接面要進(jìn)行打磨和化學(xué)清洗,保證粘接面的平整和粗糙度并去除粘接表面的油脂等.為保證對(duì)接試件的同軸度和相同的粘接厚度,按照美國(guó)ASTM D2095—96標(biāo)準(zhǔn),實(shí)驗(yàn)設(shè)計(jì)了一套對(duì)接試件的制作模具,如圖1所示.

圖1? 圓柱對(duì)接試件制作模具

試件制作時(shí),首先把下面的鋁合金管用壓板固定在V形槽中,上、下V形槽在一條直線上,從而保證對(duì)接的同軸度.為了粘接時(shí)膠黏劑不流入鋁合金管內(nèi),在管內(nèi)塞入聚丙烯棒,這種材料與環(huán)氧樹(shù)脂膠不粘接;同時(shí),在管外套上聚丙烯的錐形漏斗,防止膠黏劑流淌.之后,上面的鋁合金管用壓板也固定在V形槽中,對(duì)接表面均勻注入膠黏劑,旋轉(zhuǎn)推進(jìn)螺栓,使上、下鋁合金管對(duì)接,用定位環(huán)確定粘接厚度,一組試件為6個(gè).粘接后,試件連同模具一起,放置在型號(hào)為DHG—9030干燥箱里,溫度設(shè)定60℃,干燥時(shí)間6h.最后,拆除模具取出固化的試件,去除錐形漏斗和聚丙烯塞棒,打磨粘接層溢出的膠體.對(duì)接試件的結(jié)構(gòu)尺寸和實(shí)驗(yàn)中的試件如圖2所示.

圖2 ?試件與結(jié)構(gòu)尺寸

1.2 ?實(shí)驗(yàn)過(guò)程

扭轉(zhuǎn)疲勞實(shí)驗(yàn)在CARE測(cè)控有限公司的拉、扭實(shí)驗(yàn)機(jī)(型號(hào)EUM—25k20)上進(jìn)行.實(shí)驗(yàn)在室溫環(huán)境下進(jìn)行,采用應(yīng)力控制的正弦循環(huán)加載.為了研究平均剪應(yīng)力、剪應(yīng)力幅值和循環(huán)周期對(duì)這種粘接結(jié)構(gòu)的扭轉(zhuǎn)疲勞特性的影響,制定了如表1所示的實(shí)驗(yàn)?方案.

表1 ?對(duì)接試件扭轉(zhuǎn)疲勞實(shí)驗(yàn)方案

Tab.1 Loadingconditions of torsion fatigue experiments for butt-joints

2?結(jié)果與分析

扭轉(zhuǎn)疲勞實(shí)驗(yàn)得到了力-位移曲線,通過(guò)計(jì)算得到圓管對(duì)接試件的扭轉(zhuǎn)疲勞試驗(yàn)的應(yīng)力-應(yīng)變曲線,其中,扭轉(zhuǎn)的剪應(yīng)力計(jì)算式為

式中:為實(shí)驗(yàn)的扭矩;為對(duì)接試件外徑;為對(duì)接試件內(nèi)徑.

扭轉(zhuǎn)的應(yīng)變計(jì)算式為

分析平均剪應(yīng)力、剪應(yīng)力幅值和循環(huán)周期3種因素的影響,通過(guò)改變應(yīng)力控制的正弦加載曲線實(shí)現(xiàn),正弦波加載方程為

棘輪剪應(yīng)變計(jì)算式為

剪應(yīng)變應(yīng)變率計(jì)算式為

實(shí)驗(yàn)得到扭轉(zhuǎn)循環(huán)疲勞的數(shù)據(jù),經(jīng)過(guò)以上公式的計(jì)算,可得到對(duì)接試件應(yīng)力-應(yīng)變曲線、應(yīng)變變程、應(yīng)變率等數(shù)據(jù).下面分別分析3種因素對(duì)這些力學(xué)參數(shù)的影響.

2.1 ?平均剪應(yīng)力對(duì)扭轉(zhuǎn)疲勞性能的影響

圖4(a)是3個(gè)不同平均剪應(yīng)力情況下的應(yīng)力-應(yīng)變曲線的響應(yīng),圖中可以看到平均剪應(yīng)力的變化對(duì)應(yīng)力-應(yīng)變曲線影響很大,應(yīng)力-應(yīng)變曲線形成滯環(huán),滯環(huán)的寬度隨著平均剪應(yīng)力的增加,試件Tm3的滯環(huán)變寬最為明顯.圖4(b)是扭轉(zhuǎn)疲勞實(shí)驗(yàn)的棘輪應(yīng)變隨循環(huán)次數(shù)變化情況,圖中可以看到棘輪應(yīng)變隨著平均剪應(yīng)力的增加而增加,其中,試件Tm3和試件Tm2的棘輪效應(yīng)變化有兩個(gè)階段:第1階段是初期的瞬態(tài)變化,棘輪應(yīng)變?cè)诔跏紩r(shí)期快速增加;第2階段是穩(wěn)態(tài)時(shí)期,粘接試件棘輪應(yīng)變緩慢增加,這里沒(méi)有進(jìn)行棘輪應(yīng)變和蠕變區(qū)分[28].然而,試件Tm1的棘輪應(yīng)變?cè)?左右,沒(méi)有發(fā)生棘輪效應(yīng).說(shuō)明棘輪應(yīng)變是在平均應(yīng)力非零的情況下才產(chǎn)生的.

圖3 ?不同平均剪應(yīng)力的正弦加載

圖4(c)是對(duì)接試件的穩(wěn)態(tài)階段棘輪應(yīng)變率變化圖,圖中可以看出棘輪應(yīng)變率隨著平均剪應(yīng)力的增加而增加.試件Tm3的棘輪應(yīng)變率為2.78362×10-5%/圈,試件Tm2的棘輪應(yīng)變率約為1.12092×10-5%/圈,而試件Tm1的棘輪應(yīng)變應(yīng)變率為0.圖4(d)是對(duì)接試件的疲勞壽命隨平均剪應(yīng)力變化情況,結(jié)果顯示,疲勞壽命隨著平均剪應(yīng)力的增加而下降,平均剪應(yīng)力為0的試件Tm1的疲勞壽命為26075圈,遠(yuǎn)大于試件Tm2和Tm3的扭轉(zhuǎn)疲勞壽命.原因在于,平均剪應(yīng)力不為0,出現(xiàn)了棘輪效應(yīng),棘輪效應(yīng)加劇了粘接層中膠體塑性應(yīng)變能的累積,疲勞損傷增加,導(dǎo)致粘接結(jié)構(gòu)疲勞損傷破壞,疲勞壽命下降.由此可見(jiàn),平均剪應(yīng)力對(duì)粘接試件扭轉(zhuǎn)疲勞壽命的影響很?大[29-31].

圖4? 平均剪應(yīng)力對(duì)扭轉(zhuǎn)疲勞性能的影響

2.2 ?剪應(yīng)力幅值對(duì)扭轉(zhuǎn)疲勞性能的影響

為研究應(yīng)力幅值對(duì)粘接結(jié)構(gòu)疲勞性能的影響,扭轉(zhuǎn)疲勞實(shí)驗(yàn)在平均剪應(yīng)力和循環(huán)周期不變的情況下,改變剪應(yīng)力幅值進(jìn)行,如表1所示(Ta4~Ta6).圖5是剪應(yīng)力幅值隨時(shí)間的正弦加載,實(shí)驗(yàn)剪應(yīng)力幅值分別為6.56MPa、7.23MPa和7.88MPa,疲勞實(shí)驗(yàn)的平均剪應(yīng)力為0MPa,循環(huán)周期均為4s,平均剪應(yīng)力均為0MPa.

圖5? 不同剪應(yīng)力幅值的正弦加載

圖6(a)是變剪應(yīng)力幅值的扭轉(zhuǎn)疲勞實(shí)驗(yàn)的應(yīng)力-應(yīng)變的響應(yīng),從圖中可以看出由于平均剪應(yīng)力為0,粘接試件沒(méi)有出現(xiàn)棘輪效應(yīng),但由于循環(huán)蠕變和循環(huán)軟化的原因,應(yīng)力-應(yīng)變的曲線斜率隨著剪應(yīng)力幅值的增加出現(xiàn)下降的趨勢(shì),應(yīng)力-應(yīng)變曲線呈紡錘形.從圖6(b)應(yīng)變變程隨循環(huán)次數(shù)變化中可以看出,剪應(yīng)力幅值對(duì)試件的應(yīng)變變程有一定的影響,隨著剪應(yīng)力幅值的增加,應(yīng)變變程也隨之增加,同時(shí)剪應(yīng)力幅值越高穩(wěn)定時(shí)期越短.而且,在循環(huán)加載前期保持彈性循環(huán)路徑,剪應(yīng)變保持水平,后期出現(xiàn)了循環(huán)軟化情況,應(yīng)變變程迅速增加直到疲勞斷裂.其中,Ta6試件應(yīng)變變程值為0.178,Ta5試件應(yīng)變變程為0.15,相比Ta6減少了15.7%,而剪應(yīng)力幅值最小的Ta4試件應(yīng)變變程為0.14,相比Ta5減少了6%.圖6(c)是不同剪應(yīng)力幅值試件單軸扭轉(zhuǎn)疲勞壽命變化情況,從圖中可以看出剪應(yīng)力幅值為6.56MPa時(shí)粘接試件扭轉(zhuǎn)疲勞壽命為14130圈;剪應(yīng)力幅值為7.23MPa時(shí)試件扭轉(zhuǎn)疲勞壽命為11918圈,相比Ta4試件的疲勞壽命減少了15.7%;剪應(yīng)力幅值為7.88MPa時(shí)試件的扭轉(zhuǎn)疲勞壽命為10729圈,相比Ta5試件疲勞壽命減少了9.9%.隨著剪應(yīng)力幅值的減少,粘接試件扭轉(zhuǎn)疲勞壽命明顯升高,而且增加的幅度逐漸擴(kuò)大.原因在于:在平均剪應(yīng)力為0MPa的情況下,隨著剪應(yīng)力幅值的增加,循環(huán)軟化和蠕變程度加劇,疲勞損傷增加,粘接試件疲勞壽命也相應(yīng)地發(fā)生變化.

2.3 ?循環(huán)周期對(duì)扭轉(zhuǎn)疲勞性能的影響

為研究扭轉(zhuǎn)疲勞性能對(duì)循環(huán)周期的敏感度,扭轉(zhuǎn)疲勞實(shí)驗(yàn)在平均剪應(yīng)力和剪應(yīng)力幅值不變,而改變循環(huán)周期的條件下進(jìn)行,實(shí)驗(yàn)方案如表1(Tt7~Tt9)所示.圖7是循環(huán)周期隨時(shí)間的變化正弦加載過(guò)程,平均剪應(yīng)力為0MPa,剪應(yīng)力幅值為7.88MPa,循環(huán)周期分別為3s、4s和5s.

圖7 ?不同循環(huán)周期的正弦加載

圖8(a)是不同循環(huán)周期的應(yīng)力-應(yīng)變的響應(yīng),從中可以看出不同循環(huán)周期的試件的應(yīng)力-應(yīng)變曲線重合度較高,也出現(xiàn)了循環(huán)蠕變和循環(huán)軟化現(xiàn)象.圖8(b)是不同循環(huán)周期的應(yīng)變變程響應(yīng)圖,從圖中可以看出循環(huán)周期改變,剪應(yīng)變變化范圍相差不大,只是隨著循環(huán)周期的縮短,后期的軟化略有增加,導(dǎo)致后期的損傷加劇.圖8(c)是循環(huán)周期對(duì)扭轉(zhuǎn)疲勞壽命的影響,從圖中可以看出循環(huán)周期為3s的試件Tt7扭轉(zhuǎn)疲勞壽命為9931圈,循環(huán)周期為4s的試件Tt8扭轉(zhuǎn)疲勞壽命為10729圈,比試件Tt7的疲勞壽命增加了8%;循環(huán)周期為5s的試件Tt9的扭轉(zhuǎn)疲勞壽命為11315圈,比Tt8試件疲勞壽命增大了5.4%.可見(jiàn),隨著循環(huán)周期的增加,粘接試件扭轉(zhuǎn)疲勞壽命略有增加,所以,循環(huán)周期對(duì)粘接試件的扭轉(zhuǎn)疲勞壽命的影響不顯著.

3? 結(jié)?語(yǔ)

采用圓柱對(duì)接試件,對(duì)其進(jìn)行了的扭轉(zhuǎn)疲勞實(shí)驗(yàn),分析了平均剪應(yīng)力、剪應(yīng)力幅值和循環(huán)周期3種因素對(duì)對(duì)接結(jié)構(gòu)的棘輪應(yīng)變、應(yīng)變變程、應(yīng)變率和疲勞壽命的影響.結(jié)果表明,平均剪應(yīng)力對(duì)應(yīng)力-應(yīng)變曲線響應(yīng)影響很大,滯環(huán)的寬度隨著平均剪應(yīng)力的增加而增加.在平均剪應(yīng)力非零的情況下,棘輪應(yīng)變隨著平均剪應(yīng)力的增加而增加,而且,棘輪應(yīng)變率也隨著平均剪應(yīng)力的增加而增加.在改變剪應(yīng)力幅值、平均剪應(yīng)力為零的情況下,雖然粘接試件沒(méi)有出現(xiàn)棘輪效應(yīng),但由于循環(huán)蠕變和循環(huán)軟化的原因,隨著剪應(yīng)力幅值的增加應(yīng)力-應(yīng)變的曲線斜率出現(xiàn)下降的趨勢(shì),隨著剪應(yīng)力幅值的增加,應(yīng)變變程也隨之增加,同時(shí)剪應(yīng)力幅值越高應(yīng)變穩(wěn)定期越短.在改變循環(huán)周期情況下,剪應(yīng)變變化范圍相差不大,只是隨著循環(huán)周期的縮短,后期的軟化略有增加.在疲勞壽命影響方面,隨著平均剪應(yīng)力和剪應(yīng)力幅值的增加疲勞壽命略有下降,但循環(huán)周期對(duì)粘接試件的扭轉(zhuǎn)疲勞壽命的影響不顯著.

[1] 劉成倫,徐?鋒. 膠黏劑的研究進(jìn)展[J]. 表面技術(shù),2004,33(4):1-3.

Liu Chenglun,Xu Feng. Research development of the adhesive[J]. Surface Technology,2004,33(4):1-3(in Chinese).

[2] 翁熙祥,梁志杰. 金屬粘接技術(shù)[M]. 北京:化學(xué)工業(yè)出版社,2006.

Weng Xixiang,Liang Zhijie. Metal Adhesion Technology[M]. Beijing:Chemical Industry Press,2006(in Chinese).

[3] 陶士振. 兩種車(chē)用粘接劑相對(duì)不同基材粘接性能的研究[D]. 長(zhǎng)春:吉林大學(xué),2016.

Tao Shizhen. Study on Adhesion Properties of two Kinds of Vehicle Adhesives with Different Substrates[D]. Changchun:Jilin University,2016(in Chinese).

[4] 周?劍,劉勇瓊,廖英強(qiáng). 炭纖維復(fù)合材料疲勞行為的研究進(jìn)展[J]. 炭素技術(shù),2018,27(1):6-8.

Zhou Jian,Liu Yongqiong,Liao Yingqiang. Research progress on fatigue behaviour of carbon fiber reinforced polymer[J]. Carbon Techniques,2018,27(1):6-8(in Chinese).

[5] Tao G,Xia Z. Ratcheting behavior of an epoxy polymer and its effect on fatigue life[J]. Polymer Testing,2007,26(4):451-460.

[6] Tao G,Xia Z. Mean stress/strain effect on fatigue behavior of an epoxy resin[J]. International Journal of Fatigue,2007,29(12):2180-2190.

[7] Tao G,Xia Z. Fatigue behavior of an epoxy polymer subjected to cyclic shear loading[J]. Materials Science & Engineering A,2008,486(1/2):38-44.

[8] Wang Z,Xu L,Sun X,et al. Fatigue behavior of glass-fiber-reinforced epoxy composites embedded with shape memory alloy wires[J]. Composite Structures,2017,178:311-319.

[9] Gao H,Wang J,Lia F,et al. Uniaxial and biaxial ratcheting behavior of ultra-high molecular weight polyethylene[J]. Materials Science and Engineering:C(Materials for Biological Applications),2018,89:295-306.

[10] Kang G F,Liu Y J,Wang Y F,et al. Uniaxial ratchetting of polymer and polymer matrix composites:Time-dependent experimental observations[J]. Materials Science and Engineering:A,2009,523(1/2):13-20.

[11] Pan X D,Kang G Z,Zhu Z W,et al. Experimental study on uniaxial time-dependent ratcheting of a polyetherimide polymer[J]. Journal of Zhejiang University Science A:Applied Physics & Engineering,2010,11(10):804-810.

[12] Jiang H,Zhang J W,Kang G Z,et al. A test procedure for separating viscous recovery and accumulated unrecoverable deformation of polymer under cyclic loading [J]. Polymer Testing,2013,32(8):1445-1451.

[13] Lu F C,Kang G Z,Zhu Y L,et al. Experimental observation on multiaxial ratchetting of poly-carbonate polymer at room temperature[J]. Polymer Testing,2016,50:135-144.

[14] Yang J Y,Kang G Z,Chen K J,et al. Experimental study on uniaxial ratchetting-fatigue interaction of polyamide-6[J]. Polymer Testing,2018,69:545-555.

[15] Wang M,Liu A,Liu Z,et al. Effect of hot humid environmental exposure on fatigue crack growth of adhesive-bonded aluminum A356 joints[J]. International Journal of Adhesion and Adhesives,2013,40(40):1-10.

[16] Tang J H,Sridhar I,Srikanth N. Static and fatigue failure analysis of adhesively bonded thick composite single lap joints[J]. Composites Science and Technology,2013,86(7):18-25.

[17] Zheng X T,Wang H Y,Wang W,et al. Compressive ratcheting effect of expanded PTFE considering multiple load paths[J]. Polymer Testing,2017,61:93-99.

[18] 張?軍,賈?宏. 內(nèi)聚力模型的形狀對(duì)膠接結(jié)構(gòu)斷裂過(guò)程的影響[J].力學(xué)學(xué)報(bào),2016,48(5):1088-1095.

Zhang Jun,Jia Hong. Influence of cohesive zone models shape on adhesively bonded joints[J]. Chinese Journal of Theoretical and Applied Mechanics,2016,48(5):1088-1095(in Chinese).

[19] 張?軍,張永祥,楊?軍. 環(huán)氧樹(shù)脂膠濕熱與室溫環(huán)境下的蠕變行為研究[J]. 機(jī)械強(qiáng)度,2015,37(2):237-242.

Zhang Jun,Zhang Yongxiang,Yang Jun. Investigation on epoxy creep behavior at ambient and hydrothermal environment[J]. Journal of Mechanical Strength,2015,37(2):237-242(in Chinese).

[20] 張?軍,王增威,楊?軍,等. 環(huán)氧樹(shù)脂膠對(duì)接結(jié)構(gòu)的疲勞試驗(yàn)與理論研究[J]. 中國(guó)膠粘劑,2014,23(9):17-21.

Zhang Jun,Wang Zengwei,Yang Jun,et al. Fatigue experiment and theoretical investigation on epoxy resin adhesive butt joint[J]. China Adhesives,2014,23(9):17-21(in Chinese).

[21] Shrestha R,Simsiriwong J,Shamsaei N. Load history and sequence effects on cyclic deformation and fatigue behavior of a thermoplastic polymer[J]. Polymer Testing,2016,56:99-109.

[22] Boutar Y,Na?mi S,Mezlini S,et al. Fatigue resistance of an aluminium one-component polyurethane adhesive joint for the automotive industry:Effect of surface roughness and adhesive thickness[J]. International Journal of Adhesion and Adhesives,2018,83:143-152.

[23] Shahverdi M,Vassilopoulos A P,Keller T. Experimental investigation of-ratio effects on fatigue crack growth of adhesively-bonded pultruded GFRP DCB joints under CA loading[J]. Composites Part A:Applied Science and Manufacturing,2012,43(10):1689-1697.

[24] Wahab M A,Ashcroft I A,Crocombe A D,et al. Finite element prediction of fatigue crack propagation lifetime in composite bonded joints[J]. Composites Part A:Applied Science and Manufacturing,2004,35(2):213-222.

[25] Reis P B,Monteiro J R,Pereira A M,et al. Fatigue behaviour of epoxy-steel single lap joints under variable frequency[J]. International Journal of Adhesion and Adhesives,2015,63(63):66-73.

[26] Jen Y. Fatigue life evaluation of adhesively bonded scarf joints[J]. International Journal of Fatigue,2012,36(1):30-39.

[27] Zielecki W,Kubit A,Trzepieciński T,et al. Impact of multiwall carbon nanotubes on the fatigue strength of adhesive joints[J]. International Journal of Adhesion and Adhesives,2017,73:16-21.

[28] Jiang H,Zhang J,Kang G,et al. A test procedure for separating viscous recovery and accumulated unrecoverable deformation of polymer under cyclic loading[J]. Polymer Testing,2013,32(8):1445-1451.

[29] Lin Y C,Chen X M,Liu Z H,et al. Investigation of uniaxial low-cycle fatigue failure behavior of hot-rolled AZ91 magnesium alloy[J]. International Journal of Fatigue,2013,48(48):122-132.

[30] Lin Y C,Liu Z H,Chen X M,et al. Stress-based fatigue life prediction models for AZ31B magnesium alloy under single-step and multi-step asymmetric stress-controlled cyclic loadings[J]. Computational Materials Science,2013,73:128-138.

[31] 陳?旭,李建軍,陳?剛,等. 交變接觸載荷下的鋁合金微動(dòng)疲勞[J]. 天津大學(xué)學(xué)報(bào):自然科學(xué)與工程技術(shù)版,2017,50(5):459-465.

Chen Xu,Li Jianjun,Chen Gang,et al. Fretting fatigue behavior of aluminum alloy under cyclic contact pressure[J]. Journal of Tianjin University:Science and Technology,2017,50(5):459-465(in Chinese).

Fatigue Failure Behaviors of Adhesively Bonded Butt-Joints Under Torsion Cyclic

Li Hui,Zhang Jun,Li Haiyu,Shen Haozhong

(School of Chemical Engineering and Energy,Zhengzhou University,Zhengzhou 450001,China)

The fatigue failure behaviors of adhesively bonded hollow cylindrical butt-joints were experimentally investigated. The effects of shear stress amplitude, mean shear stress, and cycle time on the strain variation response, strain rate, and fatigue life of adhesively bonded butt-joints were analyzed. Results showed that mean shear stress had a considerable influence on the stress-strain curve of cyclic loading. Ratchetting strain appeared when mean shear stress was nonzero. Ratchetting strain and ratchetting strain rate increased with the increase of mean shear stress. Ratchetting strain did not appear in the adhesive specimens when shear stress amplitude varied and the mean shear stress was zero. The slope of the stress-strain curve tended to decline with the increase of shear stress amplitude due to cyclic creep and cyclic softening. Additionally, the strain variations increased with the increase of shear stress amplitude. Meanwhile,the steady state stage of strain variations shortened as shear stress amplitude increased. However, cycle time had a negligible effect on strain variations. Softening in the later stages slightly increased as the cycle shortened. Fatigue life decreased with the increase of average shear stress and shear stress amplitude. However, cycling time had a limited effect on the torsion fatigue life of the adhesively bonded butt-joint specimens.

adhesively bonded butt-joints;uniaxial ratchetting;cyclic torsion;fatigue life

TQ436.9

A

0493-2137(2019)08-0836-07

10.11784/tdxbz201811004

2018-11-01;

2018-12-04.

李?慧(1980—),女,博士研究生,副教授,feng_109_1@163.com.

張?軍,zhang_jun@zzu.edu.cn.

國(guó)家自然科學(xué)基金資助項(xiàng)目(10972200);河南省自然科學(xué)基金資助項(xiàng)目(144300510008);河南省教育廳重點(diǎn)資助項(xiàng)目(15A130004).

the National Natural Science Foundation of China(No.10972200),the Natural Science Foundation of Henan Province,China (No.144300510008),the Key Project of Education Department of Henan Province(No.15A130004).

(責(zé)任編輯:田?軍)

猜你喜歡
棘輪黏劑剪應(yīng)力
室溫下7050鋁合金循環(huán)變形研究
玉米酒精粕基木材膠黏劑的制備及其性能
基于A-V模型的改進(jìn)模型及單軸棘輪效應(yīng)預(yù)測(cè)
橋面鋪裝層間剪應(yīng)力技術(shù)指標(biāo)多維度分析
膠黏劑在城市軌道交通行業(yè)中的應(yīng)用
考慮剪力滯效應(yīng)影響的箱形梁彎曲剪應(yīng)力分析
向前!向前!
變截面波形鋼腹板箱梁剪應(yīng)力計(jì)算理論
熱敏式剪應(yīng)力儀在波流動(dòng)力研究中的應(yīng)用
來(lái)自法國(guó)的新型水基膠黏劑使用經(jīng)驗(yàn)
北辰区| 自治县| 桃园县| 财经| 东兴市| 遂川县| 岐山县| 扬州市| 灵台县| 怀柔区| 朝阳县| 天等县| 青铜峡市| 乐陵市| 宁强县| 保德县| 兰考县| 江门市| 湘阴县| 嘉善县| 霸州市| 凤庆县| 平乐县| 修武县| 郸城县| 克山县| 屯门区| 偃师市| 张家川| 罗田县| 鄂托克旗| 清苑县| 南昌市| 广汉市| 巍山| 天长市| 锦屏县| 林周县| 安龙县| 崇左市| 阳信县|