李耀明,龐 靖,2,徐立章,唐 忠,周躍鵬
?
基于振動(dòng)激勵(lì)溯源的谷物聯(lián)合收獲機(jī)清選篩制造缺陷定位
李耀明1,龐 靖1,2,徐立章1,唐 忠1,周躍鵬1
(1. 江蘇大學(xué)現(xiàn)代農(nóng)業(yè)裝備與技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,鎮(zhèn)江 212013;2. 河南科技大學(xué)農(nóng)業(yè)裝備工程學(xué)院,洛陽(yáng) 471003)
為了識(shí)別主要制造缺陷的位置并指導(dǎo)構(gòu)建往復(fù)振動(dòng)式清選篩質(zhì)量檢測(cè)系統(tǒng),該文提出了一種利用經(jīng)典傳遞路徑理論反算作用在清選篩與脫粒清選室連接點(diǎn)的激勵(lì)力,進(jìn)而定位缺陷位置的方法。通過(guò)測(cè)量、對(duì)比連接點(diǎn)的振動(dòng),發(fā)現(xiàn)振動(dòng)頻率成分基本相同,且是強(qiáng)相關(guān)的,因而不能通過(guò)頻率分析找出主要激勵(lì)源而定位制造缺陷。進(jìn)一步根據(jù)激勵(lì)力與缺陷的關(guān)聯(lián)關(guān)系,發(fā)現(xiàn)具有最大激勵(lì)力的激勵(lì)源附近應(yīng)存在主要制造缺陷。在測(cè)量從連接點(diǎn)到觀察點(diǎn)的振動(dòng)傳遞函數(shù)的基礎(chǔ)上,綜合廣義逆矩陣?yán)碚?,相位角變化的隨機(jī)性等,構(gòu)建了最大激勵(lì)力和該激勵(lì)力對(duì)觀察點(diǎn)振動(dòng)貢獻(xiàn)的計(jì)算模型。清選試驗(yàn)臺(tái)驗(yàn)證測(cè)試結(jié)果表明,激勵(lì)力貢獻(xiàn)響應(yīng)之和為實(shí)測(cè)加速度的84.7%~94.6%,考慮到模型簡(jiǎn)化時(shí)忽略了部分因素的影響,兩者基本吻合,計(jì)算模型可靠。以鍵槽間隙為典型缺陷進(jìn)行驗(yàn)證試驗(yàn),結(jié)果表明,有缺陷時(shí)的振動(dòng)基頻和振幅較大的頻率對(duì)應(yīng)的激勵(lì)力比無(wú)缺陷時(shí)增大71%~3 271%,定位方法有效。
農(nóng)業(yè)機(jī)械;振動(dòng);模型;清選篩;傳遞路徑;激勵(lì)力估算;缺陷定位
清選篩作為與風(fēng)機(jī)配合的風(fēng)篩式清選裝置的重要組成部分,廣泛應(yīng)用于各類收獲機(jī)[1]。由于其傳動(dòng)機(jī)構(gòu)中存在較大的不平衡質(zhì)量和扭矩,振動(dòng)強(qiáng)度較大[2-3]。如果零部件的制造缺陷未能及時(shí)發(fā)現(xiàn)并排除,會(huì)使振動(dòng)更加劇烈,造成立柱開焊,軸承座斷裂等嚴(yán)重影響產(chǎn)品可靠性的問(wèn)題。運(yùn)轉(zhuǎn)時(shí)的振動(dòng)信號(hào)中包含了這些缺陷的特征[4-6],如能通過(guò)在線檢測(cè)振動(dòng)信號(hào)預(yù)測(cè)缺陷的位置和發(fā)生原因,再逐一排查確定缺陷源,替換缺陷件,將明顯提升產(chǎn)品可靠性,并能為產(chǎn)品優(yōu)化設(shè)計(jì)提供驗(yàn)證手段。
通過(guò)檢測(cè)振動(dòng)特性即激勵(lì)源確定缺陷的位置的方法有:偏相干分析法、單源多路徑貢獻(xiàn)分析法和傳遞路徑分析法[7-8]。偏相干分析法主要應(yīng)用于主要頻率成分存在明顯差異的弱相關(guān)源[9-10]。單源多路徑分析法主要應(yīng)用于分析單一源通過(guò)不同路徑對(duì)響應(yīng)影響的排序[11-12]。而傳遞路徑分析法(transfer path analysis-TPA)利用試驗(yàn)測(cè)量的振動(dòng)響應(yīng)和傳遞函數(shù),反算出激勵(lì)力[13-14],對(duì)激勵(lì)源的特異性要求低,能用于強(qiáng)相關(guān)源的貢獻(xiàn)排序。對(duì)于清選篩振動(dòng)特性的研究,目前國(guó)內(nèi)主要集中于動(dòng)力學(xué)分析[15-16]、激振機(jī)構(gòu)設(shè)計(jì)與優(yōu)化[17-18]、慣性力平衡[19-20]、模態(tài)分析與共振利用[21-22]等方面。國(guó)外多集中于參數(shù)共振清選篩的動(dòng)力學(xué)建模[23-25]以指導(dǎo)結(jié)構(gòu)設(shè)計(jì)。但通過(guò)檢測(cè)分析振動(dòng)信號(hào)識(shí)別并定位制造缺陷的研究,未見相關(guān)報(bào)到。
本文主要通過(guò)測(cè)量振動(dòng)響應(yīng)估算激勵(lì)力,在建立清選篩結(jié)構(gòu)與動(dòng)力學(xué)模型的基礎(chǔ)上,利用傳遞路徑分析理論,計(jì)算屬于強(qiáng)相關(guān)的清選篩與機(jī)架連接點(diǎn)的激勵(lì)力,并根據(jù)振動(dòng)響應(yīng)的不穩(wěn)定性,提出利用幅值最大值估算激勵(lì)力的方法,避免了相位角的影響。
清選篩的驅(qū)動(dòng)機(jī)構(gòu)常采用曲柄搖桿式、曲柄雙滑塊式和偏心輪滑塊式。本文以現(xiàn)階段履帶式全喂入谷物收獲機(jī)應(yīng)用較多的偏心輪滑塊式為例進(jìn)行相關(guān)研究。偏心輪可簡(jiǎn)化為短曲柄,其結(jié)構(gòu)簡(jiǎn)圖如圖1。
注:A、B、C、D分別表示左滑槽、左軸承座、右軸承座、右滑槽處的結(jié)構(gòu)連接點(diǎn)。
為便于說(shuō)明,以收割機(jī)駕駛員座位前向?yàn)檩S正向建立三維笛卡爾坐標(biāo)系。清選篩由帶輪驅(qū)動(dòng),通過(guò)、兩處的偏心輪(曲柄)帶動(dòng)整個(gè)篩體運(yùn)動(dòng),篩體前方通過(guò)2個(gè)滾動(dòng)軸承嵌入機(jī)架側(cè)壁的滑槽內(nèi)。由圖1可以看出,清選篩的振動(dòng)激勵(lì)由結(jié)構(gòu)連接點(diǎn)(、、、)向機(jī)體傳遞。
相對(duì)于清選篩,驅(qū)動(dòng)帶輪的質(zhì)量較小,可以忽略。將篩子看作左右對(duì)稱結(jié)構(gòu),篩體正常安裝時(shí)向位移遠(yuǎn)小于其他2個(gè)方向,為簡(jiǎn)化計(jì)算,忽略方向的振動(dòng),假定篩體只在平面內(nèi)做平面運(yùn)動(dòng),建立清選篩的動(dòng)力學(xué)模型,如圖2所示。清選篩受到的力包括質(zhì)心處的重力/2和慣性力,處滑塊受到的力包括重力mg慣性力ma和支撐力R,處偏心輪受到的力包括重力mg慣性力ma和支撐力R,還有通過(guò)驅(qū)動(dòng)軸傳來(lái)的轉(zhuǎn)速為的扭矩??梢钥闯?,通過(guò)、兩點(diǎn)作用于機(jī)體的支反力的4個(gè)分力R、、、即為清選篩作用于機(jī)架的振動(dòng)激勵(lì)源。
注:M為清選篩的質(zhì)心,E為偏心輪與清選篩的鉸接點(diǎn)。RAX、RAZ、RBX、RBZ分別為各點(diǎn)X向和Z向支反力,N;mAaA、ma、mEaE分別為滑塊、清選篩和偏心輪的慣性力,N;mAg、mg、mEg分別為滑塊、清選篩和偏心輪的重力,N;q為滑槽與水平面夾角,rad;w為角頻率,rad·s–1;F為驅(qū)動(dòng)軸轉(zhuǎn)矩,N·m。
根據(jù)文獻(xiàn)[19],清選篩的慣性力隨結(jié)構(gòu)參數(shù)和質(zhì)量而變化,但均呈與驅(qū)動(dòng)軸旋轉(zhuǎn)同周期的近似簡(jiǎn)諧規(guī)律,其角頻率為
=2π2π60 (1)
式中為旋轉(zhuǎn)頻率,Hz;為驅(qū)動(dòng)軸和偏心輪的轉(zhuǎn)速,r/min。
根據(jù)達(dá)朗貝爾原理,支反力與各部件的重力和慣性力平衡。各重力為恒定值,則支反力也應(yīng)與慣性力一樣呈近似簡(jiǎn)諧特性。
為了分析清選篩對(duì)收獲機(jī)機(jī)體振動(dòng)的影響,建立如圖3的振動(dòng)傳遞模型。作用于、兩處的各向支反力會(huì)引起機(jī)架上任意點(diǎn)的振動(dòng)響應(yīng),將所有激勵(lì)力引起的響應(yīng)求和即為點(diǎn)的加速度a。根據(jù)圖2對(duì)清選篩的受力分析,不失一般性,清選篩的激勵(lì)力R、R、R、R可表示為R(=1,2,3,4)。根據(jù)線性疊加原理和傳遞路徑分析理論[26]有:
式中h(t)表示從R的施力點(diǎn)到點(diǎn)的傳遞函數(shù),*表示卷積。(這里只考慮振動(dòng),忽略聲音的影響)。寫成頻域形式為
式中H()表示頻響函數(shù)。通過(guò)計(jì)算激勵(lì)力R()和該激勵(lì)力對(duì)任意點(diǎn)在特定頻率0處的振動(dòng)貢獻(xiàn)H()·R()|0,并與無(wú)缺陷時(shí)的貢獻(xiàn)進(jìn)行比較,如存在較大差異即可確定R的施力點(diǎn)就是存在缺陷的位置,應(yīng)對(duì)其附近的零部件進(jìn)行排查。而頻率0就是缺陷的特征頻率。
注:q為機(jī)架上的任意點(diǎn);Hqm為頻響函數(shù),m·s–2×N–1; aq為q點(diǎn)的響應(yīng)加速度,m·s–2。
式(3)中H()通過(guò)力錘激勵(lì)法測(cè)量。a()為加速度響應(yīng)的傅立葉變換(頻譜),也可通過(guò)試驗(yàn)獲取。但激勵(lì)力R()(=1,2,3,4)如果用力傳感器直接測(cè)量,需要將傳感器安裝在清選室機(jī)架與滑槽、軸承座之間,會(huì)改變結(jié)構(gòu)形式,不僅不便于在線檢測(cè),而且改變了激勵(lì)力,影響測(cè)量準(zhǔn)確性。因此工程上常采用求解方程的方法反算出激勵(lì)力。為求解方程,需計(jì)算連接點(diǎn)處的3向加速度,即
式(4)與式(3)組合,寫成矩陣形式,即
由于系統(tǒng)的頻響函數(shù)是系統(tǒng)的固有屬性,不隨環(huán)境和激勵(lì)的變化而變化。如存在逆矩陣[()]-1,將其左乘式(5)有:
根據(jù)1.2節(jié)的簡(jiǎn)化,激勵(lì)力只有4個(gè),理論上只需測(cè)量連接點(diǎn)和的向和向4個(gè)激勵(lì)力到機(jī)架上任意4個(gè)測(cè)點(diǎn)的4×4階頻響函數(shù)矩陣[()]4×4即可。但由于結(jié)構(gòu)的相似性,矩陣元素的值可能十分接近,矩陣成為病態(tài)矩陣無(wú)法求逆。為使方程可解,根據(jù)文獻(xiàn)[27],增加響應(yīng)點(diǎn)數(shù)量,使響應(yīng)點(diǎn)加速度變?yōu)閇()]8×1,頻響矩陣取8行,變成[()]8×4,通過(guò)求解其廣義逆[()]+4×8,即可得到激勵(lì)力:
由于式(3)中的函數(shù)均為復(fù)數(shù),在求和計(jì)算加速度響應(yīng)a()時(shí),需要考慮相位角。
將各復(fù)數(shù)寫成復(fù)指數(shù)形式,公式(3)變?yōu)?/p>
合并相位角
式中|a()|、|H()|、|R()|表示各函數(shù)的模,φ()、φ()、φ()表示相位角,(°)。
顯然,各激勵(lì)力引起的響應(yīng)相位角φ()+φ()(=1,2,3,4)不完全相同,所以響應(yīng)和的幅值小于等于各激勵(lì)引起的響應(yīng)幅值的和,即
試驗(yàn)于2018年6月至8月在江蘇大學(xué)農(nóng)業(yè)裝備工程學(xué)院南大間實(shí)驗(yàn)室的智能型清選系統(tǒng)試驗(yàn)臺(tái)架上進(jìn)行。為了在測(cè)試時(shí)不引入其他運(yùn)動(dòng)部件的影響,只啟動(dòng)清選篩驅(qū)動(dòng)電機(jī)而不啟動(dòng)其他電機(jī),研究清選篩單獨(dú)振動(dòng)時(shí)機(jī)體的響應(yīng)特性。使用3向加速度計(jì)獲取清選篩與機(jī)架連接點(diǎn)和機(jī)架上觀察點(diǎn)的3向加速度,使用力錘激勵(lì)法獲取結(jié)構(gòu)的傳遞函數(shù)。試驗(yàn)場(chǎng)景和測(cè)點(diǎn)位置見圖4,試驗(yàn)設(shè)備技術(shù)參數(shù)如表1??紤]到測(cè)量對(duì)象的運(yùn)動(dòng)頻率較低,試驗(yàn)的采樣頻率為2 560 Hz。
1. 3向加速度計(jì) 2. 機(jī)架 3. 驅(qū)動(dòng)電機(jī) 4. 動(dòng)態(tài)信號(hào)采集儀 5. 電腦
表1 振動(dòng)測(cè)試試驗(yàn)設(shè)備
設(shè)置清選篩驅(qū)動(dòng)轉(zhuǎn)速為正常工作轉(zhuǎn)速即340 r/min,測(cè)量連接點(diǎn)、的向和向加速度。為分析振動(dòng)響應(yīng)以獲取載荷的動(dòng)態(tài)特性,對(duì)2個(gè)連接點(diǎn)處2個(gè)方向的時(shí)域信號(hào)進(jìn)行短時(shí)傅立葉變換(short time fourier transform,STFT)[28-30]。
由于轉(zhuǎn)動(dòng)頻率只有5.65 Hz,對(duì)于結(jié)構(gòu)振動(dòng)來(lái)說(shuō),對(duì)同樣幅值的加速度信號(hào)積分求其振動(dòng)位移時(shí)需乘以系數(shù)1/2,角頻率越大,則位移越小,對(duì)結(jié)構(gòu)的變形影響越小。因此本文分析只計(jì)算到100 Hz,忽略高頻部分,計(jì)算結(jié)果如圖5所示。分析圖5可知,振動(dòng)信號(hào)的頻率成分較多,除了驅(qū)動(dòng)轉(zhuǎn)速基頻外,還有各次倍頻。、連接點(diǎn)處的頻率成分基本相同,對(duì)其進(jìn)行相關(guān)性計(jì)算,常相干系數(shù)大多在0.9以上,屬于強(qiáng)相關(guān)。8 s后進(jìn)入工作狀態(tài),各點(diǎn)各方向的頻率成分沒(méi)有變化,但頻率幅值隨時(shí)間有明顯變化。連接點(diǎn)、的向低頻部分,在10~25 Hz的3個(gè)倍頻的幅值比其他倍頻大,在向75~90 Hz的高頻段幅值達(dá)到最大,點(diǎn)各頻率的幅值均大于點(diǎn)。通過(guò)時(shí)頻域特性可知,實(shí)際振動(dòng)并不具有理論分析的簡(jiǎn)諧特性,而是表現(xiàn)為多頻率成分且不穩(wěn)定。這大多是由零部件制造缺陷造成的[4,31],累積后會(huì)降低清選篩和整機(jī)的可靠性,減少設(shè)備預(yù)期壽命,甚至存在安全隱患。因此有必要通過(guò)測(cè)量、分析振動(dòng)信號(hào),找出制造缺陷。
圖5 清選篩與機(jī)架連接點(diǎn)的加速度時(shí)頻云圖
根據(jù)1.4節(jié),分析激勵(lì)力并進(jìn)行缺陷定位需要測(cè)量頻響函數(shù)H(),檢測(cè)設(shè)備見表1,頻響函數(shù)采用1估計(jì)[32],利用模態(tài)力錘分別沿向和向激勵(lì)連接點(diǎn)和,測(cè)量4種激勵(lì)條件下的脈沖響應(yīng)。為計(jì)算H()的廣義逆,需要增加測(cè)量點(diǎn)數(shù)量,因而在試驗(yàn)支架右側(cè)與點(diǎn)對(duì)稱的位置設(shè)置另一觀察點(diǎn)。測(cè)量和點(diǎn)各3個(gè)方向及、點(diǎn)向在4種激勵(lì)條件下,共計(jì)32種脈沖響應(yīng),經(jīng)傅立葉變換計(jì)算出頻響函數(shù),得到傳遞函數(shù)矩陣[()]8×4。計(jì)算過(guò)程中,分析譜線數(shù)為1 600,頻率分辨率0.625 Hz,重疊率50%,計(jì)算平均譜。點(diǎn)向激勵(lì)時(shí),、點(diǎn)的向和點(diǎn)3向的跨點(diǎn)頻響函數(shù)曲線,以及到點(diǎn)的3向原點(diǎn)頻響函數(shù)曲線如圖6所示。
注:BX-AX表示用A點(diǎn)X向的加速度響應(yīng)除以B點(diǎn)X向激勵(lì)力得到的頻響函數(shù),其他類同。
頻響函數(shù)H()反映系統(tǒng)的固有特性,其相位角φ()理論上應(yīng)是固定值,不隨激勵(lì)和環(huán)境變化。如果激勵(lì)力R()的相位角φ()也是不變的,則激勵(lì)響應(yīng)和的相位角φ()也應(yīng)是固定值。為了驗(yàn)證上述假設(shè),分別計(jì)算試驗(yàn)臺(tái)架穩(wěn)定運(yùn)轉(zhuǎn)時(shí)連接點(diǎn)、的振動(dòng)響應(yīng),觀察點(diǎn)、的向響應(yīng)相位譜。點(diǎn)向和點(diǎn)向在14、20 和29 s的相位譜如圖7所示。
圖7 不同時(shí)刻加速度響應(yīng)相位譜
由圖7可知,各點(diǎn)的相位角在不同時(shí)刻是不同的。這說(shuō)明激勵(lì)力的相位角φ()并不是不變的,其可能原因是:由于裝配間隙、接觸件摩擦、軸心不對(duì)正等問(wèn)題,清選篩的運(yùn)轉(zhuǎn)并不平穩(wěn),實(shí)際的支反力受到這些因素的影響而發(fā)生一定程度的隨機(jī)變化;清選室在清選篩的激勵(lì)下發(fā)生振動(dòng),特別是側(cè)板的向振動(dòng)使清選物質(zhì)量在空間的分布發(fā)生一定變化,從而造成連接點(diǎn)到觀察點(diǎn)的頻響函數(shù)也發(fā)生變化。而且頻響函數(shù)的相位角對(duì)本體的質(zhì)量分布變換比較敏感,變化較大。
激勵(lì)力和頻響函數(shù)的相位角都是變化的,所以由它們組合決定的振動(dòng)響應(yīng)和的相位角也是變化的??紤]到這些變化具有隨機(jī)性,當(dāng)4個(gè)激勵(lì)力引起的響應(yīng)同方向時(shí),加速度可取得最大值,即
式(11)說(shuō)明激勵(lì)力引起的振動(dòng)響應(yīng)可由觀察點(diǎn)處的振幅極大值表示,也說(shuō)明如果某個(gè)清選篩部件存在制造缺陷,測(cè)試時(shí)由缺陷造成的激勵(lì)力會(huì)使某些特征頻率的振幅最大值明顯增大。
應(yīng)用傳遞路徑模型的激勵(lì)力計(jì)算法,可以根據(jù)清選篩單獨(dú)運(yùn)轉(zhuǎn)時(shí)觀察點(diǎn)的加速度響應(yīng),和激勵(lì)力作用點(diǎn)(連接點(diǎn))到觀察點(diǎn)的頻響函數(shù)計(jì)算出作用在連接點(diǎn)的激勵(lì)力幅值,進(jìn)而根據(jù)幅值是否超過(guò)正常加工狀態(tài)的激勵(lì)力判斷出清選篩在該連接處附近的結(jié)構(gòu)是否存在制造缺陷。在收獲機(jī)的設(shè)計(jì)試制階段,通過(guò)計(jì)算樣機(jī)的激勵(lì)載荷對(duì)振動(dòng)響應(yīng)的貢獻(xiàn)|H()|·|R()|并對(duì)其排序。依照貢獻(xiàn)大小順序,對(duì)引發(fā)響應(yīng)較劇烈的激勵(lì)力進(jìn)行分析并采取對(duì)應(yīng)的防護(hù)或改進(jìn)措施,可有效降低機(jī)體的振動(dòng),提高產(chǎn)品的可靠性和使用壽命。
振動(dòng)響應(yīng)的相位角不穩(wěn)定,激勵(lì)力辨識(shí)不再適用式(3),而應(yīng)使用由式(11)推導(dǎo)的激勵(lì)力幅值式(12)計(jì)算。
[|()|]=[|()|]+? [|()|max] (12)
式中廣義逆[|()|]+可由[|8×4()|]的奇異值分解計(jì)算得出,[|()|]由最小二乘法優(yōu)化算出。
根據(jù)圖5的頻譜圖,100 Hz內(nèi)的各階倍頻是主要的激勵(lì)頻率。這里以點(diǎn)向的基頻和加速度較大的3個(gè)倍頻為例,計(jì)算激勵(lì)力和激勵(lì)貢獻(xiàn)(加速度)響應(yīng),結(jié)果如表2。由表2可知,計(jì)算得到的激勵(lì)力貢獻(xiàn)響應(yīng)和為實(shí)際測(cè)量加速度的84.7%~94.6%,考慮到模型簡(jiǎn)化時(shí)忽略了部分因素,計(jì)算值和實(shí)測(cè)值基本吻合,模型計(jì)算結(jié)果可信。激勵(lì)力3的幅值和貢獻(xiàn)較大,即點(diǎn)處前后向的振動(dòng)貢獻(xiàn)大,這也與試驗(yàn)中發(fā)現(xiàn)的驅(qū)動(dòng)軸處振動(dòng)劇烈相符,因此處向是主要激勵(lì)源。
表2 不同頻率下激勵(lì)力和激勵(lì)貢獻(xiàn)響應(yīng)計(jì)算結(jié)果
注:1、2、3、4分別代表點(diǎn)向、點(diǎn)向、點(diǎn)向、點(diǎn)向的支反力。下同。
Note:1,2,3and4represent the support reactions of pointindirection, pointindirection, pointindirection and pointindirection respectively. The same below.
為了驗(yàn)證本文提出的基于振動(dòng)響應(yīng)估算激勵(lì)力的缺陷識(shí)別方法,以常見的清選篩驅(qū)動(dòng)鏈輪與驅(qū)動(dòng)軸間的鍵槽間隙為例進(jìn)行試驗(yàn)驗(yàn)證。將原本略有過(guò)盈的平鍵磨削至與鍵槽有0.2 mm間隙,測(cè)量此時(shí)的加速度響應(yīng),并進(jìn)行STFT變換,畫出時(shí)頻云圖,如圖8。
將圖8與圖5對(duì)比可以看出:雖然振動(dòng)響應(yīng)的頻率成分沒(méi)有明顯變化,但點(diǎn)基頻和主要頻率處的振幅都有明顯增大(驅(qū)動(dòng)軸鍵槽靠近點(diǎn),點(diǎn)可以反映缺陷附近的振動(dòng)情況)。與表2對(duì)比點(diǎn)(點(diǎn)為任意觀察點(diǎn),具有普遍性)的振動(dòng)也明顯增大。為了確認(rèn)這樣的響應(yīng)變化是由哪些激勵(lì)力引起的,將基頻5.625 Hz和表2中的3個(gè)特征頻率40.625、86.875和92.5 Hz以及圖8c中23.125 Hz對(duì)應(yīng)的最大振幅帶入式(11),計(jì)算各頻率激勵(lì)力的幅值,結(jié)果如表3。
對(duì)比表2和表3中的振動(dòng)加速度,除40.625 Hz外,其余各頻率處都是增加的,且增加明顯。對(duì)比激勵(lì)力的幅值,點(diǎn)處各頻點(diǎn)激勵(lì)力的幅值在存在鍵槽間隙缺陷時(shí)增加了8%~48%;點(diǎn)處的激勵(lì)力幅值增加了71%~3 271%,增幅巨大,說(shuō)明主要缺陷應(yīng)該在點(diǎn)附近,處只是受的影響或故障不大,證明利用振動(dòng)傳遞路徑模型對(duì)清選篩進(jìn)行制造缺陷定位的方法有效。
圖8 驗(yàn)證試驗(yàn)測(cè)點(diǎn)加速度時(shí)頻云圖
表3 激勵(lì)力驗(yàn)證試驗(yàn)結(jié)果
1)清選篩由于往復(fù)運(yùn)動(dòng)產(chǎn)生的振動(dòng)主要通過(guò)滑槽和驅(qū)動(dòng)軸軸承座向脫粒清選室傳遞,而且這2處的振動(dòng)頻率成分基本相同,屬于強(qiáng)相關(guān)激勵(lì)源。因此可采用經(jīng)典傳遞路徑分析理論,通過(guò)分析振動(dòng)特性確定裝配缺陷的可能位置。
2)清選篩作業(yè)時(shí)激勵(lì)力和振動(dòng)響應(yīng)都會(huì)發(fā)生變化,因此無(wú)法利用振動(dòng)的相位信息計(jì)算激勵(lì)力,而應(yīng)依據(jù)統(tǒng)計(jì)原理,以幅值最大值為計(jì)算依據(jù),估算各頻率處的激勵(lì)力幅值。
3)通過(guò)在清選試驗(yàn)臺(tái)上測(cè)量正常工作時(shí)根據(jù)模型計(jì)算的理論振動(dòng)響應(yīng)與實(shí)測(cè)振動(dòng)響應(yīng)對(duì)比,發(fā)現(xiàn)理論計(jì)算值比實(shí)測(cè)響應(yīng)略有減?。閷?shí)測(cè)值的84.7%~94.6%);鍵槽有間隙時(shí)的激勵(lì)力計(jì)算值與無(wú)間隙時(shí)相比,有缺陷時(shí)的激勵(lì)力幅值在其基頻和振幅較大的頻率處都有明顯增大(71%~3 271%),本文方法有效,可定性地為制造缺陷定位提供指導(dǎo)。
為了簡(jiǎn)化分析計(jì)算過(guò)程,文中忽略了篩體向振動(dòng)對(duì)機(jī)架振動(dòng)的影響,實(shí)際上應(yīng)考慮4個(gè)連接點(diǎn)處各3個(gè)方向共計(jì)12個(gè)激勵(lì)力對(duì)機(jī)架振動(dòng)的激勵(lì),計(jì)算過(guò)程難度增大,但流程和結(jié)果與文中相同。對(duì)振動(dòng)測(cè)量點(diǎn)相位變化的原因文中給出了初步判斷,但具體原因和消除其變化的方法還需進(jìn)一步研究。本文只根據(jù)異常激勵(lì)力辨別給出缺陷的位置確定方法,缺陷是哪種類型,如何克服還需要進(jìn)一步研究。
[1] 張敏,金誠(chéng)謙,梁蘇寧,等. 風(fēng)篩選式油菜聯(lián)合收割機(jī)清選機(jī)構(gòu)參數(shù)優(yōu)化與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(24):8-15. Zhang Min, Jin Chengqian, Liang Suning, el al. Parameter optimization and experiment on air-screencleaning device of rapeseed combine harvester[J]. Transactionsof the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(24): 8-15. (in Chinese with English abstract)
[2] 徐立章,李耀明,孫朋朋,等. 履帶式全喂入水稻聯(lián)合收獲機(jī)振動(dòng)測(cè)試與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(8): 49-55. Xu Lizhang, Li Yaoming, Sun Pengpeng, el al. Vibration measurement and analysis of tracked-whole feeding rice combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 49-55. (in Chinese with English abstract)
[3] 高志朋,徐立章,李耀明,等. 履帶式稻麥聯(lián)合收獲機(jī)田間收獲工況下振動(dòng)測(cè)試與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(20):48-55. Gao Zhipeng, Xu Lizhang, Li Yaoming, el al. Vibration measure and analysis of crawler-type rice and wheat combine harvester in field harvesting condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 48-55. (in Chinese with English abstract)
[4] Firla M, Li Z Y, Martin N, et al. Automatic characteristic frequency association and all-sideband demodulation for the detection of a bearing fault[J]. Mechanical Systems & Signal Processing, 2016(80): 335-348.
[5] Xiao Y, Enjie D, Chunxu C, et al. A novel characteristic frequency bands extraction method for automatic bearing fault diagnosis based on Hilbert Huang transform[J]. Sensors, 2015, 15(11): 27869-27893.
[6] 李凌均,陳超,韓捷,等. 全矢支持向量回歸頻譜預(yù)測(cè)方法[J]. 鄭州大學(xué)學(xué)報(bào):工學(xué)版,2016,37(3):78-82. Li Lingjun, Chen Chao, Han Jie, et al. The prediction method of frequency spectrum based on full vector support vector regression[J]. Journal of Zhengzhou University: Engineering Science, 2016, 37(3): 78-82. (in Chinese with English abstract)
[7] Zafeiropoulos N, Moorhouse A, Mackay A, et al. A comparison of two in-situ transfer path analysis methods [C]//RASD 2013 11th International Conference on Recent Advances in Structural Dynamics. DOI:http://dx.doi.org/
[8] De Klerk D, Ossipov A. Operational transfer path analysis Theory, guidelines and tire noise application[J]. Mechanical Systems and Signal Processing, 2010, 24(7): 1950-1962.
[9] 謝小平,曹遠(yuǎn)龍,王茜影,等. 基于總貢獻(xiàn)系數(shù)和的客車噪聲源識(shí)別[J]. 汽車工程,2017,39(5):575-580,587. Xie Xiaoping, Cao Yuanlong, Wang Xiying, et al. Identification of bus noise source based on total contribution coefficient sum[J]. Automotive Engineering, 2017, 39(5): 575-580, 587. (in Chinese with English abstract)
[10] Huang H B, Huang X R, Yang M L, et al. Identification of vehicle interior noise sources based on wavelet transform and partial coherence analysis[J]. Mechanical Systems and Signal Processing, 2018(109): 247-267.
[11] 趙薇,周娜,張義民. 振動(dòng)傳遞路徑系統(tǒng)的路徑插入損失分析[J]. 東北大學(xué)學(xué)報(bào):自然科學(xué)版,2015,36(2): 250-253,258. Zhao Wei, Zhou Na, Zhang Yimin. Path insertion loss analysis of vibration transfer path systems[J]. Journal of Northeastern University: Natural Science, 2015, 36(2): 250-253, 258. (in Chinese with English abstract)
[12] 張義民. 頻域內(nèi)振動(dòng)傳遞路徑的傳遞度排序[J]. 自然科學(xué)進(jìn)展,2007,17(3):410-414.
[13] 侯鎖軍,史文庫(kù),毛陽(yáng). 應(yīng)用傳遞路徑分析方法對(duì)方向盤抖動(dòng)貢獻(xiàn)量的研究[J]. 西安交通大學(xué)學(xué)報(bào),2013,47(3):132-136. Hou Suojun, Shi Wenku, Mao Yang. Vehicle steering wheel wobbling contribution investigation by transfer path analysis[J]. Journal of Xian Jiaotong University, 2013, 47(3): 132-136. (in Chinese with English abstract)
[14] 曹躍云,張磊,楊自春,等. 船舶振動(dòng)噪聲源傳遞路徑分析及試驗(yàn)驗(yàn)證[J]. 振動(dòng)與沖擊,2013,32(22):158-162. Cao Yueyun, Zhang Lei, Yang Zichun, et al. A new OPA model for ship noise sources and test validation[J]. Journal of Vibration & Shock, 2013, 32(22): 158-162. (in Chinese with English abstract)
[15] 王中營(yíng),任寧,武文斌,等. TQLZ型往復(fù)振動(dòng)篩動(dòng)力學(xué)模型與虛擬樣機(jī)仿真[J]. 食品與機(jī)械,2016,32(2):67-70. Wang Zhongying, Ren Ning, Wu Wenbin, et al. Dynamic model and virtual prototype simulation of TQLZ type reciprocating vibration screen[J]. Food & Machinery, 2016, 32(2): 67-70. (in Chinese with English abstract)
[16] 汪建新,鄭小偉. 基于Workbench的直線振動(dòng)篩運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)分析以及結(jié)構(gòu)改進(jìn)[J]. 機(jī)械強(qiáng)度,2014,36(6): 846-849.Wang Jianxin, Zheng Xiaowei. Kinematics, dynamics analysis and structure improvement of linear vibrating screen based on workbench[J]. Journal of Mechanical Strength, 2014, 36(6): 846-849. (in Chinese with English abstract)
[17] 李揚(yáng)揚(yáng),賀朝霞,宋緒丁,等. 瀝青攪拌設(shè)備振動(dòng)篩系統(tǒng)動(dòng)力學(xué)分析及其參數(shù)影響研究[J]. 計(jì)算力學(xué)學(xué)報(bào),2015,32(4):565-570. Li Yangyang, He Zhaoxia, Song Xuding, et al. Dynamic analysis and influence study of structure parameters on the asphalt mixing plant vibration screen system[J]. Chinese Journal of Computational Mechanics, 2015, 32(4): 565-570. (in Chinese with English abstract)
[18] 衛(wèi)良保,趙廣洋,楊莎莎,等. 振動(dòng)篩偏心塊的優(yōu)化設(shè)計(jì)及動(dòng)力學(xué)仿真[J]. 煤礦機(jī)械,2014,35(10):258-260. Wei Liangbao, Zhao Guangyang, Yang Shasha, et al. Dynamic simulation of optimized eccentric block of vibrating screen[J]. Coal Mine Machinery, 2014, 35(10): 258-260. (in Chinese with English abstract)
[19] 李革,王嬋,李穎聰,等. 曲柄滑塊式清選篩機(jī)構(gòu)慣性力平衡研究[J]. 農(nóng)機(jī)化研究,2016,38(8):24-30, 35. Li Ge, Wang Chan, Li Yingcong, et al. Investigation on inertial force balancing of slider-crank type cleaning sieve[J]. Journal of Agricultural Mechanization Research, 2016, 38(8): 24-30, 35. (in Chinese with English abstract)
[20] 洪美琴. 聯(lián)合收割機(jī)脫粒系統(tǒng)中振動(dòng)篩的動(dòng)力學(xué)分析[J]. 農(nóng)機(jī)化研究,2012,34(5):79-82. Hong Meiqin. The dynamics analysis of vibrating sieve in threshing system of combine harvester[J]. Journal of Agricultural Mechanization Research, 2012, 35(5): 79-82. (in Chinese with English abstract)
[21] 方守艷,胡繼云,孫慶春. 雙振動(dòng)體慣性往復(fù)反共振振動(dòng)篩的動(dòng)力學(xué)分析[J]. 河南工業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2013,34(6):56-59. Fang Shouyan, Hu Jiyun, Sun Qingchun. Dynamics analysis of inertial reciprocating anti-resonant vibration screen with two vibration bodies[J]. Journal of Henan University of Technology: Natural Science Edition, 2013, 34(6): 56-59. (in Chinese with English abstract)
[22] 楊俊哲. 基于Workbench多傾角型振動(dòng)篩的模態(tài)分析[J]. 煤炭學(xué)報(bào),2012,37(S1):240-244. Yang Junzhe. Modal analysis for multi-angle vibrating screen based on ANSYS workbench[J]. Journal of the China Coal Society, 2012, 37(S1): 240-244. (in Chinese with English abstract)
[23] Slepyan L I, Slepyan V I. Coupled mode parametric resonance in a vibrating screen model[J]. Mechanical Systems and Signal Processing, 2014, 43(1): 295-304.
[24] Zahedi S A, Babitsky V. Modeling of autoresonant control of a parametrically excited screen machine[J]. Journal of Sound and Vibration, 2016, 380: 78-89.
[25] Slepyan L I, Slepyan V I. Modeling of parametrically excited vibrating screen[J]. Journal of Physics: Conference Series. IOP Publishing, 2013, 451(1), Article id: 012026(2013). DOI: 10.1088/1742-6596/451/1/012026
[26] M V van der Seijs, D de Klerk, D J Rixen. General framework for transfer path analysis: History, theory and classification of techniques[J]. Mechanical Systems & Signal Processing, 2016(68/69): 217-244.
[27] D de Klerk, Ossipov A. Operational transfer path analysis: Theory, guidelines and tire noise application[J]. Mechanical Systems and Signal Processing, 2010, 24(7): 1950-1962.
[28] Griffin D, Lim J. Signal estimation from modified short-time Fourier transform[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1984, 32(2): 236-243.
[29] Aubel C, Stotz D, B?lcskei H. A theory of super-resolution from short-time Fourier transform measurements[J]. Journal of Fourier Analysis and Applications, 2018, 24(1): 45-107.
[30] 杜巧連,張克華. 基于自身振動(dòng)信號(hào)的液壓泵狀態(tài)監(jiān)測(cè)及故障診斷[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(4):120-123. Du Qiaolian, Zhang Kehua. Condition monitoring and fault diagnosis of hydraulic pump based on inherent vibration signals[J]. Transactions of the Chinese Society of AgriculturalEngineering (Transactions of the CSAE), 2007, 23(4): 120-123. (in Chinese with English abstract)
[31] 鄭坤明,張秋菊. 含關(guān)節(jié)間隙的Delta機(jī)器人彈性動(dòng)力學(xué)與振動(dòng)特性分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(14):39-48. Zheng Kunming, Zhang Qiuju. Elastic dynamics and analysis of vibration characteristics of Delta robot with joint clearance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(14): 39-48. (in Chinese with English abstract)
[32] 傅志方,華宏星. 模態(tài)分析理論與應(yīng)用[M]. 上海:上海交通大學(xué)出版社,2000.
Manufacturing defect location of cleaning screen of grain combine harvester based on vibration excitation tracing
Li Yaoming1, Pang Jing1,2, Xu Lizhang1, Tang Zhong1, Zhou Yuepeng1
(1.212013,; 2.471003,)
In order to improve the processing quality and reliability of the cleaning screen of grain combine harvester, it is necessary to eliminate the manufacturing defects in the design and pilot stage, which causing the additional load, , and to locate and eliminate the processing defects by measuring in the production stage. In this paper, a method can locate and calculate the exciting forces act on the connection points of cleaning screen and thresher body by classical transfer path analysis (TPA) were developed. By measuring and comparing the vibrations of the connection points, it is found that the vibration frequency components were the same and were strongly correlated, so it is impossible to find the main excitation source by analyzing the frequency to locate the manufacturing defects. According to the relationship between exciting force and defect, it is pointed out that there should be major manufacturing defects near the maximum excitation force. The vibration of connection points and a certain observation point of the test bench were measured by using triaxial accelerometers and dynamic signal analyzer , and the characteristics of time domain and time-frequency domain were analyzed. The results showed that although there was no change in the frequency components in the spectrum, the amplitude changed greatly, and the phase changed greatly at different times of each frequencies. The transfer functions of the connection points to each measurement points were detected by using a modal force hammer and vibration measuring devices. Since the phase was unstable, according to the principle that the product of each excitation force and the transfer function (ie, the contribution of the excitation force to the vibration) had the largest vibration response in the same direction, the maximum acceleration amplitude was introduced into the inverse matrix method formula, and the influence of the phase was ignored, and the problem that the ill-conditioned matrix of the transfer function matrix could not be inverted was solved by increasing the measurement point, the generalized inverse matrix of transfer function was calculated by singular value decomposition. The calculated excitation force was optimized by least squares method, and finally the practical incentive calculation formula was derived. In order to verify the validity of the method, the magnitude of the excitation force during normal operation and the contribution to the vibration indirection of the observation point were calculated. The results showed that the sum of contributions was only slightly smaller than the measured acceleration, which was about 84.7%-94.6% of the measured value, the excitation force calculated by this method was basically correct. The keyway clearance was used as a typical defect for the location verification test. It was found that the amplitude of each frequency in the excitation force spectrum near the defect increased significantly (71%-3 271%), while the amplitude of the slot excitation force away from the defect was only slightly added, the effectiveness of the positioning method was verified. The defect localization method proposed in this paper only adds one accelerometer and one measuring instrument to the original cleaning screening assembly quality inspection platform, the vibration excitation force at the connection points between the cleaning screen and the rack mounting could also be roughly calculated by measuring 4-8 acceleration responses.
agricultural machinery; vibration; models; cleaning screen; transmission path; incentives force estimation; defect location
2018-09-10
2019-01-07
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0700203)
李耀明,博士,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)裝備關(guān)鍵技術(shù)的基礎(chǔ)理論及產(chǎn)品的開發(fā)研究工作。Email:ymli@ujs.edu.cn
10.11975/j.issn.1002-6819.2019.05.002
S225.3;TB533+.1
A
1002-6819(2019)-05-0010-08
李耀明,龐 靖,徐立章,唐 忠,周躍鵬. 基于振動(dòng)激勵(lì)溯源的谷物聯(lián)合收獲機(jī)清選篩制造缺陷定位[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(5):10-17. doi:10.11975/j.issn.1002-6819.2019.05.002 http://www.tcsae.org
Li Yaoming, Pang Jing, Xu Lizhang, Tang Zhong, Zhou Yuepeng. Manufacturing defect location of cleaning screen of grain combine harvester based on vibration excitation tracing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(5): 10-17. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.05.002 http://www.tcsae.org