牛永紅,王忠勝,劉琨琨,蔡堯堯,李義科
?
膨潤土褐鐵礦改性白云石催化松木棒氣化工藝優(yōu)化
牛永紅1,2,王忠勝1,劉琨琨1,蔡堯堯1,李義科1
(1. 內(nèi)蒙古科技大學(xué)能源與環(huán)境學(xué)院,包頭 014010;2. 內(nèi)蒙古科技大學(xué)礦業(yè)研究院,包頭 014010)
針對白云石催化劑在生物質(zhì)催化氣化過程中易碎、易產(chǎn)生積碳失活問題,為提高其催化活性、抗積碳和再生性能,采用固定床下吸式氣化爐試驗(yàn)系統(tǒng),以Fe-Dol-Ben(膨潤土/褐鐵礦改性白云石)為催化劑,松木屑廢料經(jīng)成型為棒狀顆粒為原料,進(jìn)行高溫水蒸氣催化氣化試驗(yàn)。研究氣化溫度(700~1 000 ℃)、鐵含量(質(zhì)量分?jǐn)?shù)為5%~20%)以及催化劑使用次數(shù)(1~4)等因素對松木棒催化氣化性能及催化劑表面積碳影響。試驗(yàn)結(jié)果表明,水蒸氣和松木棒的質(zhì)量比(氣料比)為1,催化劑的鐵質(zhì)量分?jǐn)?shù)為15%,氣化溫度為900 ℃時(shí)氣化氣中氫氣的體積分?jǐn)?shù)達(dá)到最大值58.38%,F(xiàn)e-Dol-Ben催化劑積碳量隨氣化溫度升高逐漸減小,試驗(yàn)區(qū)間內(nèi)1 000 ℃時(shí)達(dá)到最小值,較700 ℃減少了80%。氣化氣中氫氣的體積分?jǐn)?shù)隨鐵含量增加呈先增加后降低的趨勢,積碳量呈先降低后增加,在鐵質(zhì)量分?jǐn)?shù)為15%催化效果較好。Fe-Dol-Ben催化劑較相同條件下分別用膨潤土及改性前白云石催化時(shí)積碳量分別減少了80.6%和53.6%。對催化劑進(jìn)行再生再利用試驗(yàn)表明,使用后的Fe-Dol-Ben催化劑進(jìn)行700 ℃煅燒再生后,其晶相與催化前基本相同,將其多次再生循環(huán)利用,隨著使用次數(shù)的增加氣化氣中氫氣的體積分?jǐn)?shù)逐漸降低,催化劑的積碳量逐漸增大,使用4次并用于催化氣化時(shí)氫氣的體積分?jǐn)?shù)仍接近50%,保持較好催化效果。綜合氣化效果、積碳量及經(jīng)濟(jì)性因素,F(xiàn)e-Dol-Ben鐵質(zhì)量分?jǐn)?shù)為15%,氣化溫度選取900 ℃為較理想工況。該研究可為改性白云石Fe-Dol-Ben催化劑的研制及生物質(zhì)高溫水蒸汽催化氣化技術(shù)提供參考。
氣化;生物質(zhì);催化劑;膨潤土/褐鐵礦改性白云石;松木燃料棒;積碳
生物質(zhì)是重要的可再生能源,催化氣化技術(shù)可將其轉(zhuǎn)化成高質(zhì)量的氣體燃料,從而提高生物質(zhì)能的利用效率[1-3]。生物質(zhì)水蒸氣氣化及其催化氣化技術(shù)的應(yīng)用對緩解環(huán)境污染及傳統(tǒng)能源枯竭問題有重大意義[4-7]。
煅燒后的白云石催化劑能夠顯著削弱焦油中芳香烴和脂肪烴的鍵能,使得焦油催化裂解反應(yīng)的活化能減小,碳—碳和碳—?dú)滏I更易斷開,氣化反應(yīng)進(jìn)行的更徹底[8-10]。Hurley等[11]的研究發(fā)現(xiàn)鐵氧化物催化劑的加入能夠促進(jìn)水汽變換反應(yīng)和催化裂解焦油。研究表明[12-14],膨潤土(bentonite)具有一定的催化活性,并且導(dǎo)熱系數(shù)高,適合用于催化劑載體。白云石催化劑具有較強(qiáng)的催化能力,但在試驗(yàn)過程中不穩(wěn)定,存在易碎,不易于回收、易產(chǎn)生積碳失活等問題。李永玲等[15]對酸性催化劑高鋁磚進(jìn)行焦油催化裂解試驗(yàn),結(jié)果表明,反應(yīng)初期催化劑表面形成單層積炭,隨著反應(yīng)時(shí)間的增加,新產(chǎn)生的焦炭會沉積在原來焦炭的上面,形成多層積炭。因此,對白云石催化劑改性,選擇合適的載體以提高其機(jī)械強(qiáng)度,同時(shí)添加助劑提高其催化及抗積碳性能,進(jìn)一步研究新型復(fù)合改性白云石催化劑有重要意義。
本文以膨潤土為載體,褐鐵礦(limonite)為助劑,在作者前期研究[4,16-18]的基礎(chǔ)上,進(jìn)一步研制Fe-Dol-Ben(膨潤土/褐鐵礦改性白云石)復(fù)合催化劑,通過生物質(zhì)催化氣化試驗(yàn),研究氣化溫度、鐵含量以及催化劑再生使用次數(shù)等因素對松木棒催化氣化性能及催化劑積碳影響,分析Fe-Dol-Ben復(fù)合催化劑的抗積碳及再生性能。該研究可為改性白云石Fe-Dol-Ben復(fù)合催化劑的研制及生物質(zhì)水蒸汽催化氣化技術(shù)應(yīng)用提供參考。
試驗(yàn)采用回收的廢棄松木屑做為生物質(zhì)原料(源于包頭市某木材廠)。松木屑使用KL120型顆粒機(jī)(河南鞏義機(jī)械制作廠)造粒成型,選直徑約4 mm、長約20 mm的成型松木棒為試驗(yàn)樣品,其顆粒密度約為1 200 kg/m3。成型松木棒的組分(干燥基),見表1。
白云石(源于唐縣鑫磊礦物粉體加工廠)是由鈣和鎂組成的碳酸鹽礦物,圖1a是天然白云石的XRD圖譜,其主要化學(xué)成分是CaMg(CO3)2,其催化活性較低。選取粒徑為(8±2) mm的白云石顆粒,經(jīng)電阻爐內(nèi)800 ℃溫度煅燒3 h后,置于干燥瓶中密閉冷卻至室溫(20 ℃)以備用。圖1b是白云石煅燒后的XRD圖譜,經(jīng)800 ℃煅燒后的白云石析出CO2,主要成分為CaO和MgO,形成CaO-MgO絡(luò)合物,提升了白云石的催化性能。
表1 成型松木棒組分分析(干燥基)
注:V為揮發(fā)分,F(xiàn)C為固定碳,A為灰分;水分含量較少,在水蒸汽氣化過程中影響較小,故忽略不計(jì)。
Note: V is volatiles, FC is fixed carbon, A is ash; The moisture content of industrial analysis is less, and has less affected in the process of steam gasification, so it is negligible.
圖1 天然白云石和經(jīng)800 ℃煅燒后白云石的XRD圖譜
將白云石研磨成粉末至120目左右,與鈣基膨潤土(河南省鞏義市元亨凈水材料廠)和褐鐵礦(研磨至120目左右)充分混合,并在其中加入一定濃度的膠黏劑(濃度為35%的硅酸鈉溶液,硅酸鈉為天津市天達(dá)凈化材料精細(xì)化工生產(chǎn)),攪拌均勻后經(jīng)擠壓,拉條后再造粒,制作Fe-Dol-Ben復(fù)合催化劑,其中鈣基膨潤土與白云石的比例為2∶3,鐵的質(zhì)量分?jǐn)?shù)分別為Fe-Dol-Ben復(fù)合催化劑的5%、10%、15%和20%。將成型催化劑顆粒置于干燥箱中,控溫105 ℃干燥1 h,之后再置于在電阻爐內(nèi)控溫800 ℃煅燒3 h,之后取出放入干燥瓶中密閉冷卻至室溫。試驗(yàn)選取粒徑為(5±1)mm的Fe-Dol-Ben復(fù)合催化劑以待備用。
將鈣基膨潤土與一定濃度的膠黏劑混合,制作方法與Fe-Dol-Ben復(fù)合催化劑相同,試驗(yàn)選取粒徑為(5± 1)mm的鈣基膨潤土催化劑以待備用。
鈣基膨潤土,白云石和褐鐵礦成分分析(催化劑的原料組分是由廠家檢測完提供的)如表2所示。
表2 催化劑原料組分
試驗(yàn)用生物質(zhì)高溫蒸汽催化氣化平臺為自行建設(shè)的固定床下吸式氣化爐試驗(yàn)系統(tǒng),如圖2所示,系統(tǒng)包括高溫水蒸汽發(fā)生及加熱裝置、生物質(zhì)氣化反應(yīng)裝置、溫度控制裝置、焦油吸收裝置,氣化氣冷卻、干燥及樣品氣采集裝置。其中,氣化反應(yīng)主體裝置中的加熱管為不銹鋼管,管長750 mm,內(nèi)徑22 mm。
1. 氮?dú)馄?2. 轉(zhuǎn)子流量計(jì) 3. 儲水罐 4. 可調(diào)速蠕動水泵 5. 溫度控制柜6. 蒸汽發(fā)生裝置 7. 蒸汽加熱裝置8. 進(jìn)料口 9. 生物質(zhì)氣化反應(yīng)裝置 10. 卸料口 11. 焦油吸收裝置12. 干燥裝置 13. 火焰 14. 集氣袋 15. 制冷裝置
試驗(yàn)開始前先通入一定量的氮?dú)鈦砼趴障到y(tǒng)內(nèi)空氣,并檢查氣密性。打開電爐并設(shè)置氣化反應(yīng)溫度,開啟水泵(可調(diào)速蠕動泵水流量為0.17 g/min,試驗(yàn)進(jìn)行30 min),待溫度達(dá)到設(shè)定值,稱取5 g成型松木棒和5 g催化劑加入反應(yīng)器中(松木棒和催化劑分別加入反應(yīng)器,催化劑在下,松木棒在上)。試驗(yàn)開始10 min后產(chǎn)氣穩(wěn)定時(shí),收集氣化氣樣品,反應(yīng)開始30 min后停爐,關(guān)閉水泵,待管式爐體溫度冷卻至室溫(20 ℃)后卸料,收集反應(yīng)殘留物。蒸汽加熱裝置中的蒸汽是由可調(diào)速蠕動泵輸入,通過加熱裝置將水加熱成過熱蒸汽,隨氮?dú)膺M(jìn)入生物氣化反應(yīng)裝置中。
試驗(yàn)過程中,氮?dú)饬髁繛?00 mL/min,S/B(氣料比)約為1,多余的氣化氣經(jīng)冷卻凈化后燃燒處理。每組工況進(jìn)行多次試驗(yàn),采取3個(gè)平行樣的平均值作為該工況下的測試結(jié)果。
通過對氣化氣的組分、催化劑積碳量及催化劑樣品的XRD圖譜分析測試,考查氣化反應(yīng)溫度,復(fù)合催化劑鐵含量及催化劑的使用次數(shù)3個(gè)因素對松木棒催化氣化特性及催化劑積碳的影響。
氣化氣樣品組分通過Agilent 7890B 型氣相色譜儀(美國安捷倫公司生產(chǎn))進(jìn)行圖譜分析。以氬氣作載氣,利用氫火焰離子化檢測器分析C2H6、C2H4、C2H2、C3H8、C3H6等有機(jī)氣體,利用熱導(dǎo)檢測器分析H2、CO、CO2等無機(jī)氣體和CH4。載氣流速1 mL/min,進(jìn)樣量為10L,分流比4∶1。催化劑試驗(yàn)前后的質(zhì)量由精密電子天平(杭州萬特衡器有限公司生產(chǎn),型號為WT-B,精度為0.001g)進(jìn)行稱量。催化劑是球狀,且反應(yīng)后形狀不變。松木棒是柱狀,反應(yīng)后也會保持一定形狀,兩者分離比較容易。采用德國布魯克公司生產(chǎn)的Bruker D8 Advance X射線衍射儀對催化劑樣品進(jìn)行掃描,步長0.05,1s/步,掃描范圍20°~80°。
試驗(yàn)氣化氣組分及催化劑積碳量的計(jì)算,應(yīng)用以下公式。
氣化氣各組分的計(jì)算:
第組分百分?jǐn)?shù)=
式中C代表第種組分的濃度。
催化劑積炭量的計(jì)算[15]:
式中C為積炭量,mg/g;1為催化反應(yīng)前催化劑的質(zhì)量,g;2為催化反應(yīng)后催化劑的質(zhì)量,g。
氣化溫度為900℃,S/B為1,在氣化爐內(nèi)放入5 g松木棒和5 g催化劑的條件下進(jìn)行試驗(yàn)。比較鈣基膨潤土與白云石,F(xiàn)e-Dol-Ben復(fù)合催化劑(鐵質(zhì)量分?jǐn)?shù)為15%)氣化試驗(yàn)后催化劑積碳量結(jié)果。鈣基膨潤土催化劑積碳量為67 mg/g,白云石催化劑積碳量為28 mg/g,F(xiàn)e-Dol- Ben復(fù)合催化劑積碳量為13mg/g。可以看出Fe-Dol-Ben復(fù)合催化劑化劑抗積碳性能優(yōu)于白云石,鈣基膨潤土最差。分析原因?yàn)?,白云石催化劑中主要成分是CaO和MgO,相比鈣基膨潤土有較大的堿性活性中心,在氣化過程中對焦油和烴類化合物的重整過程有很強(qiáng)的催化作用[19-21],可以有效增強(qiáng)催化劑的抗積碳能力。對比鈣基膨潤土及白云石催化劑,F(xiàn)e-Dol-Ben復(fù)合催化劑積碳量分別減少了80.6%和53.6%。催化劑中褐鐵礦粉鐵的加入有利于提高催化劑的傳熱性,抗燒結(jié)能力增強(qiáng),尤其增加催化劑的攜氧能力,促進(jìn)催化劑的活性和穩(wěn)定性[18]。
氣化溫度對生物質(zhì)氣化過程及催化劑表面積碳的形成都有影響,試驗(yàn)選取氣化溫度為700、800、900、1 000 ℃,研究不同氣化溫度對氣化氣組分及催化劑積碳影響的變化規(guī)律。選擇催化劑鐵質(zhì)量分?jǐn)?shù)為15%,S/B為1,催化劑使用1次。氣化溫度對氣體成分的影響如圖3a所示。H2體積分?jǐn)?shù)從700℃時(shí)的50.32%降低到800 ℃的47.95%,原因?yàn)榇呋瘎┲需F氧化物催化裂解焦油時(shí)會消耗氫氣。隨著氣化溫度升高氣化反應(yīng)加強(qiáng),在900 ℃時(shí),此值增加到58.38%,當(dāng)溫度升高到1 000 ℃,H2的體積分?jǐn)?shù)有略微的下降,是由于該溫度下催化劑發(fā)生了燒結(jié)現(xiàn)象,催化活性降低[22]。試驗(yàn)溫度區(qū)間內(nèi),CO2體積分?jǐn)?shù)由12%升至900 ℃的17.79%;CO體積分?jǐn)?shù)從700 ℃時(shí)的27.1%降低到1 000 ℃時(shí)的16.05%;CH4與CnHm(n≥2)體積分?jǐn)?shù)的變化趨勢不明顯??紤]氣化溫度繼續(xù)升高,催化劑燒結(jié)會更嚴(yán)重,活性中心Fe3+減少,催化能力下降,耗電量大,故本試驗(yàn)沒有進(jìn)行高于1 000℃如1 100 ℃的工況測試。
注:S/B為1,F(xiàn)e質(zhì)量分?jǐn)?shù)為15%,催化劑使用次數(shù)為1。
白云石經(jīng)煅燒后生成MgO和CaO,在催化氣化過程中會與CO2結(jié)合生成MgCO3和CaCO3,但隨氣化溫度升高其結(jié)合能力下降,因此CO2體積分?jǐn)?shù)氣化隨溫度升高逐漸增大,隨后基本保持不變;Fe2+與H2O的氧化還原反應(yīng)生成Fe3+,隨著氣化溫度的升高反應(yīng)消弱,導(dǎo)致催化劑中Fe3+減少,因而削弱了Fe3+氧化一氧化碳和氫氣的反應(yīng),致使CO體積分?jǐn)?shù)呈現(xiàn)出下降的趨勢;Fe3+的減少使得焦油催化裂解效率下降,因而900 ℃時(shí)CH4和CnHm的體積分?jǐn)?shù)降低。溫度繼續(xù)升高到1 000 ℃,CH4和CnHm的體積分?jǐn)?shù)有所升高,推測原因?yàn)樵? 000 ℃的氣化溫度下,溫度對焦油裂解產(chǎn)生CH4和CnHm的影響大于催化劑催化效果下降的影響。
如圖3b所示,隨著氣化溫度升高積碳量減小,在700 ℃時(shí)積碳量最高,達(dá)到40 mg/g,溫度升高到1 000 ℃時(shí)只有8 mg/g,減少了80%。原因?yàn)檩^高的氣化溫度促進(jìn)碳的水蒸氣氣化反應(yīng),促進(jìn)焦油向小分子輕質(zhì)氣體方向轉(zhuǎn)化,減少其向焦炭方向的轉(zhuǎn)化,進(jìn)而有利于去除催化劑表面的積碳[23]。綜合考慮,雖然氣化溫度為1 000 ℃,催化劑的積碳量最少,但考慮到催化劑催化效果以氣化溫度越高經(jīng)濟(jì)性越差等因素,試驗(yàn)氣化溫度選取900 ℃較合適。
圖4a是生物質(zhì)在復(fù)合催化劑作用下水蒸氣重整的產(chǎn)氣組分,氣化溫度為900 ℃,S/B為1,催化劑使用1次。從圖中可以看出,隨著鐵含量的增加,H2的含量由鐵質(zhì)量分?jǐn)?shù)為5%時(shí)的51.12%增加到鐵質(zhì)量分?jǐn)?shù)為15%時(shí)的58.38%,提高了14.2%,說明隨著負(fù)載褐鐵礦的增加,復(fù)合催化劑對生物質(zhì)焦油水蒸氣重整的催化作用增大,從而H2的體積分?jǐn)?shù)增加,但是當(dāng)鐵質(zhì)量分?jǐn)?shù)為20%時(shí),H2的體積分?jǐn)?shù)降低,這是因?yàn)榧尤脒^量的褐鐵礦粉,鐵的氧化物在焦油水蒸氣重整反應(yīng)中發(fā)生凝簇現(xiàn)象,導(dǎo)致催化劑的催化能力減弱,催化效果下降。CO2體積分?jǐn)?shù)由鐵質(zhì)量分?jǐn)?shù)5%時(shí)的17.51%升至鐵質(zhì)量分?jǐn)?shù)20%時(shí)的18.48%;CO體積分?jǐn)?shù)逐漸降低,從鐵質(zhì)量分?jǐn)?shù)5%時(shí)的23.97%到鐵質(zhì)量分?jǐn)?shù)20%時(shí)的18.22%;CH4與CnHm(n≥2)體積分?jǐn)?shù)的變化不大。
注:溫度為900 ℃,S/B為1,催化劑使用次數(shù)為1。
如圖4b所示,適量的鐵有利于增加催化劑的比表面積,提高抗燒結(jié)和抗積碳能力[24-26],因而隨著鐵含量的增加,催化劑積碳量由鐵質(zhì)量分?jǐn)?shù)為5%時(shí)的21 mg/g減少到鐵質(zhì)量分?jǐn)?shù)為15%時(shí)11 mg/g,但鐵的含量繼續(xù)增加,使得催化劑的表面鐵氧化物凝簇,催化性能下降,催化劑的積碳量增加,催化劑的催化性能下降,因而鐵的質(zhì)量分?jǐn)?shù)為15%時(shí)較為合適,催化效果及抗積碳效果較好。
松木棒水蒸汽催化氣化重整反應(yīng)后,F(xiàn)e-Dol-Ben復(fù)合催化劑因表面積碳等原因會導(dǎo)致其催化活性下降,影響催化效果,因而對使用后的Fe-Dol-Ben催化劑進(jìn)行再生循環(huán)利用具有重要意義。
對Fe-Dol-Ben復(fù)合催化劑進(jìn)行了再生再利用試驗(yàn),探究Fe-Dol-Ben復(fù)合催化劑(鐵質(zhì)量分?jǐn)?shù)15%)經(jīng)1~3次再生后對松木棒水蒸汽氣化的催化效果。Fe-Dol-Ben催化劑經(jīng)催化反應(yīng)后,取出置于電阻爐內(nèi),控溫700 ℃煅燒2 h,能夠有效清除其表面積碳。氣化試驗(yàn)工況為氣化溫度900 ℃,氣料比S/B為1,如圖5a所示,F(xiàn)e-Dol-Ben復(fù)合催化劑再生使用后,氣化氣中H2的體積分?jǐn)?shù)分別由使用1次的58.38%減少為使用2次的54.65%、3次的53.15%和4次的49.41%,可見隨著Fe-Dol-Ben復(fù)合催化劑使用次數(shù)的增加,其對焦油的催化重整效果逐漸減弱。原因?yàn)殡S著催化劑多次煅燒再生,催化劑中的鐵氧化物逐漸燒結(jié)團(tuán)聚,積碳量不斷累加,致使催化劑的催化能力下降,導(dǎo)致復(fù)合催化劑對松木棒揮發(fā)分的催化重整活性減弱。
注:溫度為900 ℃,S/B為1,鐵的質(zhì)量分?jǐn)?shù)為15%。
圖5b探究了催化劑的使用次數(shù)對積碳量的影響,隨著使用次數(shù)的增加,積碳量逐漸增大,由使用1次時(shí)的11 mg/g升高到使用4次時(shí)的21 mg/g。催化劑碳沉積是催化活性下降的主要因素[27],催化劑孔隙有焦炭沉積,致使催化劑孔徑減小,孔徑的比表面積減小,因此重整的大分子氣體不能擴(kuò)散到孔隙中,使催化劑內(nèi)表面可利用面積減少[28]。有研究表明[29],催化劑催化重整一定時(shí)間后,碳沉積量保持穩(wěn)定,即催化劑積碳的生成量等于消耗量,此時(shí)催化劑仍有殘余的催化活性。催化劑是否能夠繼續(xù)發(fā)揮催化作用及是否需要更換,由催化劑的殘余催化活性決定。試驗(yàn)發(fā)現(xiàn),盡管Fe-Dol-Ben催化劑再生后積碳量增加,但經(jīng)4次使用后用于催化氣化,氫氣的體積分?jǐn)?shù)仍接近50%,表明催化劑有較長的使用壽命及較強(qiáng)的可再生性能。
圖6為Fe-Dol-Ben復(fù)合催化劑在試驗(yàn)前,900 ℃反應(yīng)后及第1次再生(700 ℃煅燒)后3種狀態(tài)下的XRD分析圖譜。從圖中可以看出,反應(yīng)前復(fù)合催化劑中的主要成分有CaO、MgO和Fe2O3,可知復(fù)合催化劑中的鐵主要以Fe2O3存在。復(fù)合催化劑與生物質(zhì)氣化焦油發(fā)生了氧化還原反應(yīng),催化劑中主要成分進(jìn)行的CaO?CaCO3、MgO?MgCO3、Fe2O3?FeO和Fe2O3?Fe3O4的轉(zhuǎn)變過 程[30-31],再生后的XRD圖譜上,F(xiàn)eO和Fe3O4的圖譜峰消失,F(xiàn)e2O3的峰又重新出現(xiàn),說明催化劑經(jīng)過再生后,F(xiàn)eO和Fe3O4又被氧化成Fe2O3,且CaCO3分解為CaO,MgCO3分解為MgO,重新暴露活性組分的活性位點(diǎn),保持了較好的催化活性。
圖6 Fe-Dol-Ben復(fù)合催化劑的XRD圖譜
1)改性白云石Fe-Dol-Ben催化劑提高了抗積碳性能。較相同條件下分別用鈣基膨潤土和改性前白云石進(jìn)行松木棒高溫蒸氣催化氣化時(shí)積碳量分別減少了80.6%和53.6%。催化劑中褐鐵礦粉鐵的加入有利于提高催化劑的傳熱性,抗燒結(jié)能力增強(qiáng),尤其增加催化劑的攜氧能力,促進(jìn)催化劑的活性和穩(wěn)定性。
2)利用Fe-Dol-Ben復(fù)合催化劑催化,在氣化溫度700~1 000 ℃區(qū)間內(nèi),隨著氣化溫度升高,900 ℃時(shí)氣化氣中H2的體積分?jǐn)?shù)達(dá)到最大值,在1 000 ℃時(shí)由于催化劑的燒結(jié),H2的體積分?jǐn)?shù)減小。積碳量隨氣化溫度升高逐漸減小。較高的氣化溫度有利于去除催化劑表面的積碳,綜合考慮氣化效果及催化劑的積炭量,確定氣化溫度900 ℃較好。
3)Fe-Dol-Ben復(fù)合催化劑鐵質(zhì)量分?jǐn)?shù)在15%時(shí)催化效果較好,H2的體積分?jǐn)?shù)最高達(dá)到58.38%,積碳量最少為11 mg/g。在焦油水蒸氣重整反應(yīng)中,鐵的負(fù)載大于15%,會使鐵的氧化物發(fā)生凝簇現(xiàn)象,導(dǎo)致催化劑部分失活,催化效果下降,積碳量增加。
4)晶相分析再生前后的復(fù)合催化劑,主要成分基本沒有變化。利用使用4次的復(fù)合催化劑進(jìn)行松木棒蒸汽催化氣化,氣化氣中H2的體積分?jǐn)?shù)仍接近50%,反映Fe-Dol-Ben復(fù)合催化劑具有較長的使用壽命及較好的可再生性能。
[1] Skoulou V, Swiderski A, Yang W, et al. Process characteristics and products of olive kernel high temperature steam gasification (HTSG)[J]. Bioresour Technology, 2009, 100(8): 2444-2451.
[2] Nimit N, Islam I A, Ashwani K G. Hydrogen and syngas yield from residual branches of oilpalm tree using steam gasification[J]. International Journal of Hydrogen Energy, 2011, 36(6): 3835-3843.
[3] Aitziber E, Gartzen L, Maider A, et al. Syngas from steam gasification of polyethlene in a conical spouted bed reactor[J]. Fuel, 2013, 109(7): 461-469.
[4] 牛永紅,韓楓濤,張雪峰, 等. 白云石催化松木燃料棒水蒸氣氣化試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(12):246-252. Niu Yonghong, Han Fengtao, Zhang Xuefeng, et al. Experiment on steam gasification of pine fuel rods with dolomite catalyst[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 47(12): 246-252. (in Chinese with English abstract)
[5] 馬承榮,肖波,陳英明. 生物質(zhì)氣化制取富氫燃?xì)獾膶?shí)驗(yàn)研究[J]. 燃燒科學(xué)與技術(shù),2007,13(5):461-467. Ma Chenrong, Xiao Bo, Chen Yingming. Experimentsal research on biomass gasification for hydrogen rich gas production[J]. Journal of Combustion Science and Technology, 2007, 13(5): 461-467. (in Chinese with English abstract)
[6] Remón, J, Broust F, Valette J, et al. Production of a hydrogen-rich gas from fast pyrolysis bio-oils: Comparison between homogeneous and catalytic steam reforming routes[J]. International Journal of Hydrogen Energy, 2014, 39(1): 171-182.
[7] Gao N B, Li A M, Quan C, et al. Characteristics of hydrogen-rich gas production of biomass gasification with porous ceramic reforming[J]. International Journal of Hydrogen Energy, 2012, 37(12): 9610-9618.
[8] 周勁松,劉亞軍,駱仲泱,等. 酸性、堿性催化劑對生物質(zhì)焦油催化裂解影響分析[J]. 浙江大學(xué)學(xué)報(bào):工學(xué)版,2005,39(7):1047-1051. Zhou Jingsong, Liu Yajun, Luo Zhongyang, et al. Effects of solid acid and alkali catalysts on catalytic cracking of biomass tar[J]. Journal of Zhejiang University: Engineering Science, 2005, 39(7): 1047-1051. (in Chinese with English abstract)
[9] Corujo A, Yermán L, Arizaga B, et al. Improved yield parameters in catalytic steam gasification of forestry residue; optimizing biomass feed rate and catalyst type[J]. Biomass and Bioenergy, 2010, 34(12): 1695-1702.
[10] Pinto F, Lopes H, André R N, et al. Effect of catalysts in the quality of syngas and by-products obtained by co-gasification of coal and wastes. 1. tars and nitrogen compounds abatement[J]. Fuel, 2007, 86(14): 2052-2063.
[11] Hurley S, Xu C, Preto F, et al. Catalytic gasification of woody biomass in an air-blown fluidized-bed reactor using Canadian limonite iron ore as the bed material[J]. Fuel, 2012, 91(1): 170-176.
[12] Borah B J, Borah S J, Saikia K, et al. Efficient Suzuki–Miyaura coupling reaction in water: Stabilized Pdo-Montmorillonite clay composites catalyzed reaction[J]. Applied Catalysis A: General, 2014, 469: 350-356.
[13] Occelli M L, Tindwa R M. Physicochemical properties of montmorillonite interlayered with cationic oxyaluminum pillars[J]. Clays and Clay Minerals, 1983, 31(1): 22-28.
[14] Aldersley M F, Joshi P C. RNA dimer synthesis using montmorillonite as a catalyst: The role of surface layer charge[J]. Applied Clay Science, 2013, 83/84: 77-82.
[15] 李永玲, 吳占松. 生物質(zhì)焦油催化裂解過程中酸性催化劑積碳失活與燒焦再生特性[J]. 中國電機(jī)工程學(xué)報(bào), 2014, 34(8):1297-1303. Li Yongling, Wu Zhansong. Deactivation and burning regeneration of coked acid catalysts in catalytic cracking process of biomass tar[J]. Journal of Chinese Electrical Engineering Science, 2014, 34(8): 1297-1303. (in Chinese with English abstract)
[16] 牛永紅,韓楓濤,李義科,等. 松木成型燃料水蒸氣氣化反應(yīng)特性[J]. 化工學(xué)報(bào),2017,68(3):1191-1198. Niu Yonghong, Han Fengtao, Li Yike, et al. Steam gasification characteristic of pine briquette fuel[J]. Journal of Chemical Industry and Engineering, 2017, 68(3): 1191-1198. (in Chinese with English abstract)
[17] 牛永紅,韓楓濤,陳義勝. 高溫蒸汽松木顆粒富氫氣化試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(3):247-252. Niu Yonghong, Han Fengtao, Chen Yisheng. Experimental study of high-temperature steam gasification of pine particles for hydrogen-rich gas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 247-252. (in Chinese with English abstract)
[18] 牛永紅,韓楓濤,張雪峰,等. 膨潤土/褐鐵礦改性白云石催化劑改善松木蒸汽富氫氣化性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(7):213-219.
Niu Yonghong, Han Fengtao, Zhang Xuefeng, et al. Performance improvement of steam gasification of pine for hydrogen-rich gas with dolomite catalyst modified by bentonite/limonite[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(7): 213-219. (in Chinese with English abstract)
[19] 孫寧,應(yīng)浩,徐衛(wèi),等. CaO對木屑水蒸氣氣化制取富氫燃?xì)獾挠绊慬J]. 林產(chǎn)化學(xué)與工業(yè),2017,37(2):141-147. Sun Ning, Ying Hao, Xu Wei, et al. Influence of CaO on hydrogen-rich gas production by steam gasification of sawdust[J]. Chemistry and Industry of Forest Products, 2017, 37(2): 141-147. (in Chinese with English abstract)
[20] Roche E, de Andrés, Juan Manuel, Narros A, et al. Air and air-steam gasification of sewage sludge. The influence of dolomite and throughput in tar production and composition[J]. Fuel, 2014, 115: 54-61.
[21] Berrueco C, Montané D, Matas Güell B, et al. Effect of temperature and dolomite on tar formation during gasification of torrefied biomass in a pressurized fluidized bed[J]. Energy, 2014, 66: 849-859.
[22] Mc Cabe R W, Trovarelli A. Forty years of catalysis by ceria: a success story[J]. Applied Catalysis B: Environmental, 2016, 197: 1-1.
[23] 賈立. 生物質(zhì)熱解氣白云石催化重整的試驗(yàn)研究[D]. 武漢:華中科技大學(xué),2007. Jia Li. An Experimental Research on Reforming Pyrolyzation Gas With Dolomite[D]. Wuhan: Huazhong University of Science and Technology, 2007. (in Chinese with English abstract)
[24] 孫云娟. 生物質(zhì)與煤共熱解氣化行為特性及動力學(xué)研究[D]. 北京:中國林業(yè)科學(xué)研究院,2013. Sun Yunjuan. Study on the Charicteristic and Kinetic of Biomass and Coal Co-pyrolysis[D]. Beijing: Chinese Academy of Forestry, 2013. (in Chinese with English abstract)
[25] 張波. 鈣基添加劑強(qiáng)化生物質(zhì)熱解氣化產(chǎn)氫特性及作用機(jī)制研究[D]. 重慶:重慶大學(xué),2016. Zhang Bo. Characteristic and Mechanism Study of Enhanced Hydrogen Production by Ca-based Additive from Biomass Pyrolysis and Gasification[D]. Chongqing: Chongqing University, 2016. (in Chinese with English abstract)
[26] Sun Y, Jiang J, Kantarelis E, et al. Development of a bimetallic dolomite based tar cracking catalyst[J]. Catalysis Communications, 2012, 20: 36-40.
[27] Jumluck S, Kazuhi R O S, ThaRapong V, et al. A highly efficient catalyst for tar gasification with steam[J]. Catal Commun, 2005, 6(6): 437-440.
[28] 張文華. 生物質(zhì)焦油在半焦基催化劑下水蒸氣重整的研究[D]. 大連:大連理工大學(xué),2014. Zhang Wenhua. Catalytic Steam Reforming of Biomass Tar with Char-based Catalysts[D]. Dalian: Dalian University of Technology, 2014. (in Chinese with English abstract)
[29] 王鐵軍,常杰,吳創(chuàng)之,等. 生物質(zhì)焦油裂解催化劑制備及其催化裂解性能[J]. 煤炭轉(zhuǎn)化,2003,26(1),89-93. Wang Tiejun, Chang Jie, Wu Chuangzhi, et al. Performance of catalytic cracking of biomass tar and catalyst preparation[J]. Coal Conversion, 2003, 26(1), 89-93. (in Chinese with English abstract)
[30] Nam I S, Kittrell J R. Use of catalyst coke content in deactivation modeling[J]. Industrial & Engineering Chemistry Process Design and Development, 1984,23(2):237-242.
[31] 黃振,何方,李新愛,等. Fe基氧載體的生物質(zhì)化學(xué)鏈氣化過程熱力學(xué)分析及試驗(yàn)研究[J]. 太陽能學(xué)報(bào),2013, 34(11): 1943-1949. Huang Zhen, He Fang, Li Xinai, et al. Thermodynamic analysis and experimental investigation of chemical- looping gasification of biomass with fe-based oxygen carriers[J]. Acta Energiae Solaris Sinica, 2013, 34(11): 1943-1949. (in Chinese with English abstract)
Processing optimization of pine rod gasification catalyzed by bentonite/limonite modified dolomite
Niu Yonghong1,2, Wang Zhongsheng1, Liu Kunkun1, Cai Yaoyao1, Li Yike1
(1.014010,; 2.014010,)
In order to improve the catalytic activity, anti-carbon deposition and regeneration performance of dolomite catalyst which was easy to accumulate carbon and deactivate during biomass catalytic gasification, a fixed-bed suction gasifier test system was adopted in this study. Firstly, rod-shape particles were prepared from pine chips wastes using Fe-Dol-Ben (bentonite/limonite modified dolomite) as catalyst and fixed-bed downdraft gasifier as main body. An experimental system for biomass steam gasification was established. Then the high temperature steam catalytic gasification test was carried out with the above two raw materials. Finally, the effects of several factors on the catalytic gasification performance of pine wood and carbon deposition on the catalyst surface were studied. The factors affecting the catalytic gasification performance and carbon deposition on the catalyst surface were gasification temperature (temperature range is 700-1000 ℃), iron content (mass percentage range is 5%-20%) and the number of catalyst used (catalyst used number is 1-4). The results showed that the mass percentage of iron in FeDol-Ben catalyst was 15%, the gasification temperature was 900 ℃, and the volume fraction of hydrogen in gasification gas reaches the maximum of 58.38% under the condition that the mass ratio of steam to pine wood was 1. The results also showed that with the increasing of gasification temperature, the carbon deposition in FeDol-Ben catalyst decreased gradually, reaching the minimum value at 1 000 ℃, 80% lower than that at 700 ℃. In addition, the volume fraction of hydrogen in gasified gas increased first and then decreased with the increasing of iron content. At the same time, the carbon content decreased first and then increased, and the catalytic effect was better when the iron mass content was 15%. Under the same conditions as bentonite and pre-modified dolomite, the carbon deposition of Fe-Dol-Ben catalyst decreased by 80.6% and 53.6%, respectively. The experiment of catalyst regeneration and reuse showed that the crystal phase of the catalyst was basically the same as that of the pre-catalyst after the Fe-Dol-Ben catalyst regeneration at 700 ℃. The volume fraction of hydrogen in gasification gas decreased with the increasing of the number of times of regeneration, and the carbon deposition of the catalyst increased gradually. The results also showed that the volume fraction of hydrogen was still close to 50% after four times of catalytic gasification, which maintained the catalytic effect. In summary, considering the gasification effect, carbon deposition and economic factors, the optimization conditions were iron content of 15% and gasification temperature of 900 ℃. The study can provide reference for the development of bentonite/limonite modified dolomite catalyst and biomass high temperature steam catalytic gasification technology.
gasification; biomass; catalysts; Fe-Dol-Ben (bentonite/limonite modified dolomite); pine rod; carbon deposition
2018-08-20
2019-02-13
國家自然科學(xué)基金地區(qū)科學(xué)基金項(xiàng)目(51768054,51764046);內(nèi)蒙古自然科學(xué)基金(2017MS(LH)0524);校企合作項(xiàng)目(2018073)
牛永紅,內(nèi)蒙古涼城人,博士生,教授。主要從事可再生能源資源高效清潔利用研究。Email:yonghong_niu@126.com
10.11975/j.issn.1002-6819.2019.05.029
TK6
A
1002-6819(2019)-05-0234-07
牛永紅,王忠勝,劉琨琨,蔡堯堯,李義科.膨潤土褐鐵礦改性白云石催化松木棒氣化工藝優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019, 35(5):234-240.doi:10.11975/j.issn.1002-6819.2019.05.029 http://www.tcsae.org
Niu Yonghong, Wang Zhongsheng, Liu Kunkun, Cai Yaoyao, Li Yike. Processing optimization of pine rod gasification catalyzed by bentonite/limonite modified dolomite [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(5): 234-240. (in Chinese with English abstract) Doi:10.11975/j.issn.1002-6819.2019.05.029 http://www.tcsae.org