石平 許哲 李哲 王淼 常曉峰 杜良智
[摘要]目的:探討分析上頜前牙美學(xué)區(qū)種植修復(fù)使用角度基臺(tái)的影響因素。方法:建立仿真模型,運(yùn)用三維有限元法(Finite Element Method,F(xiàn)EM)分析4.0mm直徑、10mm和13mm長度(Length,L)的種植體連接不同角度基臺(tái)(0°、10°、20°、30°)的生物力學(xué)性能。結(jié)果:隨著基臺(tái)角度增大,種植修復(fù)系統(tǒng)、皮質(zhì)骨、松質(zhì)骨各部位應(yīng)力及應(yīng)變遞增,分布更集中;與0°角度基臺(tái)對比,使用 30°角度基臺(tái)可增加34.8%(L13mm)、39.5%(L10mm)的皮質(zhì)骨區(qū)最大應(yīng)力,增加18.1%(L13mm)、39.6%(L10mm)的松質(zhì)骨區(qū)最大應(yīng)力;同時(shí),皮質(zhì)骨區(qū)最大應(yīng)變增加64.0%(L13mm)、64.4%(L10mm),松質(zhì)骨區(qū)最大應(yīng)變增加23.9%(L13mm)、57.2%(L10mm);種植體長度增加3mm,皮質(zhì)骨和松質(zhì)骨周圍最大應(yīng)力能減少10.6%~18.2%,皮質(zhì)骨區(qū)的最大彈性形變減少2.1%~2.2%,松質(zhì)骨區(qū)的最大彈性形變減少17.9%~25.4%;負(fù)載下,各組模型在連接接近20°角度基臺(tái)時(shí),皮質(zhì)骨應(yīng)變已接近骨彈性閾值。結(jié)論:基臺(tái)角度越大,種植系統(tǒng)及牙槽骨所受應(yīng)力、應(yīng)變越大越集中;上前牙區(qū)4mm直徑種植體建議連接小于20°的角度基臺(tái),以減少局部皮質(zhì)骨應(yīng)力應(yīng)變;增加種植體長度一定程度上可減小應(yīng)力和分散應(yīng)變。
[關(guān)鍵詞]角度基臺(tái);種植;有限元法;上前牙區(qū);美學(xué)區(qū)
[中圖分類號(hào)]R782.12? ? [文獻(xiàn)標(biāo)志碼]A? ? [文章編號(hào)]1008-6455(2019)02-0106-04
Abstract: Objective? To explore influences of angled abutments connected with implant restoration in anterior maxilla aesthetic area. Methods? Established simulation models and utilized finite element method (FEM) analysing biomechanical properties of implants (Diameter, 4.0 mm; Length, 10mm and 13mm) with different angled abutments(0°,10°,20°,30°). Results? With the increase of abutment angle, values of stress and strain of all parts increased, and distributions of stress and strain of all parts became more concentrated;? Compared with 0°abutment, connected with 30° angled abutments lead to increases in stress, which were 34.8%(L13mm),39.5%(L10mm)in cortical bone and 23.9%(L13mm),57.2%(L10mm)in cancellous bone, and increases in strain, which were 64.0%(L13mm),64.4%(L10mm)in cortical bone and 23.9%(L13mm),57.2%(L10mm)in cancellous bone. Cortical bone elastic deformations may exceed the bone elastic threshold when angle of abutments got bigger than 20 °.An increase of 3mm in implant length lead to a 10.6%~18.2% decrease of stress in cortical and cancellous bone, and a 2.1%~2.2%? decrease of strain in cortical bone. Conclusion With abutment angle increase, stresses and strains got bigger and more concentrated in the abutment, cortical and cancellous bone; Abutments with angle less than 20° were safer for implant(Diameter 4mm) restorations in anterior maxilla area regarding stress and strain distribtion in cortical bone. Increases of the implant length may helps to? the distribution of force to a certain extend.
Key words: angled abutment; implant; finite element method(FEM); anterior maxilla; aesthetic area
上前牙美學(xué)區(qū)域牙齒缺失進(jìn)行種植修復(fù)時(shí)常需使用角度基臺(tái), 研究表明,種植修復(fù)體連接角度基臺(tái)時(shí)會(huì)使得局部應(yīng)力更集中,更有可能導(dǎo)致種植體周圍骨吸收和遠(yuǎn)期種植修復(fù)的美學(xué)效果及使用時(shí)間[1]。目前,關(guān)于上前牙美學(xué)區(qū)種植修復(fù)使用角度基臺(tái)的臨床研究較少[2]。為探索上頜前牙美學(xué)區(qū)種植修復(fù)使用角度基臺(tái)的影響,本研究采用三維有限元法(Finite Element Method ,F(xiàn)EM),通過計(jì)算機(jī)及相關(guān)軟件建立三維仿真模型模擬負(fù)載,進(jìn)行相關(guān)生物力學(xué)性能實(shí)驗(yàn)評(píng)估,研究上頜前牙缺牙區(qū)種植單冠修復(fù)使用不同角度的基臺(tái)進(jìn)行修復(fù)后,負(fù)載下種植系統(tǒng)各部件及周圍骨的應(yīng)力和應(yīng)變情況,為臨床上前牙區(qū)使用角度基臺(tái)提供理論參考。
1? 資料和方法
運(yùn)用Solidworks等軟件建模,種植體(直徑4.0mm,長度L10mm和L13mm,螺距0.83mm,螺紋深度0.5mm)、基臺(tái)(0°,10°,20°,30°)及配套的牙冠及皮質(zhì)骨(嵴頂區(qū)厚度為2mm)和松質(zhì)骨,導(dǎo)入Ansys workbench 14.0中運(yùn)用FEM,以von-Mises 應(yīng)力峰值(von-Mises peak stress,σvM)、張力應(yīng)變峰值(max principle peak elastic strain,εmax)及分布區(qū)域?yàn)橹笜?biāo),各部位各材料力學(xué)參數(shù),見表1。種植體、基臺(tái)的應(yīng)力屈服強(qiáng)度(Yield Strength)為800MPa,皮質(zhì)骨為104MPa,松質(zhì)骨為82MPa[3-6];骨閾值理論認(rèn)為骨組織受力發(fā)生形變,形變增加1%即為10 000μstrain,1 500~4 000μstrain為其功能性應(yīng)變范圍,大于4 000μstrain會(huì)發(fā)生病理性改變[7-8]。
2? 結(jié)果
研究模型顯示,負(fù)載下種植修復(fù)系統(tǒng)各個(gè)部件及頜骨的皮質(zhì)骨和松質(zhì)骨呈現(xiàn)不同層次的應(yīng)力和應(yīng)變分布,負(fù)載下牙冠部咬合力能通過基臺(tái)-種植體界面及種植體-骨界面逐層傳導(dǎo)至種植體周圍皮質(zhì)骨和松質(zhì)骨(表2)。
實(shí)驗(yàn)結(jié)果顯示,種植修復(fù)體的負(fù)載可通過牙冠、基臺(tái)、種植體傳導(dǎo)至周圍皮質(zhì)骨及松質(zhì)骨??傮w上,von-Mises 應(yīng)力峰值σvM分布在近洞緣處的基臺(tái)、種植體及頜骨的唇側(cè)和腭側(cè);相對于基臺(tái),種植體負(fù)載較少,種植體應(yīng)力主要分布在其頸部近嵴頂區(qū),體部和根部應(yīng)力分布較少;頜骨的主要負(fù)載區(qū)為種植體頸部的皮質(zhì)骨區(qū)域,根端松質(zhì)骨區(qū)承擔(dān)應(yīng)力最小,但應(yīng)變較大,僅次于皮質(zhì)骨。隨著基臺(tái)角度增大,基臺(tái)、頜骨和種植體主要負(fù)載區(qū)域基本不變,應(yīng)力值增大,高應(yīng)力值分布面積增大(表 2~3)。這在基臺(tái)上體現(xiàn)尤為明顯,連接30°角度基臺(tái)負(fù)載后,基臺(tái)的von-Mises 應(yīng)力峰值增大,峰值分布的區(qū)域明顯增大。
由于種植修復(fù)體、皮質(zhì)骨和松質(zhì)骨的彈性模量呈階梯下降(見表1),負(fù)載下頜骨區(qū)域發(fā)生的彈性形變最大。隨著基臺(tái)角度增大,頜骨的應(yīng)力應(yīng)變均增大(表3)。表2示與0°角度基臺(tái)對比,使用30°角度基臺(tái),皮質(zhì)骨區(qū)σvM增加34.8%(L13mm)、39.5%(L10mm),松質(zhì)骨區(qū)σvM增加18.1%(L13mm)、39.6%(L10mm);表3示,皮質(zhì)骨區(qū)εmax增加64.0%(L13mm)、64.4%(L10mm),松質(zhì)骨區(qū)εmax增加23.9%(L13mm)、57.2%(L10mm)。其中皮質(zhì)骨的應(yīng)變,L10組εmax(20°)=3800μstrain、εmax(30°)=4230μstrain, L13組εmax(20°)=3720μstrain、εmax(30°)=4148μstrain,皮質(zhì)骨形變已接近或超過骨彈性形變閾值,但松質(zhì)骨均未超過閾值。
此外,表2、3提示,增加種植體長度能減少角度基臺(tái)帶來的不利影響。種植體長度增加3mm,皮質(zhì)骨和松質(zhì)骨周圍最大應(yīng)力能減少10.6%~18.2%,皮質(zhì)骨區(qū)的最大彈性形變減少2.1%~2.2%,松質(zhì)骨區(qū)的最大彈性形變減少17.9%~25.4%。
3? 討論
上前牙缺牙區(qū)種植修復(fù)的風(fēng)險(xiǎn)較高,臨床上常建議使用直徑4.0mm的種植體進(jìn)行上頜中切牙區(qū)種植修復(fù)[12]。同時(shí),由于組織解剖形態(tài)或種植位點(diǎn)不理想,后期修復(fù)時(shí)常不可避免地使用角度基臺(tái)[13]。目前不同種植修復(fù)系統(tǒng)配備的原裝角度基臺(tái)的最大角度各異,關(guān)于角度基臺(tái)的安全角度范圍也存在爭論,一些學(xué)者認(rèn)為可以使用30°以上的角度基臺(tái)行種植修復(fù)[14];也有學(xué)者建議最大角度控制在25°[9,15-16],甚至最好在20°以下[3,10]。
本實(shí)驗(yàn)發(fā)現(xiàn),負(fù)載下種植修復(fù)體及周圍骨質(zhì)各部位應(yīng)力頜應(yīng)變一直隨著角度增加而增大,基本呈線性增長相關(guān)性。同時(shí)角度基臺(tái)越大,局部應(yīng)力越集中。文獻(xiàn)提示種植體周圍骨質(zhì)應(yīng)力的集中會(huì)導(dǎo)致種植體周圍骨吸收,也增大了種植體頸部、基臺(tái)等部件機(jī)械并發(fā)癥風(fēng)險(xiǎn)[1,17-18]?;诠情撝道碚?,本實(shí)驗(yàn)結(jié)果顯示,當(dāng)使用20°和30°的角度基臺(tái)時(shí),種植體周圍皮質(zhì)骨形變已有超過骨彈性形變閾值的風(fēng)險(xiǎn)。提示臨床修復(fù)體應(yīng)盡量將種植體植入到較理想軸度,避免使用較大角度基臺(tái)。同時(shí),本研究模型在模擬負(fù)載下,牙冠、種植體、基臺(tái)的應(yīng)力和應(yīng)變均在其材料彎屈強(qiáng)度內(nèi),沒有出現(xiàn)永久性形變或破壞,這和以往學(xué)者研究結(jié)果相似[4,10]。
種植體-骨界面是將載荷傳遞到周圍骨質(zhì)的重要界面,本實(shí)驗(yàn)結(jié)果顯示種植體負(fù)載主要分布在頸部皮質(zhì)骨,同樣印證了皮質(zhì)骨對維持種植體穩(wěn)定和其預(yù)后具有重要作用[7,11]。另外,實(shí)驗(yàn)結(jié)果顯示種植體根端部位的松質(zhì)骨應(yīng)力應(yīng)變較小,這提示增加其種植體長度對其生物力學(xué)性能收益較小。也有類似文獻(xiàn)研究表明種植體長度及上部修復(fù)體形態(tài)對應(yīng)力分布影響相關(guān)性不大[19]。從本實(shí)驗(yàn)結(jié)果顯示,種植體長度從10mm增加到13mm,基臺(tái)、皮質(zhì)骨和松質(zhì)骨各部位應(yīng)力和應(yīng)變會(huì)有一定程度減少,雖然并不能大幅度地減少皮質(zhì)骨區(qū)域的彈性形變,但增加種植體長度能減少角度基臺(tái)帶來的不利影響。這提示臨床上如果條件允許,增加種植體長度可在一定程度上減少連接角度基臺(tái)的不利影響。
本實(shí)驗(yàn)中負(fù)載力即參考國人男性上頜中切牙區(qū)的咬合力(biting force)設(shè)定為120N,正常淺覆牙合、覆蓋咬合關(guān)系, 作用于切端腭側(cè)切1/3處,方向?yàn)槭笭钗?,和基臺(tái)角度部分的長軸始終呈130°,按力的合成和分解原理[20]。同時(shí),對各組研究模型咬合力的作用點(diǎn)和作用方向作一致性設(shè)定,使用角度基臺(tái)的目的是將上頜修復(fù)體調(diào)整到固定的理想咬合位置,便于研究隨著基臺(tái)角度增加對各部位應(yīng)力應(yīng)變的影響。值得深思的是,本實(shí)驗(yàn)是在理想情況下進(jìn)行靜態(tài)模擬負(fù)載得出結(jié)果,臨床上口腔修復(fù)體受力復(fù)雜,且為動(dòng)態(tài)受力,使用角度基臺(tái)進(jìn)行修復(fù)的考驗(yàn)可能更為復(fù)雜[21]。
4? 結(jié)論
綜上,本實(shí)驗(yàn)結(jié)果提示上前牙美學(xué)區(qū)使用角度基臺(tái)修復(fù)后,基臺(tái)角度越大,種植系統(tǒng)及牙槽骨所受應(yīng)力、應(yīng)變越大且越集中,上前牙區(qū)4mm直徑種植體建議連接小于20°的角度基臺(tái),以減少局部皮質(zhì)骨應(yīng)力應(yīng)變,增加種植體長度一定程度上可減小應(yīng)力和分散應(yīng)變。
[參考文獻(xiàn)]
[1]Zhang XL,Zhou YM,Su YC,et al.Effects of alveolar bone resorption on stress of tooth/implant-supported restoration connected by precision attachment[J]. Hua Xi Kou Qiang Yi Xue Za? Zhi,2007,25(2):122-124,131.
[2]Cavallaro J,Greenstein G.Angled implant abutments[J].J? Am Dent??Assoc,2011,142(2):150-158.
[3]Sadrimanesh R,Siadat H,Sadr-Eshkevari P,et al.Alveolar bone stress around implants with different abutment angulation:an FE-analysis of anterior maxilla[J].Implant Dent,2012,21(3):196-201.
[4]Kayaba O,Yüzbasolu E,Erzincanl F.Static,dynamic and fatigue behaviors of dental implant using finite element method[J].Advances in Engineering Software, 2006,37(10):649-658.
[5]Kurniawan D,Nor FM,Lee HY,et al.Finite element analysis of bone-implant biomechanics:refinement through featuring various osseointegration conditions[J].Int J Oral Maxillofac Surg,2012,41(9):1090-1096.
[6]Hasan I,Heinemann F,Aitlahrach M,et al.Biomechanical finite element analysis of small diameter and short dental implant[J].Biomed Tech (Berl), 2010,55(6):341-350.
[7]Saab XE,Griggs JA,Powers JM,et al.Effect of abutment angulation on the strain on the bone around an implant in the anterior maxilla: a finite element study[J].J Prosthet Dent,2007,97(2):85-92.
[8]Frost HM.Bone "mass" and the "mechanostat":a proposal[J].Anat Rec, 1987,219(1):1-9.
[9]Dubois G,Daas M,Bonnet AS,et al.Biomechanical study of a prosthetic solution based on an angled abutment:Case of upper lateral incisor[J].Medical Engineering & Physics,2007,29(9):989-998.
[10]Bahuguna R,Anand B,Kumar D,et al.Evaluation of stress patterns in bone around dental implant for different abutment angulations under axial and oblique loading:A finite element analysis[J].Nat J Maxillofac Surg, 2013,4(1):46-51.
[11]Ferraz CC,Anchieta RB,de Almeida EO,et al.Influence of microthreads and platform switching on stress distribution in bone using angled abutments[J]. J Prosthodont Res,2012,56(4):256-263.
[12]Pickard MB,Dechow P,Rossouw PE,et al.Effects of miniscrew orientation on implant stability and resistance to failure[J].Am J Orthod? Dentofacical Orthop,2010,137(1):91-99.
[13]de Avila ED,de Molon RS,de Barros-Filho LA,et al.Correction of malpositioned implants through periodontal surgery and prosthetic rehabilitation using angled abutment[J].Case Rep Dent,2014,2014:702630.
[14]Lewis SG,Llamas D,Avera S.The UCLA abutment:a four-year review[J].J Prosthet Dent,1992,67(4):509-515.
[15]Kao HC,Gung YW,Chung TF,et al.The influence of abutment angulation on micromotion level for immediately loaded dental implants: a 3-D finite element analysis[J].Int J Oral Maxillofac Implants,2008,23(4):623-630.
[16]Cardelli P,Montani M,Gallio M,et al.Angulated abutments and perimplants stress: F.E.M.analysis[J].Oral Implantol (Rome),2009,2(1):3-10.
[17]Santiago JF,Verri FR,Almeida DADF,et al.Finite element analysis on influence of implant surface treatments,connection and bone types[J]. Mater Sci Eng C Mater Biol Appl,2016,63:292-300.
[18]Wang K,Geng J,Jones D,et al.Comparison of the fracture resistance of dental implants with different abutment taper angles[J].Mater Sci Eng C Mater Biol Appl,2016,63:164-171.
[19]Figueiredo EP,Sigua-Rodriguez EA,Pimentel MJ,et al.Photoelastic analysis of fixed partial prosthesis crown height and implant length on distribution of stress in two dental implant systems[J].Int J Dent,2014,2014:206723.
[20]皮昕.口腔解剖生理學(xué)[M].5版.北京:人民衛(wèi)生出版社,2005:89-90,257-258.
[21]Geramizadeh M,Katoozian H,Amid R,et al.Static,dynamic,and fatigue finite element analysis of dental implants with different thread designs[J].J Long Term Eff Med Implants,2016,26(4):347-355.