,2
(1.清華大學(xué) 電子工程系 北京信息科學(xué)與技術(shù)國(guó)家研究中心,北京100084; 2.深圳清華大學(xué)研究院 廣東省(深圳市)數(shù)字電視系統(tǒng)重點(diǎn)實(shí)驗(yàn)室,廣東 深圳 518000)
正交頻分復(fù)用(Orthogonal Frequency Division Multiplexing,OFDM)技術(shù)是一種多載波傳輸通信技術(shù),由于它具備極高的頻譜效率,并且可以實(shí)現(xiàn)簡(jiǎn)單的頻域均衡,所以被廣泛應(yīng)用在各種無線寬帶通信場(chǎng)景中[1],如無線局域網(wǎng)(Wireless Local Area Network,WLAN)、長(zhǎng)期演進(jìn)技術(shù)(Long Term Evolution,LTE)等。但是,它同樣具備一些明顯的缺點(diǎn),本文主要討論其中兩個(gè)問題。第一是OFDM系統(tǒng)的帶外泄漏(Out-of-Band,OOB leakage)問題。作為一種多載波通信系統(tǒng),OFDM信號(hào)的每一個(gè)子載波波形是一個(gè)sinc函數(shù),疊加后導(dǎo)致了系統(tǒng)的帶外泄漏,這種泄漏會(huì)對(duì)鄰頻帶的通信應(yīng)用造成干擾,所以,為了提高通信質(zhì)量,減少這樣的帶外泄漏是很有必要的。第二是OFDM系統(tǒng)的信號(hào)通常有比較高的峰均功率比(Peak-to-Average Power Ratio,PAPR),這就要求射頻功率放大器不能只是在線性工作區(qū)工作,給射頻功放提出了一定的要求,需要較大的動(dòng)態(tài)范圍[2]。通過降低PAPR可以降低整個(gè)OFDM的系統(tǒng)開銷,適當(dāng)增加發(fā)射功率,從而提升整個(gè)系統(tǒng)的通信質(zhì)量。
針對(duì)以上提到的兩個(gè)問題,已經(jīng)有大量的解決方案被提出。對(duì)于帶外泄漏問題,經(jīng)典傳統(tǒng)方法是窗函數(shù)技術(shù)[3],即通過對(duì)時(shí)域波形進(jìn)行窗函數(shù)設(shè)計(jì)來達(dá)到降低帶外泄漏的目的,比如使用升余弦窗等。這類方法需要額外的保護(hù)間隔,會(huì)降低系統(tǒng)的頻譜效率。所以,有人提出了一些新型技術(shù)[4-9],其中消除技術(shù)和預(yù)編碼技術(shù)具有較好的性能表現(xiàn)[1,4-5,8]。PAPR降低技術(shù)目前包括星座整形[10]、部分傳輸序列(Partial Transmit Sequence,PTS)[11]、限幅濾波算法[12]、預(yù)編碼算法等[2]。以上方法一般都是用來處理帶外泄漏或者PAPR中的單一問題??紤]到它們都有使用預(yù)編碼的解決方案,本文將兩種獨(dú)立的預(yù)編碼方案[2,4]融合在一起,以實(shí)現(xiàn)同時(shí)降低帶外泄漏和PAPR的目的,即僅使用一個(gè)預(yù)編碼矩陣來實(shí)現(xiàn)兩個(gè)目標(biāo)。本文提出的方案主要基于文獻(xiàn)[4]提出的框架,引入編碼冗余度,通過數(shù)學(xué)推導(dǎo)將問題轉(zhuǎn)化為矩陣Frobenius范數(shù)的最小化問題[13],并結(jié)合文獻(xiàn)[2]中所表述的降低PAPR的直接預(yù)編碼矩陣進(jìn)行聯(lián)合優(yōu)化,得到最終的正交預(yù)編碼矩陣。最后給出算法仿真結(jié)果,比較不同預(yù)編碼方案在帶外泄漏和PAPR抑制上的性能差異,并給出隨著冗余度變化本文所提方案的性能變化情況。
本節(jié)介紹預(yù)編碼OFDM系統(tǒng)模型和一個(gè)主要基于文獻(xiàn)[4]的主體預(yù)編碼框架,此框架主要是針對(duì)降低標(biāo)準(zhǔn)OFDM系統(tǒng)的帶外泄漏。
一個(gè)典型的預(yù)編碼OFDM系統(tǒng)示意圖如圖1所示。假設(shè)采用的子載波數(shù)量為M,在星座點(diǎn)映射后的數(shù)據(jù)流被分為N塊,其中M≥N,定義編碼冗余度R=M-N[4]。所以在逆傅里葉變換(Inverse Fast Fourier Transform,IFFT)之前的預(yù)編碼過程的矩陣表示為
s=Pd。
(1)
式中:d是編碼前的原始符號(hào)列向量,s是編碼后的符號(hào)向量,P是一個(gè)M×N的預(yù)編碼矩陣。為了減少對(duì)于誤碼率性能的影響,本文采用正交預(yù)編碼方案,即預(yù)編碼矩陣P滿足PHP=IN。
圖1 OFDM預(yù)編碼模型Fig.1 Model of precoding a typical OFDM system
通常在一個(gè)OFDM系統(tǒng)中,每一個(gè)符號(hào)可以視為和一個(gè)矩形窗函數(shù)相乘,該窗函數(shù)可記作
(2)
式中:T表示符號(hào)周期。則第i個(gè)子載波的頻域表示為[14]
(3)
可忽略常數(shù)因子,得到
(4)
ci表示第i個(gè)子載波與頻率ω之間的影響系數(shù)。如果定義一個(gè)帶外的頻率集合Φ,其中包含K個(gè)元素,每一個(gè)元素表示頻帶外的一個(gè)頻點(diǎn),那么帶外泄漏就可以用如下的矩陣形式表示:
r=Cs=CPd。
(5)
式中:C是一個(gè)K×M的影響系數(shù)矩陣,它的元素由Ci,j=C(i,j)=ci(ωj)計(jì)算,表示第k個(gè)帶外頻率點(diǎn)對(duì)第m個(gè)帶內(nèi)頻點(diǎn)的影響因子。則r為一個(gè)K×1的矢量,代表了帶外頻率集Φ上所設(shè)的K個(gè)頻率點(diǎn)的帶外泄漏情況。
為了降低帶外泄漏,由以上模型可知,帶外泄漏功率可表示為Poob=E[rHr],抑制帶外泄漏即最小化Poob=E[rHr]。常用的方法是利用奇異值分解(Singular Value Decomposition,SVD)。通過SVD可將CP分解為
CP=UΣVH。
(6)
式中:U、V分別是K×K和N×N的酉矩陣。那么有
(7)
根據(jù)文獻(xiàn)[13]的介紹,矩陣Frobenius范數(shù)具備數(shù)學(xué)特性:矩陣的Frobenius范數(shù)等于該矩陣奇異值的平方和[13],所以式(7)可寫作
Poob=Ps‖CP‖2。
(8)
式中:Ps是原始數(shù)據(jù)d的平均功率,‖·‖代表矩陣的Frobenius范數(shù)。那么為了得到最優(yōu)的預(yù)編碼矩陣,需要解決如下最小化問題:
(9)
Popt=V1Q。
(10)
式中:V1是酉矩陣Vc的一個(gè)M×N階子矩陣,由Vc的最后N列組成,對(duì)應(yīng)最小的N個(gè)奇異值;Q是任意的N×N階酉矩陣,即滿足QHQ=I。這樣,Popt就是最小化問題(9)的解,并且是正交矩陣,符合設(shè)定的要求。
以上給出了一種預(yù)編碼矩陣的設(shè)計(jì)模式用于抑制帶外泄漏,但并沒有給定矩陣Q,所以無法計(jì)算確定的Popt。針對(duì)Q矩陣,如前文所述,Q是任意的酉矩陣。考慮一個(gè)具有R個(gè)冗余子載波的OFDM系統(tǒng),系統(tǒng)的R個(gè)冗余子載波上不搭載任何數(shù)據(jù),即不做編碼,只是在頻帶兩側(cè)留出空閑頻點(diǎn)用作保護(hù)頻帶。不編碼即等效于預(yù)編碼矩陣P=B,B見式(11)。但是在上述框架下,由于引入了編碼來降低帶外泄漏,在R個(gè)冗余子載波上實(shí)際上不填充0,經(jīng)過預(yù)編碼后有非零數(shù)據(jù)。所以在本框架下,考慮了帶外泄漏預(yù)編碼的Popt不嚴(yán)格等于B。而為了不改變OFDM系統(tǒng)的其他特性,問題轉(zhuǎn)化為使預(yù)編碼矩陣Popt盡可能接近這個(gè)目標(biāo)矩陣B,即
(11)
式中:RL+RR=M-N=R>0,表示編碼冗余度,即不承載實(shí)際數(shù)據(jù)的子載波數(shù)量。那么為了使Popt盡量接近B,問題轉(zhuǎn)化為如下的最小化問題:求矩陣Q(QHQ=I),使
(12)
此問題的解對(duì)應(yīng)的Popt=V1Q即為與目標(biāo)矩陣B最接近的正交預(yù)編碼矩陣。該最小化問題在線性代數(shù)當(dāng)中已經(jīng)有相關(guān)的解決方法[13]。
但是該最小化問題僅考慮了標(biāo)準(zhǔn)情況下帶外泄漏的抑制,并對(duì)PAPR進(jìn)行優(yōu)化。實(shí)際上考慮到PAPR的抑制,目標(biāo)矩陣B將會(huì)有針對(duì)性地改變。本文將在下一節(jié)結(jié)合PAPR的優(yōu)化,改變目標(biāo)矩陣,并給出矩陣Q的計(jì)算方法。
上一節(jié)介紹了一種通用的降低帶外泄漏的預(yù)編碼方法框架,但是僅僅達(dá)到了降低帶外泄漏的目的,并沒有對(duì)PAPR進(jìn)行優(yōu)化。正如上文所述,可以通過式(12)中目標(biāo)矩陣B的設(shè)計(jì),通過Popt=V1Q與目標(biāo)矩陣的接近,即矩陣差值范數(shù)最小化問題的解決,來實(shí)現(xiàn)可以降低PAPR的矩陣Q的設(shè)計(jì),從而完成最終預(yù)編碼矩陣的計(jì)算。
文獻(xiàn)[2]提出了一種離散余弦變換(Discrete Cosine Transform,DCT)預(yù)編碼矩陣,經(jīng)過該矩陣預(yù)編碼后的信號(hào)的PAPR有明顯降低。該方法主要是將離散余弦變換矩陣D直接作為預(yù)編碼矩陣,即在式(1)中有P=D,D的元素如式(13):
(13)
但是這種方法只針對(duì)PAPR這一個(gè)問題,于是本文將它與上文所述的預(yù)編碼框架結(jié)合起來,利用D矩陣來優(yōu)化預(yù)編碼矩陣P,將D矩陣作為目標(biāo)矩陣,從而實(shí)現(xiàn)同時(shí)優(yōu)化兩個(gè)問題的目的。
與上述框架類似,本文將Popt向D矩陣近似,而不是標(biāo)準(zhǔn)OFDM系統(tǒng)即式(11)中的B矩陣,所以有
(14)
式中:DN×N是一個(gè)N×N的離散余弦變換矩陣,它的元素由式(13)計(jì)算。所以問題(12)轉(zhuǎn)化成了
(15)
由線性代數(shù)知識(shí)可知[4,13],對(duì)于一個(gè)給定矩陣V1和Do,問題(15)的最優(yōu)解為
Qo=UoVoH。
(16)
Popt=V1UoVoH。
(17)
這樣,本文就實(shí)現(xiàn)了兩種分別解決不同問題的預(yù)編碼方案相結(jié)合,得到最終預(yù)編碼矩陣,并使用單一預(yù)編碼矩陣同時(shí)實(shí)現(xiàn)帶外泄漏和PAPR的降低,而且算法復(fù)雜度和原有的框架類似,僅增加了計(jì)算離散余弦變換矩陣的時(shí)間。
為了評(píng)價(jià)本文所提出的預(yù)編碼方案的性能,使用Matlab進(jìn)行仿真。本文假設(shè)這是一個(gè)對(duì)稱的OFDM系統(tǒng),即RL=RR=R/2,使用總共M=64個(gè)子載波和正交相移鍵控(Quadrature Phase Shift Keying,QPSK)的調(diào)制方式。由前文算法所述,計(jì)算式(5)中矩陣C的元素C(i,j)需要設(shè)定特定的帶外頻率集Φ,本文將Φ設(shè)置為
Φ=[ωL-96Δω,ωL-16Δω]∪[ωR+16Δω,ωR+96Δω]。
式中:[ωL,ωR]為頻帶范圍,Δω為子載波間隔。
圖2給出了4種OFDM系統(tǒng)在R=4時(shí)帶外泄漏情況的對(duì)比。直接DCT預(yù)編碼方法[4]由于僅考慮了PAPR優(yōu)化,沒有考慮帶外泄漏情況,所以帶外抑制效果是最差的。在本文所設(shè)置的條件下,帶外泄漏在-30 dB左右;標(biāo)準(zhǔn)OFDM系統(tǒng)(即無編碼)的帶外泄漏情況比前者略優(yōu),但由于標(biāo)準(zhǔn)系統(tǒng)同樣沒有考慮抑制帶外泄漏,數(shù)量級(jí)上并沒有差距,性能基本相當(dāng)。本文所提方案在R=4的情況下,帶外泄漏比前兩者降低15 dB,抑制效果明顯;與此同時(shí)由于考慮了PAPR抑制,本文提出的方案比僅抑制帶外泄漏的標(biāo)準(zhǔn)框架方案在帶外抑制上雖然性能稍差,但是差距很小,而對(duì)PAPR卻有明顯的優(yōu)化作用。
圖2 R=4時(shí)4個(gè)不同的OFDM帶外泄漏情況Fig.2 Out-of-band emission performance comparison among different OFDM systems with R=4
圖3表示了R=4的情況下上述4個(gè)不同OFDM系統(tǒng)在PAPR性能上的對(duì)比,表現(xiàn)形式為PAPR的互補(bǔ)累計(jì)分布函數(shù)(Complementary Cumulative Distribution Function,CCDF)。為方便比較,以10-3量級(jí)作為比較基準(zhǔn)。標(biāo)準(zhǔn)框架方案只考慮帶外泄漏的抑制,其PAPR性能是最差的,PAPR閾值要超過10.5 dB才能達(dá)到10-3比率;標(biāo)準(zhǔn)的OFDM系統(tǒng)(即無編碼)沒有進(jìn)行帶外抑制,所以PAPR性能也比前者略好,但差距很小,同樣在10.5 dB左右。本文提出的預(yù)編碼方案在PAPR抑制上也有明顯效果,在R=4的情況下,在10-3量級(jí)比率進(jìn)行截?cái)啵啾葮?biāo)準(zhǔn)OFDM系統(tǒng),有超過1.5 dB的性能提升;而直接DCT預(yù)編碼方案由于僅針對(duì)了PAPR優(yōu)化,在PAPR抑制的效果上雖然比本文提出方案有大約0.5 dB的提升,但是正如前面的圖2對(duì)比,帶外泄漏非常高,沒有抑制效果。
圖3 R=4時(shí)不同OFDM系統(tǒng)的PAPR性能比較Fig.3 PAPR performance comparison among different OFDM systems with R=4
圖4和圖5分別給出了帶外泄漏情況和PAPR在不同冗余度R下的性能比較,可以看出,隨著冗余度R的增加,帶外泄漏抑制效果也在提升,相反地,PAPR則是相對(duì)在惡化,這也是由本文所采用的框架所決定的。R越大表示框架引入的用于降低帶外泄漏編碼的冗余子載波越多,但同時(shí)也會(huì)拉低信號(hào)平均功率,影響PAPR。本文所提出的方案可以達(dá)到同時(shí)降低帶外泄漏和PAPR的效果,但是不可能同時(shí)達(dá)到最好;而且R的增大表示冗余子載波增多,這也會(huì)降低頻譜效率,因此R的值需要在應(yīng)用中進(jìn)行權(quán)衡。
圖4 本文方案在不同冗余度R下的帶外泄漏情況Fig.4 Out-of-band emission performance with different R for the proposed method
圖5 本文方案在不同冗余度R下的PAPR情況Fig.5 PAPR performance with different R for the proposed method
最后,由于本文始終是基于正交矩陣的原則在進(jìn)行方案的優(yōu)化,所以至少在加性高斯白噪聲信道(Additive White Gaussian Noise,AWGN)上,誤碼率性能不會(huì)有很大影響。
本文基于兩種分別解決OFDM系統(tǒng)中帶外泄漏和PAPR問題的預(yù)編碼方案,提出了一種聯(lián)合的預(yù)編碼方法。該方法基于已有的用以降低帶外泄漏的框架,針對(duì)PAPR的降低進(jìn)行優(yōu)化,實(shí)現(xiàn)了僅使用一個(gè)預(yù)編碼矩陣來同時(shí)解決OFDM系統(tǒng)中常見的兩個(gè)問題,并且沒有引入額外的高復(fù)雜度,在兩個(gè)問題的解決之間實(shí)現(xiàn)了一定程度上的平衡。仿真結(jié)果表明,少量的頻譜冗余度就可以同時(shí)在帶外泄漏和PAPR問題的解決上取得較好的結(jié)果,并且由于是正交矩陣編碼,在加性高斯白噪聲信道上對(duì)誤碼率性能沒有明顯影響。除此之外,該方法的效果僅與采取的子載波數(shù)量、頻譜冗余量以及帶外頻率集的選擇有關(guān),即預(yù)編碼矩陣與基帶數(shù)據(jù)沒有關(guān)系,所以接收機(jī)的解碼器設(shè)計(jì)也變得非常容易。但是本文提出的算法在子載波數(shù)量非常多的情況下時(shí)間復(fù)雜度也會(huì)變得很高,還有進(jìn)一步優(yōu)化的空間。