路璐 何燕
摘要:【目的】探究人為干擾較多的果園和觀賞林土壤中氨氧化微生物的群落結(jié)構(gòu)和硝化潛勢(shì)差異及影響因素,為深入了解不同林分氮循環(huán)規(guī)律提供參考依據(jù)?!痉椒ā恳运拇ㄊ∧铣涫?種林分土壤(鳳埡山和西山森林土壤及枇杷園、竹林、梨園、芭蕉園土壤)為研究對(duì)象,進(jìn)行硝化潛勢(shì)測(cè)定,以及基于氨氧化微生物amoA基因的熒光定量PCR和測(cè)序分析,并耦合土壤理化性質(zhì)進(jìn)行冗余分析。【結(jié)果】土壤有機(jī)質(zhì)、總氮和硝態(tài)氮(NO3--N)含量及硝化潛勢(shì)在不同林分土壤中差異顯著(P<0.05,下同),土壤硝化潛勢(shì)在7.01~59.88 mg/(kg·d),以森林土壤的硝化潛勢(shì)最高,改耕為單一果林和觀賞林后硝化潛勢(shì)顯著降低。6種土壤的氨氧化古菌(AOA)豐度(1.88×108~10.8×108 copies/g干土)均高于氨氧化細(xì)菌(AOB)(2.87×107~27.6×107 copies/g干土),AOA/AOB豐度比值為1.25~15.00,且該比值與土壤有機(jī)質(zhì)含量呈顯著負(fù)相關(guān)。相關(guān)性分析結(jié)果表明,土壤有機(jī)質(zhì)和總氮含量與AOA菌群結(jié)構(gòu)分別呈極顯著(P<0.01)和顯著相關(guān),而土壤有機(jī)質(zhì)含量與AOB菌群結(jié)構(gòu)呈顯著相關(guān)。冗余分析結(jié)果表明,不同土壤中AOA和AOB群落結(jié)構(gòu)有所差異,6種土壤中的主導(dǎo)AOA菌群隸屬于陸地分支Group 1.1b的54d9-like cluster,AOB的主導(dǎo)菌群隸屬于Nitrosospira cluster 3?!窘Y(jié)論】在土壤理化性質(zhì)和硝化潛勢(shì)顯著差異的不同林分土壤中,氨氧化微生物群落結(jié)構(gòu)存在明顯的分異特征,土壤總氮和有機(jī)質(zhì)為其主導(dǎo)驅(qū)動(dòng)因子。
關(guān)鍵詞: 果園土壤;觀賞林土壤;氨氧化微生物群落;硝化潛勢(shì);熒光定量PCR;克隆文庫(kù)
中圖分類號(hào): S154.3? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼:A 文章編號(hào):2095-1191(2018)11-2169-08
The difference of ammonia-oxidizing microorganism communities structure and nitrification potential in soils of different forest stands and their driving factors
LU Lu1, HE Yan2
(1College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan? 637009,
China; 2Key Laboratory of Southwest China Wildlife Resources Conservation/College of Life Sciences,
China West Normal University, Nanchong, Sichuan? 637002, China)
Abstract:【Objective】The difference and influencing factors of ammonia-oxidizing microorganisms communities structure and nitrification potential in highly human-disturbed orchard and ornamental forest soils were explored in this study to provide references for thorough understanding of nitrogen cycling mechanism in different forest stands. 【Method】Six forest stands soils in Nanchong,Sichuan, including soils from Fengya Mountain and Western Mountain and soils from loquat orchard, bamboo forest, pear orchard and plantain orchard,were used as research objects. The six soils were determined by nitrification potential, fluorescence quantitative PCR on basis of amoA gene in ammonia-oxidizing microorgai-sms and sequencing analysis. And redundancy analysis was coupled to analyze soil physiochemical properties. 【Result】Soil organic matter(SOM), total nitrogen(TN), nitrate nitrogen(NO3--N) contentsand nitrification potentialwere significantly different in the six soils(P<0.05,the same below). Soil nitrification potential ranged from 7.01 to 59.88 mg/(kg·d). The highest nitrification potential was found in the forest soils. The nitrification potential decreased significantly after the change of tillage to single-function fruit forest and ornamental forest. The abundances of ammonia-oxidizing archaea(AOA)(1.88×108/10.8×108 copies/g dry soil)in the six soils were predominant over that(2.87×107-27.6×107 copies/g dry soil)of ammonia-oxidizing bacteria(AOB). The AOA/AOB value varied from 1.25 to 15.00, and it had significant negative correlation with SOM. Correlation analysis indicated that SOM and TN contents showed extremely significant(P<0.01)and significant correlation with the change of AOA bacterial community structure respectively while SOM content showed significant correlation with AOB bacterial community structure. Redundancy analysis indicated that AOA and AOB communities structure varied among different soils. The dominant bacterial community of AOA in the six soils belonged to land branch Group 1.1b 54d9-like cluster and the dominant bacterial community of AOB belonged to Nitrosospira cluster 3. 【Conclusion】In the different forest stand soils with distinct differences in soil physiochemicalproperties and nitrification potential,the ammonia-oxidizing microorganism communities structure shows great differentiation characteristics; and SOM and TN contents are the main driving factors.
Key words:orchard soil; ornamental forest soil; ammonia-oxidizing microorganisms community; nitrification potential; fluorescence quantitative PCR; clone library
0 引言
【研究意義】在森林生態(tài)系統(tǒng)中,土壤氮循環(huán)與其生產(chǎn)力間存在相關(guān)性,不同林分組成土壤中的氮循環(huán)周轉(zhuǎn)速率存在顯著差異(Zhang et al.,2011)。其中,硝化過(guò)程是生物地球化學(xué)氮循環(huán)的一個(gè)重要組成部分,微生物所驅(qū)動(dòng)的氨氧化過(guò)程是硝化作用的第一步和限速步驟,也是連接還原態(tài)無(wú)機(jī)氮(NH4+)和氧化態(tài)無(wú)機(jī)氮(NO2-)的主要途徑(Pilar et al.,2010)。硝化過(guò)程中所產(chǎn)生的溫室氣體N2O和NO是影響全球氣候變化的原因之一(Shaw et al.,2006;Gruber and Galloway,2008)。土壤氨氧化的主要功能菌群為氨氧化細(xì)菌(Ammonia-oxidizing bacteria,AOB)和氨氧化古菌(Ammonia-oxidizing archaea,AOA)(Martens-Habbena et al.,2009)。Daims等(2015)研究發(fā)現(xiàn)亞硝酸氧化菌(Nitrite-oxidizing bacteria,NOB)的基因組包含了硝化過(guò)程的全部功能基因,擴(kuò)展了研究者們對(duì)氨氧化微生物的認(rèn)識(shí)。AOA和AOB在海洋(Klotz and Stein,2007)、土壤(Wu et al.,2011)和淡水(Mukherjee et al.,2016)等生態(tài)條件顯著差異環(huán)境中的廣泛分布,則進(jìn)一步證明其在硝化過(guò)程中的主導(dǎo)地位。在森林生態(tài)系統(tǒng)中,植物從土壤中獲取的氮源主要為硝態(tài)氮(NO3--N)和銨態(tài)氮(NH4+-N)(Haynes,2012),氨氧化作用在平衡森林土壤中的氮素形態(tài)分布起關(guān)鍵作用,因此,探究氨氧化微生物在不同森林生態(tài)系統(tǒng)中的群落結(jié)構(gòu)和功能對(duì)明確氮元素的周轉(zhuǎn)規(guī)律和人工管理具有重要意義?!厩叭搜芯窟M(jìn)展】在不同的森林生態(tài)系統(tǒng)中,土壤理化性質(zhì)受根系分泌物(Hin-singer,2001)、植物凋零物(Qi et al.,2015)、土壤利用方式(李會(huì)琳等,2017)等因素的影響??捣f等(2014)研究表明,不同樹種純林對(duì)土壤的pH、相對(duì)水含量、微生物優(yōu)勢(shì)菌群和土壤酶活性均有顯著影響;劉飛渡和韓蕾(2015)對(duì)不同人工林土壤的研究表明,微生物類群和酶活性與森林土壤有機(jī)質(zhì)、全氮和有效氮等的濃度具有顯著相關(guān)性。氨氧化微生物作為重要的土壤質(zhì)量生物指標(biāo)之一,已有研究表明其群落結(jié)構(gòu)和功能同樣受到多種土壤理化性質(zhì)的影響,如pH、氧氣、水含量、有機(jī)質(zhì)及總氮等(Erguder et al.,2009)。AOA和AOB的生長(zhǎng)均通過(guò)氧化氨獲取能量(Lehtovirta-Morley et al.,2011;Tourna et al.,2011),比較基因組學(xué)分析發(fā)現(xiàn)AOA和AOB在代謝途徑和生理功能等方面存在顯著差異(Walker et al.,2010;Spang et al.,2012),且對(duì)硝化作用的貢獻(xiàn)率不同(Jia and Conrad,2009;Lu and Jia,2013)。此外,人為活動(dòng)如作物耕種、施肥等均會(huì)影響土壤的氨氧化作用及其氨氧化微生物群落結(jié)構(gòu)(Segal et al.,2017)?!颈狙芯壳腥朦c(diǎn)】我國(guó)森林覆蓋率約21.66%,其中人工林面積居世界首位,但以往的研究較少關(guān)注人工果林和觀賞林種植對(duì)土壤氨氧化過(guò)程的影響。本研究旨在探究同一區(qū)域不同森林類型及草本植物對(duì)土壤氨氧化過(guò)程的影響。【擬解決的關(guān)鍵問題】以四川省南充市內(nèi)的森林、枇杷園、竹林、梨園和芭蕉園土壤為研究對(duì)象,通過(guò)硝化潛勢(shì)測(cè)定、基于amoA基因的克隆文庫(kù)分析、熒光定量PCR等方法,揭示不同林分土壤中的硝化活性及氨氧化微生物的豐度和群落結(jié)構(gòu)組成,探討影響氨氧化群落結(jié)構(gòu)分異的主導(dǎo)環(huán)境因子,為深入了解不同林分氮循環(huán)規(guī)律提供參考依據(jù)。
1 材料與方法
1. 1 采樣點(diǎn)信息
于2016年11月在四川省南充市鳳埡山和西山不同的人工林、森林和草本植物芭蕉園設(shè)6個(gè)采樣點(diǎn)(圖1),分別為鳳埡山森林土壤(F-F)、鳳埡山竹林土壤(F-BF)、鳳埡山梨園土壤(F-PF)、鳳埡山枇杷園土壤(F-LF)、西山森林土壤(X-F)和西山芭蕉園土壤(X-PF)。其中,F(xiàn)-F和X-F分別為鳳埡山和西山未被人為改耕的原始森林土壤,其他土壤均為人工種植園或觀賞林。每個(gè)采樣點(diǎn)采用網(wǎng)格布點(diǎn)法采集50 m×50 m范圍內(nèi)的表層土壤(0~10 cm),混合均勻,清除植物根系、石礫等,過(guò)2 mm不銹鋼篩,置于4 ℃冰箱保存以備后續(xù)培養(yǎng)試驗(yàn)。部分土壤樣品經(jīng)自然風(fēng)干后過(guò)20目分樣篩用于土壤理化性質(zhì)測(cè)定。
1. 2 土壤理化性質(zhì)測(cè)定
土壤pH利用pH計(jì)[梅特勒—托利多儀器(上海)有限公司]進(jìn)行測(cè)定,水土比值為2.5∶1;土壤水含量采用烘干稱重法測(cè)定;土壤NH4+-N、NO2--N及NO3--N采用2 mol/L氯化鉀溶液為浸提液,以5∶1水土比例浸提土壤可溶性氮,利用連續(xù)流動(dòng)分析儀測(cè)定;土壤有機(jī)質(zhì)含量采用重鉻酸鉀氧化—外加熱法測(cè)定;土壤總氮含量采用重鉻酸鉀—硫酸消化法測(cè)定。
1. 3 土壤硝化潛勢(shì)測(cè)定
通過(guò)短期內(nèi)土壤硝化速率估算土壤的硝化勢(shì)是評(píng)價(jià)土壤硝化活性的方法之一,本研究參考Yao等(2011)的方法略有改進(jìn),測(cè)定土壤硝化潛勢(shì)。采用懸浮液培養(yǎng)法,培養(yǎng)基中含有1.5 mmol/L NH4+和1.0 mmol/L PO43-,pH調(diào)節(jié)至7.2。稱取10.0 g新鮮土壤置于250 mL錐形瓶中,每種土壤3個(gè)重復(fù)。向錐形瓶中分別加入100 mL的液體培養(yǎng)基,并用帶有氣孔的橡皮篩塞住,置于搖床上(180 r/min)振蕩培養(yǎng)24 h。培養(yǎng)期間,分別于2、4、16、22和24 h采集10 mL搖勻的土壤懸浮液,4 ℃下7607 r/min、離心10 min,取上清液過(guò)定量濾紙,濾液-20 ℃保存,待測(cè)NO3--N及NH4+-N濃度。土壤硝化潛勢(shì)計(jì)算以培養(yǎng)時(shí)間為橫坐標(biāo)、提取液中NO3--N含量為縱坐標(biāo),求出斜率,即可得單位時(shí)間內(nèi)NO3--N含量的增長(zhǎng)速率。計(jì)算公式如下:
Np=R×[0.1+V1m]×24
式中,Np為土壤硝化勢(shì)[mg/(kg·d)],R為NO3--N含量的增長(zhǎng)速率[mg/(L·h)],0.1為緩沖液體積(L),V1為土壤樣品中水分體積(L),m為烘干土質(zhì)量(kg)。
1. 4 土壤總DNA提取與熒光定量PCR分析
每種土壤樣品分別稱取0.5 g,3個(gè)重復(fù)。用Fast DNA Spin Kit for Soil試劑盒(美國(guó)MP醫(yī)學(xué)試劑公司)提取土壤微生物的總DNA,DNA濃度和質(zhì)量采用NanoDrop分光光度計(jì)(德國(guó)Nanodrop科技公司)進(jìn)行測(cè)定和評(píng)估,提取的DNA保存于-20 ℃以備后續(xù)分析。
實(shí)時(shí)熒光定量PCR擴(kuò)增使用SYBR? Premix Ex TaqTM(TliRNaseH Plus)試劑盒在CFX96 Optical Real-Time PCR System熒光定量?jī)x(加拿大Bio-Rad公司)上進(jìn)行分析。測(cè)定AOA和AOB豐度所用的引物分別為Arch-amoAF/Arch-amoAR和amo1F/amo2R(Wu et al.,2011)。實(shí)時(shí)熒光定量PCR標(biāo)準(zhǔn)曲線采用含有AOA和AOB的amoA基因質(zhì)粒,質(zhì)粒標(biāo)線按10倍梯度稀釋,得到7個(gè)數(shù)量級(jí)的標(biāo)準(zhǔn)曲線,其標(biāo)準(zhǔn)曲線質(zhì)粒濃度的變化范圍為102~108 copies/μL。實(shí)時(shí)熒光定量PCR反應(yīng)體系20 μL:10.0 μL SYBR? Premix Ex TaqTM(TliRNaseH Plus),1.0 μL DNA模板,10 μmol/L正、反向引物各0.1 μL,7.6 μL滅菌雙蒸水。陰性對(duì)照采用滅菌雙蒸水代替樣品DNA。擴(kuò)增效率為96%~103%,R2在0.992~0.997的范圍內(nèi)。
1. 5 克隆文庫(kù)和序列分析
使用pEASY-T3 Cloning Kit試劑盒(北京全式金生物技術(shù)有限公司)進(jìn)行克隆文庫(kù)試驗(yàn)。測(cè)序獲得的序列用DNASTAR進(jìn)行序列質(zhì)量控制,刪去載體序列,獲得目標(biāo)基因序列。采用NCBI的BLAST比對(duì)功能,獲得與所研究微生物發(fā)育水平相近的序列,并與已獲得純菌株的代表性序列進(jìn)行比對(duì)分析,采用MEGA 7.0中的Neighbour-Joining algorithm方法構(gòu)建系統(tǒng)發(fā)育進(jìn)化樹。
1. 6 統(tǒng)計(jì)分析
采用SPSS 2.0進(jìn)行統(tǒng)計(jì)分析,并使用Duncans新復(fù)極差法進(jìn)行多組樣品間差異顯著性分析。用Canoco for Windows(version 4.5)進(jìn)行氨氧化微生物群落和各環(huán)境因子變化相關(guān)性的冗余分析,并利用Origin 8.1制圖。
2 結(jié)果與分析
2. 1 不同林分土壤理化性質(zhì)和硝化潛勢(shì)的比較分析
如表1所示,不同林分土壤pH在7.78~7.91,均為堿性土壤。在鳳埡山的4種林分土壤中,F(xiàn)-BF的有機(jī)質(zhì)含量最高(46.75 g/kg),是F-PF有機(jī)質(zhì)含量的3.68倍,且4種林分土壤有機(jī)質(zhì)含量間存在顯著差異(P<0.05,下同),可能是由于耕作和施肥措施不同導(dǎo)致同一山地區(qū)域不同林分土壤有機(jī)質(zhì)含量存在差異;西山X-F和X-PF的有機(jī)質(zhì)含量也存在顯著差異。6種林分土壤的總氮和NO3--N含量分別在0.66~1.34 g/kg和5.52~13.69 μg/g,不同林分土壤間均存在顯著差異。作為氨氧化微生物的氧化底物NH4+-N,6種林分土壤的NH4+-N含量無(wú)顯著差異(P>0.05,下同)。由于6種林分土壤的NO2--N含量低于檢測(cè)值,故未在表1中列出。
通過(guò)懸浮液培養(yǎng)法測(cè)得的硝化潛勢(shì)表明,不同林分土壤中的硝化潛勢(shì)在7.01~59.88 mg/(kg·d),以F-BF的硝化潛勢(shì)最低,X-F的最高,顯著高于其他5種林分土壤。在鳳埡山區(qū)域采集的4種土壤硝化潛勢(shì)有明顯差異,F(xiàn)-LF硝化潛勢(shì)是F-BF的6.35倍。X-F是未改為芭蕉林之前的森林土壤,其硝化潛勢(shì)是X-PF硝化潛勢(shì)的2.44倍,說(shuō)明人為改耕芭蕉林后,硝化潛勢(shì)顯著降低。相關(guān)性分析結(jié)果(表2)表明,本研究測(cè)定的土壤理化性質(zhì)與硝化潛勢(shì)均無(wú)顯著相關(guān)性。
2. 2 不同林分土壤氨氧化微生物的amoA基因豐度
采用實(shí)時(shí)熒光定量PCR測(cè)定6種林分土壤氨氧化微生物群落的豐度變化,由圖2可知,6種土壤AOA和AOB的amoA基因拷貝數(shù)分別在1.88×108~10.8×108 copies/g干土和2.87×107~27.6×107 copies/g 干土。F-F的AOA amoA基因含量最高,是含量最低F-BF的7.36倍。相關(guān)性分析結(jié)果(表2)表明,AOA豐度與土壤有機(jī)質(zhì)含量呈極顯著正相關(guān)(P<0.01),與土壤總氮含量呈顯著負(fù)相關(guān)。AOB amoA基因在X-PF中的含量最高,比X-F高6.12倍。AOB豐度與土壤有機(jī)質(zhì)含量呈顯著負(fù)相關(guān)。6種土壤的AOA/AOB豐度比值為1.25~15.00,表明AOA豐度均高于AOB豐度,AOA/AOB豐度比值與土壤有機(jī)質(zhì)含量呈顯著負(fù)相關(guān)。
2. 3 不同林分土壤氨氧化微生物菌群結(jié)構(gòu)分析
對(duì)AOA和AOB的amoA基因進(jìn)行克隆文庫(kù),每個(gè)樣品獲得50條序列,以97%的序列相似度作為OTU(Operational taxonomic unit,可操作分類單元)劃分閾值,結(jié)果表明,不同林分土壤的AOA均隸屬于陸地分支Group 1.1b,而AOB主導(dǎo)菌群主要隸屬于亞硝化螺菌屬Nitrosospira cluster 3。如圖3所示,在鳳埡山區(qū)域,F(xiàn)-F作為未受人為干擾的森林土壤,其主導(dǎo)AOA菌群(60%)為隸屬于Group 1.1b的54d9-like cluster,在用于果園耕種的土壤F-BF、F-PF和F-LF中隸屬于該AOA菌群的比例分別為50%、65%和95%。F-PF中,10%的AOA序列隸屬于Group 1.1b的Nitrososphaera gargensis-like cluster。西山區(qū)域X-F和X-PF的主導(dǎo)菌群也與54d9-like cluster聚類在一起,分別占總序列數(shù)的60%和65%。如圖4所示,AOB amoA基因的測(cè)序結(jié)果表明F-F、X-F和X-PF 3種林分土壤的AOB菌群均為隸屬于Nitrosospira? cluster 3的L115-like cluster,F(xiàn)-BF和F-LF的主導(dǎo)AOB菌群也隸屬于該分支,分別占其總菌群的70%和60%,而F-PF僅有5%的菌群隸屬于該分支。F-PF的主導(dǎo)菌群隸屬于Nitrosospira的N. multiformis cluster,占總菌群的55%,其余40%的菌群隸屬于N.briensis cluster。
2. 4 土壤理化性質(zhì)對(duì)氨氧化微生物群落結(jié)構(gòu)的影響
以6種土壤的AOA和AOB菌群結(jié)構(gòu)和土壤理化性質(zhì)為兩個(gè)變量進(jìn)行冗余分析。由圖5-A可知,F(xiàn)-BF、F-F、X-F和X-PF的AOA菌群類似,均聚類在第3象限;同在鳳埡山的F-PF和F-LF的AOA菌群差異顯著,分布在不同象限。土壤總氮對(duì)不同林分土壤AOA菌群變化的解釋率為58%,但未達(dá)顯著水平,土壤理化性質(zhì)與AOA菌群結(jié)構(gòu)均無(wú)顯著相關(guān)性(表3)。此外,相關(guān)性分析結(jié)果表明,硝化潛勢(shì)與隸屬于54d9-like cluster(R2=0.60)和Group 1.1b uncltured cluster(R2=0.46)的AOA菌群均呈正相關(guān)。
如圖5-B所示,X-F和F-F及X-PF的AOB菌群聚類在一起,而F-LF和F-BF菌群類似。土壤有機(jī)質(zhì)含量解釋了81%的AOB菌群變化,對(duì)AOB菌群結(jié)構(gòu)的影響達(dá)極顯著水平,土壤NO3--N含量與不同土壤AOB菌群結(jié)構(gòu)也呈顯著相關(guān)(表3)。相關(guān)性分析結(jié)果表明,硝化潛勢(shì)與隸屬于L115-like cluster(R2=0.46)的AOB菌群呈正相關(guān),而與其他AOB菌群分支均呈負(fù)相關(guān)。
3 討論
氨氧化微生物作為氮循環(huán)的主要推動(dòng)者,在土壤生態(tài)系統(tǒng)的氮循環(huán)中發(fā)揮重要作用。本研究結(jié)果表明,受人為干擾較大的果園和觀賞林土壤,與其附近的原始森林土壤相比,硝化潛勢(shì)發(fā)生了顯著變化,且氨氧化微生物群落結(jié)構(gòu)也發(fā)生了分異。6種不同林分土壤理化性質(zhì)的差異主要是由于耕種、施肥和植被種類所造成,張發(fā)會(huì)等(2015)研究發(fā)現(xiàn)不同林分類型對(duì)土壤理化性質(zhì)有直接的影響作用。F-F和X-F改為觀賞林后,土壤的硝化潛勢(shì)發(fā)生了顯著變化,總體上呈降低趨勢(shì),與Lu等(2012)的研究結(jié)果類似,其發(fā)現(xiàn)森林土壤改為茶園土壤耕種后,土壤凈硝化潛勢(shì)顯著降低了268%。AOA和AOB是氨氧化過(guò)程的主導(dǎo)微生物,且氨氧化過(guò)程又是硝化作用的限速步驟,因此,AOA和AOB群落結(jié)構(gòu)的變化可能是宏觀上影響硝化潛勢(shì)的主要原因。Lu等(2012)的研究結(jié)果也表明,森林土壤改為茶園土壤后,其主導(dǎo)的AOA菌群從隸屬于陸地分支的Group 1.1b變?yōu)殡`屬于海洋分支的Group 1.1a-associated;氨氧化微生物菌群變化與硝化潛勢(shì)的變化也有相關(guān)性,如硝化潛勢(shì)與隸屬于54d9-like cluster的AOA呈正相關(guān)。此外,本研究的AOA豐度與土壤有機(jī)質(zhì)含量呈極顯著正相關(guān),與Wu等(2011)的研究結(jié)果一致。這可由Walker等(2010)的研究推論來(lái)解釋,其研究發(fā)現(xiàn)AOA的代謝方式可能不僅限于化能自養(yǎng),也可以有機(jī)質(zhì)為底物進(jìn)行兼養(yǎng)或異養(yǎng)的方式獲取能量,但該代謝途徑的生態(tài)意義尚不清楚,因此,AOA豐度變化所導(dǎo)致的整體代謝速率變化宏觀上可能表現(xiàn)為不同林分土壤中硝化潛勢(shì)的差異。同時(shí),AOA豐度與土壤總氮負(fù)相關(guān)可能是其與土壤中需氮異養(yǎng)微生物的競(jìng)爭(zhēng)關(guān)系所致。Lehtovirta-Morley等(2011)的研究也發(fā)現(xiàn),AOA在低氮環(huán)境中有較強(qiáng)的生態(tài)優(yōu)勢(shì),如嗜酸性AOA菌株Nitrosotaleadevanaterra對(duì)氨分子底物具有較強(qiáng)的親和度,可在氨濃度為0.18 nmol/L的環(huán)境中進(jìn)行氨氧化。6種土壤中AOA/AOB豐度比值為1.25~15.00,有關(guān)AOA豐度顯著高于AOB這一規(guī)律在很多土壤中均有發(fā)現(xiàn)(Stahl and de la Torre,2012)。
氨氧化微生物菌群結(jié)構(gòu)在不同林分土壤中有所差異。6種土壤中的主導(dǎo)AOA菌群均為隸屬于陸地分支Group 1.1b的54d9-like cluster,Pester等(2012)對(duì)涵蓋了森林、草地、沙漠和農(nóng)田等環(huán)境的146種土壤進(jìn)行amoA基因測(cè)序,結(jié)果發(fā)現(xiàn),其中75%的土壤中含有54d9-like的AOA,說(shuō)明該AOA類群在土壤環(huán)境中廣泛存在。F-PF中隸屬于Nitrososphaera gargenis-like cluster的AOA菌群在不同類型的土壤中也都有分布(Spang et al.,2012)。此外,隸屬于Group 1.1b的AOA在高氮土壤環(huán)境,如農(nóng)田中較富集(Tourna et al.,2011)。冗余分析結(jié)果表明,土壤總氮是導(dǎo)致AOA菌群結(jié)構(gòu)差異的主導(dǎo)因子,說(shuō)明可利用性氮是影響本研究中6種土壤AOA群落分異的關(guān)鍵因素,與Lu等(2018)的結(jié)論相同,其對(duì)8種不同發(fā)育母質(zhì)的土壤研究表明總氮是影響AOA群落的關(guān)鍵環(huán)境因子。6種林分土壤中的主導(dǎo)AOB菌群為隸屬于Nitrosospira cluster 3的L115-like cluster,在我國(guó)很多土壤中均檢測(cè)到其較高豐度(Wang et al.,2015),該菌群在土壤中的豐度通常比其他菌群分支高,如Nitrosomonas(Tourna et al.,2010)。冗余分析結(jié)果表明,土壤有機(jī)質(zhì)和NO3--N含量是影響6種土壤AOB菌群分異的主導(dǎo)因素,可能是不同林分土壤施肥措施差異造成土壤可利用性碳和氮的差異所致。
由于克隆文庫(kù)測(cè)序深度的限制,為精確考量環(huán)境因子的變化對(duì)氨氧化微生物群落的影響,今后需采用測(cè)序深度更深的技術(shù)來(lái)支撐,如基于16S rRNA或amoA基因的Miseq高通量測(cè)序。
4 結(jié)論
不同林分土壤的理化性質(zhì)和硝化潛勢(shì)存在顯著差異,氨氧化微生物群落結(jié)構(gòu)在不同土壤中也有明顯的分異特征;土壤總氮和有機(jī)質(zhì)是影響土壤氨氧化微生物豐度和群落結(jié)構(gòu)的主導(dǎo)驅(qū)動(dòng)因子。這可為深入認(rèn)識(shí)不同林分土壤生態(tài)系統(tǒng)中氮循環(huán)過(guò)程提供重要基礎(chǔ)數(shù)據(jù),也為果林和觀賞林調(diào)控土壤氮素流失、提高氮肥利用率提供理論依據(jù)。
參考文獻(xiàn):
康穎,李聰,王秋玉. 2014. 不同樹種純林對(duì)土壤生物學(xué)特性的影響[J]. 東北林業(yè)大學(xué)學(xué)報(bào),42(3):93-98. [Kang Y,Li C,Wang Q Y. 2014. Effects of different tree plantation on soil biological properties[J]. Journal of Northwest Forest University,42(3):93-98.]
李會(huì)琳,張靜,王嵐,楊宏,何燕,路璐. 2017. 土地利用方式改變對(duì)兩種酸性土壤微生物群落結(jié)構(gòu)的影響[J]. 西華師范大學(xué)學(xué)報(bào)(自然科學(xué)版),38(4):373-381. [Li H L,Zhang J,Wang L,Yang H,He Y,Lu L. 2017. The influen-ce of land use change on the microbial community in two acidic soils[J]. Journal of China West Normal University(Natural Science),38(4):373-381.]
劉飛渡,韓蕾. 2015. 亞熱帶紅壤丘陵區(qū)不同人工林型對(duì)土壤理化性質(zhì)、微生物類群和酶活性的影響[J]. 生態(tài)環(huán)境學(xué)報(bào),24(9):1441-1446. [Liu F D,Han L. 2015. Effects of different artificial forestry on soil physio-chemical properties,microbial groups and enzyme activities in subtropical red soil hilly region[J]. Ecology and Environment Sciences,24(9):1441-1446.]
張發(fā)會(huì),吳雪仙,蔡小虎,王琛. 2015. 川西亞高山3種不同林分類型對(duì)土壤理化性質(zhì)的影響[J]. 四川林業(yè)科技,36(3):8-12. [Zhang F H,Wu X X,Cai X H,Wang C. 2015. The influence of three different forest types on soil physical and chemical properties in subalpine areas of western Sichuan[J]. Journal of Sichuan Forestry Science and Technology,36(3):8-12.]
Daims H,Lebedeva E V,Pjevac P,Han P,Herbold C,Albertsen M,Jehmlich N,Palatinszky M,Vierheilig J,Bulaev A. 2015. Complete nitrification by nitrospira bacteria[J]. Nature,528(7583):504-509.
Erguder T H,Boon N,Wittebolle L,Marzorati M,Verstraete W. 2009. Environmental factors shaping the ecological niches of ammonia-oxidizing archaea[J]. FEMS Microbio-logy Reviews,33(5):855-869.
Gruber N,Galloway J N. 2008. An earth-system perspective of the global nitrogen cycle[J]. Nature,451(7176):293-296.
Haynes R. 2012. Mineral Nitrogen in the Plant-soil System[M]. Academic Press.
Hinsinger P. 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical chan-ges:A review[J]. Plant and Soil,237(2):173-195.
Jia Z,Conrad R. 2009. Bacteria rather than archaea dominate microbial ammonia oxidation in an agricultural soil[J] . Environmental Microbiology,11(7):1658-1671.
Klotz M G,Stein L Y. 2007. Nitrifier genomics and evolution of the nitrogen cycle[J]. FEMS Microbiology Letters,278(2):146-156.
Lehtovirta-Morley L E,Stoecke K,Vilcinskas A,Prosser J I,Nicol G W. 2011. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil[J]. Procee-dings of the National Academy of Sciences of the United States of America,108(38):15892-15897.
Lu L,Han W Y,Zhang J B,Wu Y C,Wang B Z,Lin X G,Zhu J G,Cai Z C,Jia Z J. 2012. Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea[J]. The ISME Journal,6(10):1978-1984.
Lu L,Jia Z J. 2013. Urease gene-containing archaea dominate autotrophic ammonia oxidation in two acid soils[J]. Environmental Microbiology,15(6):1795-1809.
Lu L,Li H L,He Y,Zhang J,Xiao J,Peng C. 2018. Compositional shifts in ammonia-oxidizing microorganism communities of eight geographically different paddy soils—Biogeographical distribution of ammonia-oxidizing microorganisms[J]. Agricultural Sciences,9(3):351-373.
Martens-Habbena W,Berube P M,Urakawa H,José R,Stahl D A. 2009. Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria[J]. Nature,461(7266):976-979.
Mukherjee M,Ray A,Post A F,Mckay R M,Bullerjahn G S. 2016. Identification,enumeration and diversity of nitri-fying planktonic archaea and bacteria in trophic end members of the laurentian great lakes[J]. Journal of Great Lakes Research,42(1):39-49.
Pester M,Rattei T,F(xiàn)lechl S,Gr?ngr?ft A,Richter A,Overmann J,Reinhold-Hurek B,Loy A,Wagner M. 2012. amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions[J]. Environmental Microbiology,14(2):525-539.
Pilar J,Verónica M,Cristina D,Ora H,Ok-Sun K,Thomas J,Karl-Paul W,Imhoff J F. 2010. Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms(AOM) in the environment[J]. Applied Microbio-logy & Biotechnology,85(3):425-440.
Qi J,Nie Z N,Jiao T,Zhang D G. 2015. Phosphorus and defoliation interact and improve the growth and composition of the plant community and soil properties in an alpine pasture of qinghai-tibet plateau[J]. PLoS One,10(10):e0141701.
Segal L M,Miller D N,Mcghee R P,Loecke T D,Cook K L,Shapiro C A,Drijber R A. 2017. Bacterial and archaeal ammonia oxidizers respond differently to long-term tilla-ge and fertilizer management at a continuous maize site[J]. Soil and Tillage Research,168:110-117.
Shaw L J,Nicol G W,Smith Z,F(xiàn)ear J,Prosse J I,Baggs E M. 2006. Nitrosospira spp. Can produce nitrous oxide via a nitrifier denitrification pathway[J]. Environmental Microbiology,8(2):214-222.
Spang A,Poehlein A,Offre P,Zumbr?gel S,Haider S,Rychlik N,Nowka B,Schmeisser C,Lebedeva E V,Rattei T. 2012. The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis:Insights into metabolic versatility and environmental adaptations[J]. Environmental Microbiology,14(12):3122-3145.
Stahl D A,de la Torre J R. 2012. Physiology and diversity of ammonia-oxidizing archaea[J]. Annual Review of Microbiology,66:83-101.
Tourna M,F(xiàn)reitag T E,Prosser J I. 2010. Stable isotope pro-bing analysis of interactions between ammonia oxidizers[J]. Applied and Environmental Microbiology,76(8):2468-2477.
Tourna M,Stieglmeier M,Spang A,K?nneke M,Schintlmeister A,Urich T,Engel M,Schloter M,Wagner M,Richter A. 2011. Nitrososphaera viennensis,an ammonia oxidi-zing archaeon from soil[J]. Proceedings of the National Academy of Sciences of the United States of America,108(20):8420-8425.
Walker C B,de la Torre J R,Klotz M G,Urakawa H,Pinel N,Arp D J,Brochier-Armanet C,Chain P S,Chan P P,Gollabgir A. 2010. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea[J]. Proceedings of the National Academy of Sciences of the United States of America,107(19):8818-8823.
Wang B Z,Zhao J,Guo Z Y,Ma J,Xu H,Jia Z J. 2015. Di-fferential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils[J]. The ISME Journal,9(5):1062-1075.
Wu Y C,Lu L,Wang B Z,Lin X G,Zhu J G,Cai Z C,Yan X Y,Jia Z J. 2011. Long-term field fertilization significantly alters community structure of ammonia-oxidizing bacteria rather than archaea in a paddy soil[J]. Soil Science Society of America Journal,75(4):1431-1439.
Yao H Y,Gao Y M,Nicol G W,Campbell C D,rosser J I,Zhang L M,Han W Y,Singh B K. 2011. Links between ammonia oxidizer community structure,abundance,and nitrification potential in acidic soils[J]. Applied and Environmental Microbiology,77(13):4618-4625.
Zhang J B,Zhu T B,Cai Z C,Muller C. 2011. Nitrogen cycling in forest soils across climate gradients in eastern China[J]. Plant and Soil,342(1-2):419-432.