陳世軍
摘 要:? 建立求含多個未知矩陣方程組的對稱、反對稱、中心對稱和中心反對稱解的修正共軛梯度算法.該算法可以判斷矩陣方程組的對稱、反對稱、中心對稱和中心反對稱解是否存在,在約束解存在時,不考慮舍入誤差情況下,能求得矩陣方程組的一組異類約束解;選取特殊初始矩陣時,可求得該方程組的極小范數(shù)解;給定矩陣可以在約束解集合中,求出其最佳逼近矩陣.數(shù)值實驗驗證了該算法的可行性.
關鍵詞: 異類約束矩陣;修正共軛梯度法;收斂性;最佳逼近
[中圖分類號]0241.6 ???[文獻標志碼]A
An Iterative Algorithm MCG1-2-3-4 for Solving Matrix Equations over different Constrained Matrices
CHEN Shi-jun
(Fujian university of technology college of Applied Technology? , Fuzhou 350001,China)
Abstract: A modified conjugate method MCG1-2-3-4 is presented for solving a linear matrix equations with several unknown matrices about symmetric matrix, antisymmetric matrix,central symmetric matrix and central antisymmetric matrix. By this method, we not only can judge whether the matrix equations is consistent over different constrained matrices, but also can obtain the solution in the absence of round off errors when the matrix equations is consistent, and the different constrained solution with least-norm can be got by choosing special initial matrices. In addition, the optimal approximation matrix of the given matrix can be obtained in the set of the different constrained solution. The numerical example show that the method is quite efficient.
Key words: different constrained matrices; modified conjugate gradient method; convergence; optimal approximation
在電學、結構動力模型修正問題和控制理論中,很多計算問題可歸結為矩陣方程特殊解求解.對于此類方程已有許多研究成果[1-8],如盛興平、彭亞新、柯藝芬、胡麗瑩[1-4]等提出了求單變量矩陣方程(組)約束解的迭代算法;武見、解培月[5-6]等基于變形共軛梯度法的求算法原理,建立了多變量矩陣方程組異類約束解的迭代算法.本文以四個未知矩陣的矩陣方程組為例,參考文獻[5-6],擬建立求其對稱、反對稱、中心對稱和中心反對稱解的迭代算法.
4 結 論
本文建立了求四個未知矩陣的矩陣方程組對稱、反對稱、中心對稱和中心反對稱解的迭代算法——修正共軛梯度法MCG1-2-3-4,該算法不僅可以判斷方程組是否有異類約束解,而且在有異類約束解時,能在有限步迭代計算后得到方程組的一組異類約束解.數(shù)值實驗證明,該算法具有可行性,修改算法中矩陣類型或方程組中矩陣變量個數(shù),采用類似的方法,可以建立求矩陣方程組的其他異類約束解的迭代算法.
參考文獻
[1] ?盛興平,蘇友峰,陳果良.矩陣方程ATXB+BTXTA=D的極小范數(shù)最小二乘解的迭代算法[J].高等學校計算數(shù)學學報,2008,30(4):352-362.
[2] ?Peng Ya-xin, Hu Xi-yan, Zhang Lei. An iterative method for symmetric solutions and optimal approximate solution of the system of matrix equations A1X1B1=C1, A2X2B2=C2[J]. Applied Mathematics and Computation, 2006, 183(2): 1127-1137.
[3] ?柯藝芬,馬昌鳳.一類矩陣方程組的反對稱-正交對稱解[J]. 福建師范大學學報:自然科學版,2015,31(1):12-17.
[4] ?胡麗瑩,郭躬德,馬昌鳳.一類矩陣方程組的最小二乘反對稱次對稱解及其最佳逼近[J]. 福建師范大學學報:自然科學版,2014,30(3):12-18.
[5] ?解培月,張凱院.特殊雙變量矩陣方程組異類約束解的MCG算法[J]. 數(shù)學雜志,2012,32(4):649-657.
[6] ?武見,張凱院.多變量矩陣方程異類約束解的修正共軛梯度算法[J]. 工程數(shù)學學報,2012,29(1):112-116.
[7] ?張鵬,廖飛.共軛梯度法研究與展望[J]. 牡丹江師范學院學報:自然科學版,2012(4):10-12.
[8] ?劉延彬,姜媛媛.求解強非線性振動方程的加權余量遞推法[J]. 牡丹江師范學院學報:自然科學版,2017(3):21-24.
[9] ?張凱院,徐仲.數(shù)值代數(shù)(第2版修訂本)[M].北京:科學出版社,2010.25-27, 198-243.
[10] ?張賢達.矩陣分析與應用[M].北京:清華大學出版社,2006.105-113.