施龍建 文章榮 張世博 王 玨 陸衛(wèi)平 陸大雷
?
開花期干旱脅迫對鮮食糯玉米產(chǎn)量和品質(zhì)的影響
施龍建 文章榮 張世博 王 玨 陸衛(wèi)平 陸大雷*
揚州大學(xué)江蘇省作物遺傳生理國家重點實驗室培育點 / 糧食作物現(xiàn)代產(chǎn)業(yè)技術(shù)協(xié)同創(chuàng)新中心, 江蘇揚州 225009
為探明開花期(抽雄吐絲期)干旱脅迫對鮮食糯玉米(吐絲后23 d采收)產(chǎn)量和品質(zhì)的影響, 以蘇玉糯5號和渝糯7號為試材, 采用負(fù)水頭供水控水盆栽裝置控制土壤含水量, 設(shè)置開花期正常供水(土壤相對含水量80%)和干旱脅迫(土壤相對含水量60%) 2個處理, 研究干旱脅迫對鮮食糯玉米產(chǎn)量(鮮果穗和鮮籽粒)、籽粒組分、糊化和熱力學(xué)特性的影響。結(jié)果表明, 開花期干旱脅迫減少籽粒數(shù)量、降低籽粒重量、縮小籽粒體積, 導(dǎo)致鮮果穗和鮮籽粒產(chǎn)量損失。開花期干旱脅迫下鮮食期籽粒淀粉含量升高, 但對于蛋白質(zhì)含量渝糯7號降低, 蘇玉糯5號變化不顯著。蛋白質(zhì)組分中, 對球蛋白含量影響不顯著, 清蛋白、谷蛋白和醇溶蛋白均顯著降低。開花期干旱脅迫顯著降低淀粉粒平均粒徑。碘結(jié)合力2015年度顯著下降, 2014年度受干旱影響不顯著。開花期干旱脅迫下籽粒峰值黏度、谷值黏度和終值黏度在蘇玉糯5號中降低, 在渝糯7號中升高。開花期干旱脅迫下兩品種峰值溫度降低, 回生熱焓值和回生值升高, 而熱焓值僅渝糯7號在2014年度升高??傊? 開花期干旱降低糯玉米鮮果穗和鮮籽粒產(chǎn)量, 增加籽粒淀粉含量, 降低籽粒蛋白質(zhì)含量、淀粉粒徑和支鏈淀粉中長鏈比例, 進(jìn)而使籽?;厣黾? 但糊化黏度兩品種表現(xiàn)不同(渝糯7號升高, 蘇玉糯5號下降)。
鮮食糯玉米; 開花期干旱; 產(chǎn)量;品質(zhì)
干旱是影響作物產(chǎn)量的一個重要的非生物逆境因子。干旱對作物生長發(fā)育的影響受到全球關(guān)注[1-2]。玉米以旱作雨養(yǎng)為主, 各生育時期均易受水分虧缺影響。開花期(抽雄吐絲期)是玉米需水臨界期, 水分虧缺會影響開花授粉和籽粒發(fā)育并降低產(chǎn)量。開花期缺水影響玉米抽雄, 延遲雌穗吐絲, 延長雌雄間隔, 影響受精, 增加敗育籽粒數(shù)量[3]。小麥[4-5]、大麥[6]、高粱[7]、水稻[8]等作物的研究表明, 開花期水分虧缺影響植株生長發(fā)育并最終降低籽粒產(chǎn)量。不同生育時期干旱脅迫引起作物籽粒組分含量、淀粉結(jié)構(gòu)和品質(zhì)變化[9-14]。開花期干旱脅迫使大麥灌漿提前終止,籽粒淀粉中直鏈淀粉含量和支鏈淀粉鏈長分布發(fā)生變化[6]。開花期干旱脅迫使高粱淀粉積累提前, 淀粉合成相關(guān)酶活性降低, 總淀粉積累量減少[7]。干旱脅迫使小麥籽?;ê? d時的蛋白(清蛋白、球蛋白、醇溶蛋白等)合成相關(guān)基因表達(dá)受抑[4]。與開花期灌溉相比, 干旱脅迫下小麥籽粒淀粉粒變小, 面粉糊化特征值(峰值黏度、谷值黏度、崩解值)升高[5]。與正常灌溉相比, 干旱(半量灌溉)使玉米淀粉含量降低, 蛋白質(zhì)含量在正常條件下升高, 高CO2條件下降低[15]。課題組前期研究表明, 結(jié)實期干旱脅迫降低鮮食糯玉米籽粒產(chǎn)量, 同時改變品質(zhì)[16]。本文研究了開花期土壤干旱脅迫對鮮食糯玉米產(chǎn)量和品質(zhì)的影響, 以期為鮮食糯玉米優(yōu)質(zhì)抗逆高產(chǎn)栽培提供理論支持。
試驗于2014—2015年在揚州大學(xué)進(jìn)行。品種為國家鮮食糯玉米區(qū)域試驗?zāi)戏絽^(qū)對照品種蘇玉糯5號(東南區(qū))和渝糯7號(西南區(qū))。7月1日播種, 7月5日移至裝過篩壤土30 kg的盆缽中(高38 cm, 直徑43 cm), 每盆2株, 拔節(jié)期定苗至1株, 每處理10盆。每盆基施(N∶P2O5∶K2O = 15%∶15%∶15%)復(fù)合肥10 g, 拔節(jié)期追施尿素6.6 g (N為46%)。
利用負(fù)水頭供水控水盆栽裝置(專利號為200510123976)控制土壤含水量。抽雄之前將土壤相對含水量控制在75%左右, 開花期(抽雄吐絲期, 從植株雄穗尖端露出頂葉3~4 cm到雌穗花絲露出苞葉4~5 cm)進(jìn)行干旱脅迫處理, 土壤相對含水量對照和干旱處理分別為80%和60%, 人工輔助授粉后終止處理, 將土壤相對含水量恢復(fù)至正常水平(75%)。利用高5 m的透明雨棚防止降雨影響, 結(jié)實期平均溫度、降雨量和日照時數(shù)2014年和2015年分別為24℃、232 mm、70 h和25℃、104 mm、145 h。
鮮食期(吐絲后23 d)收獲果穗, 剝除苞葉后測定鮮果穗重(g 株–1), 脫粒后測定每穗粒數(shù)(個)、稱鮮籽粒產(chǎn)量(g 株–1)和鮮籽粒重(mg)。剝每穗3~5列籽粒(果穗基部至頂部)于100℃烘12 h后測定籽粒含水率(%), 其他籽粒于40℃烘5 d后粉碎過100目篩(= 0.149 mm)用于其他理化指標(biāo)分析。
采用蒽酮比色法測定籽粒淀粉含量[17], 凱氏定氮法[18]測定蛋白質(zhì)含量(蛋白質(zhì)含量 = 氮含量× 6.25)。參照張智猛等[19]的方法分離后用凱氏定氮法[18]測定蛋白質(zhì)組分。
參照前期已報道的方法[20]。
用激光衍射粒度分析儀(Mastersizer 2000, Malvern)參照前期已報道的方法[20]測定淀粉粒徑大小和分布, 以無水乙醇為分散介質(zhì)。
參照前期已報道的方法[20]測定最大吸收波長和碘結(jié)合力。
用差示掃描量熱儀DSC (2003 Maia, NETZSCH, Germany)參照前期已報道的方法[21]測定籽粒熱力學(xué)特性。
用快速黏度分析儀(Model 3D, Newport Scientific, Australia)參照前期已報道的方法[21]測定籽粒糊化特性, 并用TCW (Thermal Cycle for Windows)配套軟件分析。用“cP”表示黏度值。
用DPS 7.05進(jìn)行統(tǒng)計和相關(guān)分析, 最小顯著差異法(LSD0.05)檢驗平均數(shù)。用Microsoft Excel 2010作圖。
開花期干旱脅迫顯著影響鮮食糯玉米產(chǎn)量構(gòu)成(表1)。總體上, 鮮籽粒重、鮮籽粒體積、干籽粒重、每穗粒數(shù)、鮮果穗和鮮籽粒產(chǎn)量在干旱脅迫下均顯著降低。開花期干旱脅迫下, 籽粒含水率2014年蘇玉糯5號升高, 2015年渝糯7號升高。
開花期干旱脅迫顯著增加兩品種籽粒淀粉含量(表2)。干旱脅迫下, 籽粒蛋白質(zhì)含量蘇玉糯5號影響不顯著, 渝糯7號降低。蛋白質(zhì)組分中, 除球蛋白含量受干旱處理影響不顯著外, 清蛋白、谷蛋白和醇溶蛋白含量干旱脅迫下均顯著降低。
開花期干旱脅迫顯著減小淀粉粒平均粒徑(圖1), 且蘇玉糯5號大于渝糯7號。年度間相比, 2014年淀粉粒徑高于2015年度。
各處理下淀粉的最大吸收波長變幅為533.3~ 535.9 nm, 均為典型的糯性特征(圖2)。對于最大吸收波長, 干旱脅迫下渝糯7號影響不顯著, 而蘇玉糯5號均顯著降低。對于碘結(jié)合力, 2014年兩品種受干旱脅迫影響不顯著, 2015年度均顯著降低。
表1 開花期干旱對鮮食糯玉米產(chǎn)量的影響
同一列中標(biāo)以不同字母的均值在< 0.05水平差異顯著。
Mean values within the same column followed by different lowercases are significantly different at0.05.
表2 開花期干旱對籽粒淀粉和蛋白質(zhì)組分含量的影響
同一列中標(biāo)以不同字母的均值在< 0.05水平差異顯著。
Mean values within the same column followed by different lowercases are significantly different at0.05.
圖1 開花期干旱對鮮食糯玉米淀粉粒體積分布的影響
圖2 開花期干旱對鮮食糯玉米籽粒淀粉最大吸收波長和碘結(jié)合力的影響
開花期干旱脅迫對鮮食糯玉米籽粒糊化特性的影響在品種間、年度間均有顯著差異(表3)。在開花期干旱脅迫下, 渝糯7號回復(fù)值2014年升高, 2015年變化不顯著, 其他糊化特征值均顯著升高。蘇玉糯5號的崩解值和糊化溫度受開花期干旱脅迫影響不顯著, 而峰值黏度、谷值黏度、終值黏度和回復(fù)值顯著降低, 且2014年降幅較大。
表3 開花期干旱對鮮食糯玉米籽粒糊化特性的影響
同一列中標(biāo)以不同字母的均值在< 0.05水平差異顯著。
Mean values within the same column followed by different lowercases are significantly different at0.05. PV: peak viscosity; TV: trough viscosity; BD: breakdown viscosity; FV: final viscosity; SB: setback viscosity;temp: pasting temperature.
由表4可知, 籽粒熱焓值除渝糯7號2014年在開花期干旱脅迫下升高外, 其他處理受干旱脅迫影響不顯著。蘇玉糯5號的膠凝溫度(起始溫度、峰值溫度和終值溫度)開花期干旱下顯著降低。渝糯7號的起始溫度受干旱脅迫影響不顯著, 峰值溫度顯著降低, 終值溫度2014年降低, 2015年無顯著變化。膠凝樣品4℃冷藏7 d后發(fā)生回生, 回生熱焓值和回生值在開花期干旱脅迫下顯著升高, 且升幅2014年較大。
表4 開花期干旱脅迫對鮮食糯玉米籽粒熱力學(xué)特性的影響
同一列中標(biāo)以不同字母的均值在< 0.05水平差異顯著。
Mean values within the same column followed by different lowercases are significantly different at0.05.Dgel: gelatinization enthalpy;o: onset temperature;p: peak temperature;c: conclusion temperature;Dret: retrogradation enthalpy; %: retrogradation percentage.
干旱脅迫是玉米生長過程中易遭遇的重要非生物逆境之一。開花期(抽雄吐絲期)是玉米生長的需水臨界期, 此階段水分供應(yīng)不足會影響植株抽雄、吐絲、授粉、受精和結(jié)實, 最終減少籽粒數(shù)量[3]。本研究表明, 開花期干旱脅迫下籽粒數(shù)量減少12.8%, 鮮籽粒產(chǎn)量降低20.2%, 鮮果穗產(chǎn)量降低16.2%, 而前人盆栽試驗表明玉米籽粒產(chǎn)量在抽雄后持續(xù)7 d的干旱脅迫下降低50%[22], 池栽試驗表明玉米籽粒產(chǎn)量在抽雄前3 d至吐絲后7 d的干旱脅迫下降低45.3%~61.0%[23], 造成這種差異的原因是本研究進(jìn)行了人工輔助授粉, 籽粒數(shù)量減少低于自然授粉。本研究發(fā)現(xiàn), 鮮籽粒體積和重量在開花期干旱脅迫下均低于正常條件下, 表明籽粒發(fā)育亦受開花期干旱脅迫的負(fù)向影響。另外, 由于單穗重是評價糯玉米果穗商品價值的關(guān)鍵指標(biāo)[24], 開花期干旱脅迫下鮮穗重、鮮籽粒重均顯著降低, 其商品價值亦顯著降低, 因此鮮食糯玉米生產(chǎn)中應(yīng)根據(jù)氣象條件調(diào)控土壤水分, 提高產(chǎn)品價值。
Wang和Frei[10]總結(jié)前人研究結(jié)果發(fā)現(xiàn), 總體上干旱脅迫使籽粒淀粉含量降低, 蛋白質(zhì)含量增加。不同生育時期減量灌溉使普通玉米[25]籽粒淀粉含量降低, 蛋白質(zhì)含量升高。本課題組前期研究[16]表明, 結(jié)實期干旱脅迫對鮮食糯玉米籽粒淀粉含量無顯著影響, 但使蛋白質(zhì)含量升高。本研究表明, 開花期干旱脅迫使籽粒淀粉含量升高, 渝糯7號蛋白質(zhì)含量降低, 蛋白質(zhì)組分中除球蛋白含量影響較小外, 清蛋白、谷蛋白和醇溶蛋白均顯著降低。這與前人研究結(jié)果顯著不同, 其原因可能是由于脅迫時期、脅迫方法(盆栽控水、田間灌溉)、脅迫持續(xù)時間和收獲時期不同。鮮食糯玉米籽粒中淀粉含量升高, 蛋白質(zhì)含量降低可能是開花期干旱增加籽粒敗育數(shù), 復(fù)水后同化物分配優(yōu)先供應(yīng)果穗基部和中部籽粒, 同時較少的穗粒數(shù)導(dǎo)致庫容降低, 庫充分調(diào)動源中同化物向籽粒運輸, 使籽粒灌漿充分所致[3]。對小麥的研究[26]亦表明, 適度干旱(土壤水分降低至-40 kPa后復(fù)水)有利于增強可溶性淀粉合成酶活性, 促進(jìn)籽粒淀粉積累。
本研究表明, 開花期干旱脅迫導(dǎo)致鮮食糯玉米籽粒中淀粉粒變小, 短鏈比例增多, 這與結(jié)實期干旱脅迫對成熟期糯玉米籽粒淀粉結(jié)構(gòu)的影響相似[27], 大麥上亦有相似的報道[6]。干旱脅迫下短鏈比例較多可能是淀粉粒較小所致[28]。小麥上的研究[29]也發(fā)現(xiàn)干旱脅迫使花后18 d的小型淀粉粒比例增多。不同生育時期水分虧缺灌溉亦導(dǎo)致普通玉米籽粒淀粉粒變小[25]; 結(jié)實期水分虧缺亦使小麥淀粉粒徑變小[5]。但亦有研究表明小麥淀粉粒徑對干旱的響應(yīng)因脅迫階段和持續(xù)時期而異[30-31]。
籽粒組分和淀粉結(jié)構(gòu)的不同導(dǎo)致鮮食糯玉米籽粒糊化和熱力學(xué)特性變化。本研究表明, 開花期干旱脅迫使蘇玉糯5號峰值黏度降低, 渝糯7號峰值黏度升高。但結(jié)實期干旱脅迫則使糯玉米鮮食期[16]和成熟期[32]籽粒黏度降低, 普通玉米[25]籽粒黏度降低。但對面粉[5]和米粉[33]的研究發(fā)現(xiàn)結(jié)實期干旱脅迫導(dǎo)致籽粒黏度升高, 其原因是干旱脅迫下淀粉轉(zhuǎn)葡糖苷酶和α-淀粉酶水解后釋放出較多還原糖, 蛋白水解酶水解后降低了淀粉持水力, 淀粉粒易破損所致[5]。由于本文兩品種黏度特性對開花期干旱脅迫響應(yīng)存在顯著差異, 因此進(jìn)一步分析籽粒其他組分構(gòu)成與淀粉形態(tài)結(jié)構(gòu)利于闡明其變化差異的相應(yīng)機制。本文結(jié)果與前人研究結(jié)果的不同可能是小麥和水稻上的脅迫階段是結(jié)實期, 試驗為大田實驗, 干旱可能是輕度干旱; 另外, 脅迫的持續(xù)時期不同亦會顯著影響試驗結(jié)果。本研究結(jié)果表明, 開花期土壤干旱導(dǎo)致鮮食糯玉米籽?;厣瞪? 這與結(jié)實期干旱脅迫使糯玉米鮮食期[16]和成熟期[32]籽粒回生值升高的結(jié)果相似。回生值升高的原因可能是小淀粉粒在加熱過程中抗剪切力較強, 不易破壞, 這些沒有破壞的籽粒在冷藏過程中發(fā)生回生, 重新加熱過程中被破壞, 導(dǎo)致回生熱焓值升高, 進(jìn)而增加回生[34]。
開花期干旱脅迫減少果穗每穗粒數(shù)并降低籽粒重量和體積, 進(jìn)而降低鮮食糯玉米果穗和籽粒產(chǎn)量。開花期干旱脅迫增加籽粒淀粉含量, 減少籽粒蛋白質(zhì)及其組分含量, 降低淀粉粒徑和支鏈淀粉長鏈比例, 進(jìn)而使鮮食糯玉米回生值升高, 但對于糊化特性渝糯7號變優(yōu), 蘇玉糯5號變劣。
[1] Service R F. Green energy. The promise of drought-tolerant corn., 2009, 326: 517
[2] Cooper M, Gho C, Leafgren R, Tang T, Messina C. Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product., 2014, 65: 6191–204
[3] 李葉蓓, 陶洪斌, 王若男, 張萍, 吳春江, 雷鳴, 張巽, 王璞. 干旱對穗發(fā)育及產(chǎn)量的影響. 中國生態(tài)農(nóng)業(yè)學(xué)報, 2015, 23: 383–391Li Y B, Tao H B, Wang R N, Zhang P, Wu C J, Lei M, Zhang X, Wang P. Effect of drought on ear development and yield of maize., 2015, 23: 383–391 (in Chinese with English abstract)
[4] Begcy K, Walia H. Drought stress delays endosperm development and misregulates genes associated with cytoskeleton organization and grain quality proteins in developing wheat seeds., 2015, 240: 109–119
[5] Li C, Li C Y, Zhang R Q, Liang W, Kang X L, Jia Y, Liao Y C. Effects of drought on the morphological and physicochemical characteristics of starch granules in different elite wheat varieties., 2015, 66: 66–73
[6] Gous P W, Hasjim J, Franckowiak J, Fox G P, Gilbert R G. Barley genotype expressing “stay-green”-like characteristics maintains starch quality of the grain during water stress condition., 2013, 58: 414–419
[7] Yi B, Zhou Y F, Gao M Y, Zhang Z, Han Y, Yang G D, Xu W J, Huang R D. Effect of drought stress during flowering stage on starch accumulation and starch synthesis enzymes in sorghum grains., 2014, 13: 2399–2406
[8] Haider Z, Farooq U, Naseem I, Zia S, Alamgeer M. Impact of drought stress on some grain quality traits in rice ()., 2015, 4: 132–138
[9] Tester R F, Karkalas J. The effects of environmental conditions on the structural features and physicochemical properties of starches., 2001, 53: 513–519
[10] Wang Y X, Frei M. Stressed food: the impact of abiotic environmental stresses on crop quality., 2011, 141: 271–286
[11] Thitisaksakul M, Jimenez R C, Arias M C, Beckles D M. Effects of environmental factors on cereal starch biosynthesis and composition., 2012, 56: 67–80
[12] Beckles D M, Thitisaksakul M. How environmental stress affects starch composition and functionality in cereal endosperm, 2014, 66: 58–71
[13] Jagadish K S V, Kadam N N, Xiao G, Melgar R J, Bahuguna R N, Quinones C, Tamilselvan A, Prasad P V V. Agronomic and physiological responses to high temperature, drought, and elevated CO2interactions in cereals., 2014, 127: 111–156
[14] Patindol J A, Siebenmorgen T J, Wang Y J. Impact of environmental factors on rice starch structure: A review., 2015, 67: 42–54
[15] Erbs M, Manderscheid R, Huther L, Schenderlein A, Wieser H, Danicke S, Weigel H J. Free-air CO2enrichment modifies maize quality only under drought stress., 2015, 35: 203–212
[16] Lu D, Cai X, Zhao J, Shen X, Lu W. Effects of drought after pollination on grain yield and quality of fresh waxy maize., 2015, 95: 210–215
[17] Hansen J, Moller I. Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone., 1975, 68: 87–94
[18] AACC. Approved Methods of the American Association of Cereal Chemists, Method 46 (1990) 10–01, AACCI, St Paul, MN
[19] 張智猛, 戴良香, 胡昌浩, 董樹亭, 王空軍. 氮素對不同類型玉米籽粒氨基酸、蛋白質(zhì)含量及其組分變化的影響. 西北植物學(xué)報, 2015, 25: 1415–1420 Zhang Z M, Dai L X, Hu C H, Dong S T, Wang K J. Effect of nitrogen on amino acid and protein and protein component contents in the grains of different types of maize., 2005, 25: 1415–1420 (in Chinese with English abstract)
[20] Lu D L, Shen X, Cai X M, Yan F B, Lu W P, Shi Y C. Effects of heat stress during grain filling on the structure and thermal pro-perties of waxy maize starch., 2014, 143: 313–318
[21] Lu D L, Lu W P. Effects of protein removal on the physicochemical properties of waxy maize flours., 2012, 64: 874–881
[22] Robins J S, Domingo C E. Some effects of severe soil moisture deficits at specific growth stages in corn., 1953, 45: 618–621
[23] 劉永紅, 何文鑄, 楊勤, 柯國華, 高強.花期干旱對玉米籽粒發(fā)育的影響. 核農(nóng)學(xué)報, 2007, 21: 181–185 Liu Y H, He W Z, Yang Q, Ke G H, Gao Q. Effect of drought on grain growth at maize flowering stage., 2007, 21: 181–185 (in Chinese with English abstract)
[24] 劉萍, 杜慶平, 徐月明, 王祥菊. 糯玉米果穗不同計產(chǎn)方法對產(chǎn)量評價的影響. 江蘇農(nóng)業(yè)科學(xué), 2013, 41(4): 85–87 Liu P, Du Q P, Xu Y M, Wang X J. Effects of different ear yield calculating methods on yield evaluation in waxy corn., 2013, 41(4): 85–87 (in Chinese)
[25] Liu L M, Klocke N, Yan S P, Rogers D, Schlegel A, Lamm F, Chang S I, Wang D. Impact of deficit irrigation on maize physical and chemical properties and ethanol yield., 2013, 90: 453–462
[26] Zhang W, Gu J, Wang Z, Wei C, Yang J, Zhang J. Comparison of structural and functional properties of wheat starch under different soil drought conditions., 2017, 7(1): 12312
[27] Lu D, Cai X, Lu W. Effects of water deficit during grain filling on the physicochemical properties of waxy maize starch., 2015, 67: 692–700
[28] Lindeboom N, Chang P R, Tyler R T. Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: a review., 2004, 56: 89–99
[29] Yu X, Li B, Wang L, Chen X, Wang W, Gu Y, Wang Z, Xiong F. Effect of drought stress on the development of endosperm starch granules and the composition and physicochemical properties of starches from soft and hard wheat., 2016, 96: 2746–2754.
[30] Singh S, Singh G, Singh P, Singh N. Effect of water stress at different stages of grain development on the characteristics of starch and protein of different wheat varieties., 2008, 108: 130–139
[31] Zhang T, Wang Z, Yin Y, Cai R, Yan S, Li W. Starch content and granule size distribution in grains of wheat in relation to post-anthesis water deficits., 2010, 196: 1–8
[32] 陸大雷, 孫旭利, 王鑫, 閆發(fā)寶, 陸衛(wèi)平. 灌漿結(jié)實期水分脅迫對糯玉米粉理化特性的影響. 中國農(nóng)業(yè)科學(xué), 2013, 46: 30–36Lu D L, Sun X L, Wang X, Yan F B, Lu W P. Effects of water stress during grain filling on physicochemical properties of waxy maize flour., 2013, 46: 30–36 (in Chinese with English abstract)
[33] Gunaratne A, Ratnayaka U K, Sirisena N, Ratnayaka J, Kong X, Arachchi L V, Corke H. Effect of soil moisture stress from flowering to grain maturity on functional properties of Sri Lankan rice flour., 2011, 63: 283–290
[34] Perera C, Hoover R. Influence of hydroxypropylation on retrogradation properties of native, defatted and heatmoisture treated potato starches., 1999, 64: 361–375
Effects of Water Deficit at Flowering Stage on Yield and Quality of Fresh Waxy Maize
SHI Long-Jian, WEN Zhang-Rong, ZHANG Shi-Bo, WANG Jue, LU Wei-Ping, and LU Da-Lei*
Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
In order to clarify the influence of water deficit at flowering stage (tasseling silking stage) on yield and quality of fresh waxy maize (harvest at 23 d after silking), the fresh ear/grain yield and kernel components, pasting and thermal properties were measured using Suyunuo 5 and Yunuo 7. The soil moisture content was controlled by negative-pressure water supply and controlling pot device, and the relative soil moisture content for control and drought treatments was 80% and 60%, respectively. The drought at flowering stage decreased grain number, weight and volume, leading to the yield loss of fresh ear and grain. Under water deficit condition, grain starch content was increased, while protein content was increased in Yunuo 7 and unchanged in Suyunuo 5. For protein components, globulin contents was not affected by drought, while albumin, zein and glutenin contents were decreased when plants suffered water deficit at flowering stage. The starch granule size was reduced by drought for both varieties in both years, while starch iodine binding capacity for both varieties was decreased in 2015 and not affected in 2014 by drought. The peak, trough and final viscosities of grains were increased in Yunuo 7 and decreased in Suyunuo 5. Under drought condition, the grain peak gelatinization temperatures were decreased, retrogradation enthalpy and percentage were increased, while gelatinization enthalpy was only increased in Yunuo 7 in 2014. In conclusion, drought at flowering stage decreases fresh ear/grain yield, increases grain starch content, decreases protein content, starch granule size and the proportion of long chains in amylopectin, and increases the grain retrograde, while viscosities in response to water deficit are dependent on varieties (increases in Yunuo 7 and decreases in Suyunuo 5).
fresh waxy maize; water deficit at flowering stage; yield; quality
2018-06-12;
2018-06-19.
10.3724/SP.J.1006.2018.01205
陸大雷, E-mail: dllu@yzu.edu.cn
E-mail: 412950386@qq.com
2018-02-04;
本研究由國家自然科學(xué)基金項目(31471436, 31771709, 31271640), 國家重點研發(fā)計劃項目(2016YFD0300109), 江蘇省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(SXGC[2017]307), 江蘇省青藍(lán)工程和江蘇省高校優(yōu)勢學(xué)科建設(shè)工程項目資助。
This study was supported by the National Natural Science Foundation of China (31471436, 31771709, 31271640), the National Key Research and Development Program of China (2016YFD0300109), the Technology System of Modern Agriculture Industry in Jiangsu Province (SXGC[2017]307), the Qing Lan Project of Jiangsu Province, and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
URL: http://kns.cnki.net/kcms/detail/11.1809.S.20180619.1210.004.html