李英雙 胡 丹 聶 蛟 黃科慧 張玉珂 張園莉 佘恒志 方小梅,2 阮仁武,2 易澤林,2,*
?
甜蕎株高和莖粗的遺傳分析
李英雙1,**胡 丹3,**聶 蛟1黃科慧1張玉珂1張園莉1佘恒志1方小梅1,2阮仁武1,2易澤林1,2,*
1西南大學農學與生物科技學院, 重慶 400716;2重慶市蕎麥產業(yè)體系創(chuàng)新團隊, 重慶 400716;3甘肅省種子管理局, 甘肅蘭州 730000
甜蕎極易倒伏, 而株高和莖粗是影響甜蕎倒伏的重要性狀。以高稈健壯品種酉蕎2號和矮稈纖細品種烏克蘭大粒蕎為親本配制正、反交組合, P1、P2、F1、B1、B2和F2群體株高和莖粗的遺傳分析表明, 株高和莖粗的最適遺傳模型均為2對加性-顯性-上位性主基因+加性-顯性多基因模型。株高正交組合中2對主基因加性效應均為-1.39, 顯性效應分別為-6.59和-7.91, B1、B2和F2群體主基因遺傳率分別是45.73%、63.49%和81.12%, 多基因遺傳率分別是27.41%、0.95%和0; 反交組合中2對主基因加性效應值均為-1.63, 顯性效應分別為-7.03和-4.19, B1、B2和F2群體中主基因遺傳率是41.51%、66.18%和81.81%, 多基因遺傳率分別是11.19%、0和0。莖粗正交組合中2對主基因加性效應均為0.03, 顯性效應分別為-0.50和-0.08, B1、B2和F2群體中主基因遺傳率分別是37.26%、48.80%和72.10%, 多基因遺傳率分別是11.18%、0和0; 反交組合中2對主基因加性效應均為-0.15, 顯性效應分別為-0.30和-0.16, B1、B2和F2群體中主基因遺傳率是76.22%、47.12%和82.51%, 多基因遺傳率分別為0、14.53%和0??梢? 株高的主基因+多基因遺傳率在80%以上, 可在低世代進行選擇; 莖粗的主基因+多基因遺傳率在80%以下, 采取合理的栽培措施可以提高蕎麥抗倒伏能力。
甜蕎; 株高; 莖粗; 數量性狀; 遺傳分析
株高和莖粗是評定作物抗倒伏能力的重要指標。在一定株高范圍內, 植株越高, 倒伏率越高, 同時, 莖稈的節(jié)間長度越短, 基部莖稈越粗, 植株越不易倒伏[12-16]。目前主要通過調控種植密度[17]、烯效唑拌種[18]、莖稈解剖結構以及木質素合成研究甜蕎倒伏[19-20], 對甜蕎株高、莖粗的遺傳分析尚未見相關報道。蓋鈞鎰等[21]提出適合植物遺傳分析的1對主基因+多基因和2對主基因+多基因混合模型的單世代和聯合多世代的分析方法, 已經廣泛應用于不同作物不同性狀的遺傳分析, 如水稻種子抗老化[22]、棉花高品質纖維性狀[23]、玉米種子休眠[24]、小麥雄性不育[25]、大豆的根系性狀[26]、花生產量[27]、油菜株高和抗倒性[28-29]、油菜花色[30]等。本文初步分析甜蕎株高和莖粗的遺傳效應, 為深入解析株高和莖粗的遺傳機制奠定基礎, 也為甜蕎抗倒伏遺傳改良與生產提供依據。
親本材料分別為高稈健壯品種酉蕎2號(P1)和矮稈纖細品種烏克蘭大粒蕎(P2), 前者為本課題組育成的品種, 后者由重慶市蕎麥產業(yè)體系提供。
試驗材料種植在西南大學歇馬科研基地(10°3′53″~29°39′10″N, 106°18′14″~106°56′53″E), 試驗田土壤為沙壤土。2014年秋季, 在隔離區(qū)內配制兩親本的正、反交組合, 初花期鑒定長短柱頭并去除異類型花, 酉蕎2號群體去除短花柱植株, 留長花柱植株, 烏克蘭群體去除長花柱植株, 留短花柱植株, 成熟后分別收獲兩品種植株上的種子, 分別為正、反交F1代。2015年春季, F1隔離種植正交F1代不同植株間雜交, 反交F1代不同植株間雜交, 分別收獲兩群體的全部種子, 獲得正、反交F2代。正、反交F1代與雙親各自回交, 在母本上收獲的種子分別為正、反交B1和B2代。
2015年秋季, 將正、反交組合的6個世代分別播種, 行長3.00 m, 行距0.33 m, 株距0.20 m。P1、P2、F1種植4行, B1、B2和F2種植10行, 周圍種植3行保護行進行隔離。
成熟期在田間隨機選取一定數量單株(表1), 用直尺測量莖稈基部至植株頂端的距離作為株高, 用游標卡尺測量莖稈最粗的部位作為莖粗。
根據蓋鈞鎰等[21]提出的植物數量性狀主基因+多基因混合遺傳多世代聯合分析方法, 對甜蕎株高和莖粗進行聯合分析,采用極大似然法和IECM算法估計各世代、各成分分布的參數, 通過AIC值選擇最佳模型[31], 并進行一組適合性檢驗, 包括均勻性12、22和32檢驗、Kolmo-Smimov檢驗(W2)和Kolmo-Gorov檢驗(D), 根據檢驗結果選擇最優(yōu)遺傳模型。最后采用最小二乘法依據最優(yōu)模型的各成分分布參數估計各基因效應值、方差等遺傳參數。
兩親本株高和莖粗平均值分別為90.70 cm和5.45 mm, 兩親本株高相差30.76 cm, 莖粗相差1.30 mm。在正交組合中, 株高和莖粗變異豐富(表1)。
表1 正、反交組合6個世代的株高與莖粗
例如, F1株高大于雙親平均值, B1和B2代株高分別比低親小24.80 cm和9.55 cm, F2代略偏向于高親, B1、B2和F2群體的變異系數明顯高于P1、P2和F1, 說明分離世代群體離散程度高, 遺傳變異大。而在反交組合中, 株高和莖粗的變異較低(表1)。例如, F1株高小于雙親平均值, B1、B2代株高分別比低親大11.72 cm和16.19 cm, F2略偏向于低親, B1和B2代變異系數小于P1、P2和F1群體, 說明B1、B2群體的變異性較低, 但F2群體具有較高的遺傳變異。B1、B2和F2群體莖粗的變異系數低于P1和F1群體, 說明分離世代群體的遺傳多態(tài)性較低。
正、反交組合6個世代的株高(附圖1和附圖2)和莖粗(附圖3和附圖4)均呈連續(xù)性分布, 具有典型的數量遺傳特征。株高與莖粗在B1、B2和F2世代群體具有明顯多峰現象, 說明株高和莖粗主要受主基因遺傳效應影響。株高反交B1世代具有明顯正態(tài)分布現象, 說明B1世代也受到部分多基因遺傳效應影響。
相比于λ1,λ2的取值范圍寬,并且具有很強的針對性。λ1是一個定值,無論功率誤差增大或減小,λ1對開關函數的放大倍數都是一樣的,它無法跟隨系統(tǒng)實時正確地改變開關函數在代價函數中的比重。λ2的優(yōu)勢就顯得十分明顯,當功率誤差較小時,系統(tǒng)功率跟蹤準確,可以適當減少開關動作次數,此時,λ2增大,開關函數在代價函數中的比重上升,開關頻率下降;當功率誤差較大時,急需穩(wěn)定功率跟蹤,此時,λ2減小,功率跟蹤函數在代價函數中的比重上升,系統(tǒng)將快速減少功率誤差。
根據AIC準則, 選取AIC值最小及與最小AIC值比較接近的3組遺傳模型作為備選模型(附表1)。對正交組合, B-4、D-2、E-1為株高遺傳的備選模型, B-1、E-0、E-1為莖粗遺傳的備選模型; 同理, 株高與莖粗反交的3個備選模型均為C-0、D-0和E-1。
對備選模型進行一組適合性測驗(均勻性檢驗、Smirnov檢驗和Kolmogorov檢驗的5個統(tǒng)計量12、22、32、2和D), 選擇統(tǒng)計量達到顯著水平個數最少的模型為最適模型(表2), 正反交株高與莖粗的最佳遺傳模型均為E-1模型, 即2對加性-顯性-上位性主基因+加性-顯性多基因模型。
表2 正反交組合后代株高與莖粗備選遺傳模型的適合性檢驗
MG: 主基因; MX: 主基因+多基因; A: 加性; D: 顯性; I: 互作; E: 相等。例如E-1模型, MX2-ADI-AD表示2對加性-顯性-上位性主基因+加性-顯性多基因混合遺傳模型。表中參數對應的數字指達到顯著水平的統(tǒng)計量個數。
M G: major gene; MX: mixed major gene and polygene; A: additive; D: dominance; I: interaction; E: equal. Take model E-1 as an example, MX2-ADI-AD means mixed model with two major genes with additive-dominance-epistasis effects plus additive-dominance polygene. The numbers corresponding to the parameters in the table refer to the number of statistics that achieve significant levels.
根據選擇的最佳模型E-1得出的極大似然估計值經計算得到株高的一階(表3)、二階遺傳參數(表4), 正、反交組合中控制株高的兩對主基因加性效應相等, 顯性效應大于加性效應, 均為負向效應。正交組合中2對主基因顯性效應均為負, 且|h|<|h|, 說明株高主基因存在雜種優(yōu)勢(負向), 且以第2對主基因的顯性效應為主, 反交組合中|h|>|h|, 則以第1對主基因的顯性效應為主。正交組合2對基因加性和顯性效應之間的互作(j和j)分別為+8.44和-9.48, 表明基因互作對該正交組合株高影響較大。
表3 正、反交組合株高與莖粗一階遺傳參數估計值
: 群體均方;d: 第1對主基因的加性效應;d: 第 2 對主基因的加性效應;h: 第1對主基因的顯性效應;h: 第2對主基因的顯性效應;: 主基因加性×加性互作效應;j: 第1對主基因加性×第2對主基因顯性互作效應;j: 第2對主基因加性×第1對主基因顯性互作效應;: 主基因顯性×顯性互作效應; []: 多基因加性效應; []: 多基因的顯性效應。
: mean of population;d: additive effect of the first major gene;d: additive effect of the second major gene;h: dominant effect of the first major gene;h: dominant effect of the second major gene;: additive × additive interaction effect of major gene;j: additive effect of the first major gene × dominant effect of the second major gene;j: additive effect of the second major gene × dominant effect of the first major gene;: dominant × dominant interaction effect of major gene; []: additive effect of polygene; []: dominant effect of polygene.
表4 正、反交組合株高與莖粗二階遺傳參數估計值
p2: 表型方差;mg2: 主基因方差;pg2: 多基因方差;e2: 環(huán)境方差;mg2: 主基因遺傳力;pg2: 多基因遺傳率。
p2: phenotypic variance;mg2: major gene variance;pg2: polygene variance;e2: environmental variance;mg2: heritability of major gene;pg2: heritability of polygene.
正、反交組合中, F2代株高的主基因表現出較高的遺傳力, 分別達81.12%和81.81%, 具有很高的選擇率。正交組合中B1、B2和F2世代的主基因+多基因效應決定株高表型變異的73.14%、64.44%和81.12%, 反交組合中這3個世代的遺傳效應分別為52.70%、66.18%和81.81%, 可見, 雖然環(huán)境因素對表型變異有一定貢獻, 但環(huán)境效應明顯小于遺傳效應, 說明環(huán)境對甜蕎株高的影響較小。
正、反交組合中控制莖粗的2對主基因加性相等, 顯性效應大于加性效應, 2對主基因顯性效應均為負, 且|h|>|h|, 說明莖粗主基因存在雜種優(yōu)勢(負向), 且以第1對主基因的顯性效應為主。正交組合中兩對基因加性和顯性互作效應(j和j)分別為+0.04和-0.41, 而反交j和j分別為-0.27和+0.86, 表明兩對基因互作對莖粗影響較大。
正、反交組合F2世代莖粗的主基因表現出較高的遺傳力, 分別達72.10%和82.51%, 具有較高的選擇率。正交組合中, 主基因+多基因分別解釋了B1、B2和F2代莖粗變異的48.44%、48.80%和72.10%, 多基因遺傳率(11.18%)僅在B1代表現; 各群體環(huán)境變異占表型變異的36.21%~55.26%, 平均47.56%。反交組合中, 主基因+多基因可分別解釋B1、B2和F2代莖粗變異的76.22%、61.65%和82.51%, 多基因遺傳率(14.53%)只在B2代存在; 各群體環(huán)境變異占表型變異的30.88%~37.50%, 平均33.90%??梢? 環(huán)境對甜蕎莖粗影響較大。
株高和莖粗是評定作物抗倒伏能力的重要指標, 明確其遺傳規(guī)律是指導育種實踐的基礎, 陳桂華等[32]研究表明, 株高、節(jié)間粗度、單莖鮮重和彎曲力矩等是影響水稻抗倒伏能力的重要因素; 朱新開等[33]發(fā)現, 矮稈、基部節(jié)間短與重心低有利于小麥抗倒伏; 豐光等[34]發(fā)現玉米倒伏與株高極顯著正相關。在蕎麥上, 劉星貝等[35]研究發(fā)現莖稈形態(tài)特性與抗倒伏能力密切相關, 植株越矮、莖稈越粗壯、節(jié)間越密集、節(jié)間充實度高、機械組織層數多、機械組織和莖壁厚、維管束數目多且面積大會增強莖稈抗倒伏性能。
主基因+多基因混合模型聯合多世代分析法自問世以來, 已在多種作物的株高和莖粗研究中得到應用, 如高淀粉玉米株高符合1對加性主基因+加性-顯性多基因模型[36], 甘藍型油菜株高受到1對加性-顯性主基因+加性-顯性-上位性多基因混合遺傳模型控制(D-0模型)[29]。甜蕎株高和莖粗相關遺傳分析尚未見報道。本研究表明, 株高和莖粗的最佳遺傳模型均為E-1模型, 即2對加性-顯性-上位性主基因+加性-顯性多基因模型, 其中顯性效應大于加性效應, 表現為超顯性, 這與玉米[36]和甘藍型油菜[29]上的報道不同, 可能與不同物種的遺傳機制差異有關。
從遺傳率來看, 本研究正、反交組合株高和莖粗的遺傳率范圍分別為52.7%~81.81%和48.44%~ 82.51%, 其中主基因遺傳率大于多基因遺傳率。株高正交組合多基因遺傳率在B1和B2世代存在, 反交組合只在B1世代存在; 莖粗正交組合多基因遺傳率僅在B1世代表現, 反交組合只在B2世代存在, 正、反交組合株高和莖粗多基因遺傳率在F2代都為0, 主基因遺傳率在F2世代表現最高, 具有很高的選擇率, 表明早期世代選擇是有效的。油菜株高和莖粗主要受顯性效應控制[37], 環(huán)境因素對株高的影響較小, 對莖粗有一定的影響。本研究得到相似結論, 甜蕎株高各群體的環(huán)境變異占表型變異的25.46%~ 37.08%, 而遺傳貢獻率為62.92%~74.54%, 說明株高主要受顯性效應控制; 莖粗各群體的環(huán)境變異占表型變異的33.54%~46.38%, 略低于遺傳貢獻率(54.62%~66.46%), 說明環(huán)境對甜蕎莖粗有一定影響。無論正交還是反交, 株高和莖粗的最佳遺傳模型均一致, 皆表現為超顯性, 遺傳率范圍大致相同, 主基因遺傳率大于多基因遺傳率, 表明甜蕎株高和莖粗不受細胞質遺傳的影響。
植物數量性狀的遺傳模型分析方法與QTL檢測主基因的數量相對一致[38], 由于分析所推論的基因只是概念上的基因, 難以做個別比較, 為了更好地解釋本文中控制株高及莖粗的基因數目多少、效應值大小和是否為同一基因, 有必要利用分子標記進行QTL定位研究。因此可利用分子標記對甜蕎F2群體開展株高和莖粗QTL分析, 為甜蕎株型改良分子標記育種和圖位克隆奠定前期研究基礎。
在高稈健壯品種酉蕎2號和矮稈纖細品種烏克蘭大粒蕎正、反交組合衍生的P1、P2、F1、B1、B2和F2世代群體中, 株高和莖粗均呈連續(xù)分布, 且符合2對加性-顯性-上位性主基因+加性-顯性多基因模型。株高的主基因+多基因遺傳率在80%以上, 可在早代進行株高選擇, 以提高育種效率; 莖粗的主基因+多基因遺傳率在80%以下, 環(huán)境因素對莖粗有一定效應, 可利用栽培措施提高甜蕎抗倒伏能力。
[1] Gondola I, Papp P. Origin, geographical distribution and polygenic relationship of common buckwheat (Moench.)., 2010, 4: 17–33
[2] Alamprese C, Casiraghi E, Pagani M A. Development of gluten-free fresh egg pasta analogues containing buckwheat., 2007, 225: 205–213
[3] Awatsuhara R, Harada K, Maeda T. Antioxidative activity of the buckwheat polyphenol rutin in combination with ovalbumin., 2010, 3: 121–125
[4] Griffith J Q, Couch J F, Lindauer M A. Effect of rutin on increased capillary fragility in man., 1944, 55: 228–229
[5] Jiang P, Burczynski F, Campbell C, Pierce G, Austria J A, Briggs C J. Rutin and flavonoid contents in three buckwheat species,, andand their protective effects against lipid peroxidation., 2007, 40: 356–364
[6] Wieslander G, Fabjan N, Vogrincic M, Kreft I, Janson C, Spetz-Nystrom U. Eating buckwheat cookies is associated with the reduction in serum levels of myeloperoxidase and cholesterol: a double blind crossover study in day-care centre staffs., 2011, 225: 123–130
[7] 何健, 張國治, 張虹, 次仁歐珠. 蕎麥營養(yǎng)成分的檢測及分析. 河南農業(yè)大學學報, 2002, 36: 302–304 He J, Zhang G Z, Zhang H, Ci-Ren-Ou-Zhu. Determination and analysis of nutrient ingredients of buckwheat., 2002, 36: 302–304 (in Chinese with English abstract)
[8] 楊海霞, 趙麗芹, 付媛, 候文娟, 張美莉. 甜蕎主要貯藏蛋白的分離純化及功能特性研究. 中國食品學報, 2009, 9(1): 72–76 Yang H X, Zhao L Q, Fu Y, Hou W J, Zhang M L. Extraction, purification and functional properties of main protein from buckwheat (Moench) seeds., 2009, 9(1): 72–76 (in Chinese with English abstract)
[9] Koyama M, Nakamura C, Nakamura K. Changes in phenols contents from buckwheat sprouts during growth stage., 2013, 50: 86–93
[10] Hagiwara M, Izusawa H, Inoue N, Matano T. Varietal differences of shoot growth characters related to lodging in Tartary buckwheat., 1999, 16: 67–72
[11] 郭志利, 孫常青. 北方旱地蕎麥抗倒栽培技術研究. 雜糧作物, 2007, 27: 364–366 Guo Z L, Sun C Q. Study on resistance cultivation techniques of buckwheat in Northern Dryland., 2007, 27: 364–366 (in Chinese with English abstract)
[12] Dunn G J, Briggs K G. Variation in culm anatomy among barley cultivars differing in lodging resistance., 2011, 67: 1838–1843
[13] Yoshida S. Physiological aspects of grain yield., 2003, 23: 437–464
[14] 羅茂春, 田翠婷, 李曉娟, 林金星. 水稻莖稈形態(tài)結構特征和化學成分與抗倒伏關系綜述. 西北植物學報, 2007, 27: 2346–2353 Luo M C, Tian C T, Li X J, Lin J X. Relationship between morpho-anatomical traits together with chemical components and lodging resistance of stem in rice (L.)., 2007, 27: 2346–2353 (in Chinese with English abstract)
[15] 楊惠杰, 楊仁崔, 李義珍, 姜照偉, 鄭景生. 水稻莖稈性狀與抗倒性的關系. 福建農業(yè)學報, 2000, 15(2): 1–7 Yang H J, Yang R C, Li Y Z, Jiang Z W, Zheng J S. Relationship between culm traits and lodging resistance of rice cultivars., 2000, 15(2): 1–7 (in Chinese with English abstract)
[16] 楊守仁, 張龍步, 王進民. 水稻理想株形育種的理論和方法初論. 中國農業(yè)科學, 1984, (3): 6–13 Yang S R, Zhang L B, Wang J M. The theory and method of ideal plant morphology in rice breeding., 1984, (3): 6–13 (in Chinese with English abstract)
[17] Wang C, Ruan R W, Yuan X H, Hu D, Yang H, Li Y, Yi Z L. Effects of nitrogen fertilizer and planting density on the lignin synthesis in the culm in relation to lodging resistance of buckwheat., 2015, 18: 218–227
[18] 劉星貝, 吳東倩, 汪燦, 胡丹, 楊浩, 佘恒志, 阮仁武, 袁曉輝, 易澤林. 噴施烯效唑對甜蕎莖稈抗倒性能及產量的影響. 中國農業(yè)科學, 2015, 48: 4903–4915 Liu X B, Wu D Q, Wang C, Hu D, Yang H, She H Z, Ruan R W, Yuan X H, Yi Z L. Effects of spraying uniconazole on lodging resistance of culm and yield in common buckwheat., 2015, 48: 4903–4915 (in Chinese with English abstract)
[19] Hu D, Liu X B, She H Z, Gao Z, Ruan R W, Wu D Q, Yi Z L. The lignin synthesis related genes and lodging resistance of.,2017, 61: 138–146
[20] 汪燦, 阮仁武, 袁曉輝, 胡丹, 楊浩, 林婷婷, 何沛龍, 李燕, 易澤林. 蕎麥莖稈解剖結構和木質素代謝及其與抗倒性的關系. 作物學報, 2014, 40: 1846–1856 Wang C, Ruan R W, Yuan X H, Hu D, Yang H, Lin T T, He P L, Li Y, Yi Z L. Relationship of anatomical structure and lignin metabolism with lodging resistance of culm in buckwheat., 2014, 40: 1846–1856 (in Chinese with English abstract)
[21] 蓋鈞鎰, 章元明, 王建康. 植物數量性狀遺傳體系. 北京: 科學出版社, 2003 Gai J Y, Zhang Y M, Wang J K. Genetic System of Quantitative Traits in Plants. Beijing: Science Press, 2003 (in Chinese)
[22] 朱世楊, 郭媛, 洪德林. 水稻種子抗老化遺傳分析. 遺傳, 2008, 30: 217–224 Zhu S Y, Guo Y, Hong D L. Genetic analysis on aging-resistant in rice seed.(Beijing), 2008, 30: 217–224 (in Chinese with English abstract)
[23] 袁有祿, 張?zhí)煺? 郭旺珍, John Y, Russell J K. 棉花高品質纖維性狀的主基因與多基因遺傳分析. 遺傳學報, 2002, 29: 827–834 Yuan Y L, Zhang T Z, Guo W Z, John Y, Russell J K. Major-polygene effect analysis of super quality fiber properties in upland cotton (L.)., 2002, 29: 827–834 (in Chinese with English abstract)
[24] 蘭海, 余月, 王鳳格, 潘光堂, 趙久然, 李新海, 榮廷昭. 玉米種子休眠性數量遺傳體系的判別. 玉米科學, 2007, 15(2): 5–8 Lan H, Yu Y, Wang F G, Pan G T, Zhao J R, Li X H, Rong T Z. Detection quantitative inheritance system of seed dormancy in maize (L.)., 2007, 15(2): 5–8 (in Chinese with English abstract)
[25] 張立平, 趙昌平, 單福華, 張鳳廷, 葉志杰. 小麥光溫敏雄性不育系BS210育性的主基因+多基因混合遺傳分析. 作物學報, 2007, 33: 1553–1557 Zhang L P, Zhao C P, Shan F H, Zhang F T, Ye Z J. The mixed genetic analysis of photoperiod-temperature sensitive male steri-lity of BS210 in wheat., 2007, 33: 1553–1557 (in Chinese with English abstract)
[26] 劉瑩, 蓋鈞鎰, 呂慧能, 王永軍, 陳受宜. 大豆耐旱種質鑒定和相關根系性狀的遺傳與QTL定位. 遺傳學報, 2005, 32: 855–863 Liu Y, Gai J Y, Lyu H N, Wang Y J, Chen S Y. Identification of drought tolerant germplasm and inheritance and QTL mapping of related root traits in soybean ((L.) Merr.)., 2005, 32: 855–863 (in Chinese with English abstract)
[27] Zhang X Y, Han S Y, Tang F S, Xu J, Liu H, Yan M, Dong W Z, Huang B Y, Zhu S J. Genetic analysis of yield in peanut (L.) using mixed model of major gene plus polygene., 2013, 10: 7126–7130
[28] 顧慧, 戚存扣. 甘藍型油菜(L.)抗倒伏性狀的主基因+多基因遺傳分析. 作物學報, 2008, 34: 376–381 Gu H, Qi C K. Genetic analysis of lodging resistance with mixed model of major gene plus polygene inL., 2008, 34: 376–381 (in Chinese with English abstract)
[29] 周清元, 李軍慶, 崔翠, 卜海東, 陰濤, 顏銀華, 李加納, 張正圣. 油菜半矮桿新品系10D130株型性狀的遺傳分析. 作物學報, 2013, 39: 207–215 Zhou Q Y, Li J Q, Cui C, Bu H D, Yin T, Yan Y H, Li J N, Zhang Z S. Genetic analysis of plant type in semi-dwarf new line (10D130) of rapeseed., 2013, 39: 207–215 (in Chinese with English abstract)
[30] 田露申, 牛應澤, 余青青, 郭世星, 柳麗. 甘藍型油菜白花性狀的主基因+多基因遺傳分析. 中國農業(yè)科學, 2009, 42: 3987–3995 Tian L S, Niu Y Z, Yu Q Q, Guo S X, Liu L. Genetic analysis of white flower color with mixed model of major gene plus polygene inL., 2009, 42: 3987–3995 (in Chinese with English abstract)
[31] Akaike H. On entropy maximum principles. In: Krishnaiag G, ed. Applications of Statistics. Amsterdam, Netherlands: North Holland Publishing, 1977. pp 27–41
[32] 陳桂華, 鄧化冰, 張桂蓮, 唐文幫, 黃璜. 水稻莖稈性狀與抗倒性的關系及配合力分析. 中國農業(yè)科學, 2016, 49: 407–417 Chen G H, Deng H B, Zhang G L, Tang W B, Huang H. The correlation of stem characters and lodging resistance and combining ability analysis in rice., 2016, 49: 407–417 (in Chinese with English abstract)
[33] 朱新開, 王祥菊, 郭凱泉, 郭文善, 封超年, 彭永欣. 小麥倒伏的莖稈特征及對產量與品質的影響. 麥類作物學報, 2006, 26(1): 87–92 Zhu X K, Wang X J, Guo K Q, Guo W S, Feng C N, Peng Y X. Stem characteristics of wheat with stem lodging and effects of lodging on grain yield and quality., 2006, 26(1): 87–92 (in Chinese with English abstract)
[34] 豐光, 景希強, 李妍妍, 王亮, 黃長玲. 玉米莖稈性狀與倒伏性的相關和通徑分析. 華北農學報, 2010, 25(增刊): 72–74 Feng G, Jing X Q, Li Y Y, Wang L, Huang C L. Correlation and path analysis of lodging resistance with maize stem characters., 2010, 25(suppl): 72–74 (in Chinese with English abstract)
[35] 劉星貝, 汪燦, 胡丹, 楊浩, 佘恒志, 阮仁武, 吳東倩, 易澤林. 烯效唑干拌種對甜蕎莖稈抗倒性能的影響. 作物學報, 2016, 42: 93–103 Liu X B, Wang C, Hu D, Yang H, She H Z, Ruan R W, Wu D Q, Yi Z L.Effects of seed dressing with uniconazole powder on lodging resistance of culm in common buckwheat., 2016, 42: 93–103 (in Chinese with English abstract)
[36] 包和平, 李穎, 李春成. 高淀粉玉米“鄭單958”主要農藝性狀主基因+多基因遺傳分析. 吉林農業(yè)大學學報, 2010, 32: 245–248 Bao H P, Li Y, Li C C. Inheritance analysis of main agronomic traits of major genes + poly-genes of high-starch corn Zhengdan 958., 2010, 32: 245–248 (in Chinese with English abstract)
[37] 張倩. 甘藍型油菜主要株型性狀的遺傳分析和QTL初步定位. 西南大學碩士學位論文, 重慶, 2013 Zhang Q. Genetic Effects Analysis and QTL Mapping of Major Plant-Type Traits inL. MS Thesis of Southwest University, Chongqing, China, 2013 (in Chinese with English abstract)
[38] 王春娥, 蓋鈞鎰, 傅三雄, 喻德躍, 陳受宜. 大豆豆腐和豆乳得率的遺傳分析與QTL定位. 中國農業(yè)科學, 2008, 41: 1274–1282 Wang C E, Gai J Y, Fu S X, Yu D Y, Chen S Y. Inheritance and QTL mapping of tofu and soymilk output in soybean., 2008, 41: 1274–1282 (in Chinese with English abstract)
附表1 正反交組合株高與莖粗表型分布的極大對數似然函數值和AIC值
Supplementary table 1 Maximum log likelihood estimated value and AIC value for plant height and stem diameter in reciprocal crosses
模型Model模型含義Implication of modelP1′ P2P2′ P1 株高Plant height莖粗 Stem diameter株高 Plant height莖粗 Stem diameter 極大對數似然函數值 log max likelihood value A-11MG-AD–2471.03–911.79–2221.06–831.34 A-21MG-A–2471.27–913.18–2220.93–835.71 A-31MG-EAD–2517.11–912.04–2252.92–831.55 A-41MG-AEND–2542.66–907.83–2287.76–841.14 B-12MG-ADI–2462.85–854.59–2190.52–814.82 B-22MG-AD–2466.77–910.59–2221.34–832.65 B-32MG-A–2524.10–934.20–2281.29–874.56 B-42MG-EA–2466.05–913.57–2213.12–837.46 B-52MG-AED–2499.91–911.93–2230.42–833.39 B-62MG-EEAD–2499.91–911.93–2230.42–833.39 C-0PG-ADI–2473.89–859.01–2175.84–809.55 C-1PG-AD–2467.03–905.21–2214.12–838.68 D-0MX1-AD-ADI–2461.91–853.03–2174.53–803.64 D-1MX1-AD-AD–2466.94–906.60–2215.13–838.79 D-2MX1-A-AD–2461.37–893.08–2214.78–825.99 D-3MX1-EAD-AD–2466.32–908.12–2215.29–838.44 D-4MX1-AEND-AD–2466.40–905.01–2215.31–837.98 E-0MX2-ADI-ADI–2454.25–843.30–2174.53–803.63 E-1MX2-ADI-AD–2450.50–844.42–2161.64–791.16 E-2MX2-AD-AD–2466.33–908.12–2215.29–838.44 E-3MX2-A-AD–2467.93–906.89–2214.68–930.84 E-4MX2-EA-AD–2466.25–908.12–2215.29–838.44 E-5MX2-AED-AD–2466.32–908.12–2215.29–838.44 E-6MX2-EEAD-AD–2466.32–908.12–2215.29–838.44 AIC值 AIC value A-11MG-AD4950.061831.594450.111670.67 A-21MG-A4948.551832.364447.861677.43 A-31MG-EAD5040.221830.084511.841669.09 A-41MG-AEND5091.331821.664581.521688.29 B-12MG-ADI4945.701729.194401.031649.64 B-22MG-AD4945.531833.194454.671677.30 B-32MG-A5056.201876.394570.581757.12 B-42MG-EA4938.091833.144432.251680.93 B-52MG-AED5007.811831.854468.851674.77
(續(xù)附表1)
模型Model模型含義Implication of modelP1′ P2P2′ P1 株高 Plant height莖粗 Stem diameter株高 Plant height莖粗 Stem diameter B-62MG-EEAD5005.811829.854466.851672.78 C-0PG-ADI4967.781738.034371.691639.09 C-1PG-AD4948.061824.424442.241691.36 D-0MX1-AD-ADI4947.821730.074373.051631.28 D-1MX1-AD-AD4951.881831.204448.261695.57 D-2MX1-A-AD4938.731802.154445.571667.97 D-3MX1-EAD-AD4948.641832.244446.581692.87 D-4MX1-AEND-AD4948.811826.034446.631691.95 E-0MX2-ADI-ADI4944.511722.604385.051643.27 E-1MX2-ADI-AD4931.011718.834353.281612.32 E-2MX2-AD-AD4954.651838.244452.581698.87 E-3MX2-A-AD4953.871831.774447.371879.68 E-4MX2-EA-AD4948.501832.244446.581692.87 E-5MX2-AED-AD4950.641834.244448.581694.87 E-6MX2-EEAD-AD4948.651832.244446.581692.87
MG: 主基因模型; MX: 主基因+多基因混合模型; PG: 多基因遺傳模型; A: 加性效應; D: 顯性效應; I: 互作; N: 負向; E: 相等; 例如: E-1 模型 MX2-ADI-AD, 表示 2 對加性-顯性-上位性主基因+加性-顯性多基因混合遺傳模型。
MG: major gene model; MX: mixed major gene and polygene model; PG: polygene model; A: additive effect; D: dominance effect; I: interaction; N: negative; E: equal; e.g. Model E-1=MX2-ADI-AD, means mixed model with two major genes of additive-dominance-epistasis effects plus additive-dominance polygene.
附圖1 正交組合6世代株高的次數分布
Supplementary fig. 1 Frequency distributions of plant height in six generations derived from orthogonal cross
附圖2 反交組合6世代株高的次數分布
Supplementary fig. 2 Frequency distributions of plant height in six generations derived from back cross
附圖3 正交組合6世代莖粗的次數分布
Supplementary fig. 3 Frequency distributions of stem diameter in six generations derived from orthogonal cross
附圖4 反交組合6世代莖粗的次數分布
Supplementary fig. 4 Frequency distributions of stem diameter in six generations derived from back cross
Genetic Analysis of Plant Height and Stem Diameter in Common Buckwheat
LI Ying-Shuang1,**, HU Dan3,**, NIE Jiao1, HUANG Ke-Hui1, ZHANG Yu-Ke1, ZHANG Yuan-Li1, SHE Heng-Zhi1, FANG Xiao-Mei1,2, RUAN Ren-Wu1,2, and YI Ze-Lin1,2,*
1College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China;2Innovation Team of Chongqing Buckwheat Industry System, Chongqing 400716, China;3Seed Administration Station of Gansu, Lanzhou 730000, Gansu, China
Common buckwheat (M.) is susceptible to lodging, and plant height and stem diameter are recognized as important traits for lodging resistance. In this study, we developed the Pl, P2, Fl, F2, Bl, and B2populations from the reciprocal crosses between Youqiao 2 (YQ2, lodging-resistance) and Ukraine daliqiao (UD, lodging-susceptible) and analyzed the genetic effects of plant height and stem diameter. The heredity of both traits optimally fitted to the genetic model for two major genes with additive-dominance-epistatic effects plus polygenes with additive-dominance effects. For plant height in the orthogonal combination, additive effects of both two major genes were –1.39 and the dominant effects were –6.59 and –7.91. Heritability values of the major genes in B1, B2, and F2were 45.73%, 63.49%, and 81.12%, and those of polygenes were 27.41%, 0.95%, and 0, respectively. For plant height in the back cross, additive effects of both two major genes were –1.63 and the dominant effects were –7.03 and –4.19, respectively. Heritability values of the major genes in B1, B2, and F2were 41.51%, 66.18%, and 81.81%, and those of polygenes were 11.19%, 0, and 0, respectively. For stem diameter in the orthogonal combination, the two major genes had 0.03 and 0.03 of additive effect and –0.50 and –0.08 of dominant effect. Heritability values of the major genes in B1, B2and F2were 37.26%, 48.80%, and 72.10%, and those of polygenes were 11.18%, 0, and 0, respectively. For stem diameter in the back cross, the two major genes possessed-0.15 and-0.15 of additive effect and-0.30 and-0.16 of dominant effect. The estimated heritability values in B1, B2, and F2were 76.22%, 47.12%, and 82.51%, respectively, for the major genes and 0, 14.53%, and 0, respectively, for the polygenes. These results suggest that plant height can be selected in early generations because the heritability of major genes plus polygenes was larger than 80%, whereas proper cultivation practice may enhance lodging resistance of buckwheat because the heritability of major genes plus polygenes was lower than 80%.
common buckwheat; plant height; stem diameter; quantitative trait; genetic analysis
2018-04-11;
2018-06-11.
易澤林, E-mail: yzlin1969@126.com**同等貢獻(Contributed equally to this work)
李英雙, E-mail: 775903522@qq.com
2017-11-09;
10.3724/SP.J.1006.2018.01185
本研究由中央高校基本業(yè)務費專項(XDJK2017D071), 重慶市蕎麥產業(yè)體系創(chuàng)新團隊建設項目(CQCYT2017001), 蕎麥抗倒伏栽培技術集成與示范推廣項目(cstc2017shms-xdny80024), 中國博士后科學基金項目(2017M622944)和重慶市博士后科研項目(Xm2017176)資助。
This study was supported by the Fundamental Research Funds for the Central Universities (XDJK2017D071), Chongqing Buckwheat Industry System Innovation Team (CQCYT2017001), Integration and Demonstration Promotion for the Buckwheat Lodging-resistant Cultivation Technique (cstc2017shms-xdny80024), Chinese Postdoctoral Science Foundation (2017M622944), and Chongqing Postdoctoral Science Foundation (Xm2017176).
URL: http://kns.cnki.net/kcms/detail/11.1809.S.20180608.1320.002.html