劉昱 閻瀾 姜遠英
(第二軍醫(yī)大學藥學院新藥研究中心,上海 200433)
侵襲性真菌感染 (invasive fungal infections,IFI)已經(jīng)成為危害人類健康的嚴重威脅之一,全球年均死亡超過一百五十萬人,而隨著免疫抑制劑的使用、腫瘤放化療、體內(nèi)置管及久駐ICU病人的增加,IFI逐年上升的發(fā)病率與致死率正越來越多地引起人們的關(guān)注[1]。藥物治療是應(yīng)對IFI的主要策略,而有限的藥物種類、日漸嚴重的耐藥性和毒副作用等問題,使得研發(fā)抗真菌新藥的需求變得愈加迫切。
常用的抗真菌藥物包括氮唑類、多烯類以及棘白菌素類等[1]。氮唑類是目前最常用的一類抗真菌藥物,根據(jù)化學結(jié)構(gòu)可分為咪唑類和三氮唑類。咪唑類藥物 (咪康唑、酮康唑等)開發(fā)最早,抗真菌活性也較高,但由于毒性較大而局限于外用。三氮唑類藥物出現(xiàn)較晚,可體內(nèi)給藥治療IFI。第一代三氮唑類藥物 (氟康唑、伊曲康唑等)的抗菌譜較廣,但久用易普遍產(chǎn)生耐藥性;第二代三氮唑類藥物 (伏立康唑、泊沙康唑等)的藥效更強,耐藥菌株較少見[1-3];最新上市的三氮唑類藥物艾沙康唑(isavuconazole)于2015年經(jīng)FDA批準用于治療侵襲性曲霉病[4],并已進入治療侵襲性念珠菌病的III期臨床試驗。
多烯類藥物中,兩性霉素B是目前最有效的抗IFI藥物[1],但它具有嚴重的發(fā)熱、寒戰(zhàn)、腎毒性等毒副作用[5]。利用新的兩性霉素B劑型,如脂質(zhì)體[6]、納米懸浮液[7],以及兩性霉素B與阿拉伯半乳聚糖、聚乙二醇等的復合體[8-9]等,可降低兩性霉素B的毒副作用。兩性霉素B脂質(zhì)體已在臨床上使用,其余劑型尚在研發(fā)當中。
臨床常用的棘白菌素類藥物僅卡泊芬凈、米卡芬凈、阿尼芬凈三種,它們的抗菌譜較窄,對隱球菌無效,且難以通過胃腸道吸收,僅能通過每日1次靜脈滴注給藥維持體內(nèi)藥物濃度。此外因基因突變導致對棘白菌素耐藥真菌的出現(xiàn),也限制了此類藥物的使用[10-11]。
真菌作為真核生物,細胞中可作為藥物靶點的基因或蛋白大多與哺乳動物具有同源性,作用于此類靶點的藥物易在人體中產(chǎn)生副作用,因此開發(fā)具有真菌特異性的抗真菌藥物是此類藥物研發(fā)的關(guān)鍵[12-13]。目前對新型抗真菌藥物研發(fā)的策略包括:在臨床常用藥物的基礎(chǔ)上改進結(jié)構(gòu)或?qū)ふ倚陆Y(jié)構(gòu)化合物;尋找新的藥物靶點并開發(fā)針對新靶點的化合物;從中藥成分中尋找有效抗真菌藥物或增效劑等?,F(xiàn)將部分新型抗真菌藥物及其研究進展作一綜述。
氮唑類藥物的作用機制:通過抑制ERG11基因編碼的14α-羊毛甾醇脫甲基酶 (CYP51),抑制真菌細胞膜中的羊毛甾醇轉(zhuǎn)化為麥角甾醇,并使毒性的甾醇產(chǎn)物在真菌細胞中積累,從而抑制真菌的生長與復制[1]。氮唑類藥物面臨的主要問題包括耐藥性的不斷擴大、對人體中CYP51的同源酶體 (CYP3A4、CYP2C9等)的抑制所引起的與多種藥物相互作用等副反應(yīng)。為解決上述問題,Viamet Pharmaceuticals公司研發(fā)了對真菌具有更高選擇性的VT-1161與VT-1129等四氮唑類藥物 (見圖1a~b)[14]。
VT-1161對真菌的CYP51具有比其他氮唑類藥物更高的選擇性,對白念珠菌CYP51的親和力 (Kd≤39 nmol/L)超過了對人體中同源酶體的2 000倍以上[15]。它能夠有效抑制CYP51活性 (半抑制濃度IC50范圍1.4~1.6 μmol/L),使白念珠菌中麥角甾醇含量降低95%[15]。VT-1161體外抑制白念珠菌的最低抑菌濃度 (MIC)為0.002 μg/mL,對耐氟康唑菌株的MIC90為0.12 μg/mL[15-16];還可有效作用于小鼠的球孢子菌病 (球孢子菌體外MIC90為2 μg/mL)、皮膚癬菌引起的淺部真菌感染以及根霉菌感染引起的毛霉菌病等感染模型[17-20]。小鼠體內(nèi)藥動學實驗顯示,VT-1161具有分布體積廣 (1.4 L/kg)、口服生物利用度高 (73%)、半衰期長 (>48 h)等特點[16]。VT-1161目前已經(jīng)完成了治療 (趾)甲真菌病和復發(fā)性陰道念珠菌病的IIb期臨床試驗[16]。
VT-1129具有與VT-1161相同的基本骨架,主要表現(xiàn)出對隱球菌,如新生隱球菌 (MIC90為0.060 μg/mL)和格特隱球菌 (MIC90為0.25 μg/mL)等的抑制活性[21],對耐氟康唑的新生隱球菌具有一定的抑制作用 (MIC50為0.25 μg/mL ,MIC90為2 μg/mL)[22]。VT-1129對隱球菌的CYP51具有強親和力及選擇性抑制作用 (Kd值為14~25 nmol/L,IC50范圍0.14~0.20 μmol/L),對人體中CYP51及同源酶體的親和力和抑制作用較弱 (Kd為4.53 μmol/L,IC50約為600 μmol/L)[23]。Alexander等人的研究還證實了VT-1161與VT-1129對光滑念珠菌以及克柔念珠菌的耐藥菌株具有抑制活性[24]。目前已開展了VT-1129用于治療隱球菌性腦膜炎的I期臨床試驗。
此外,Viamet Pharmaceuticals公司最新研發(fā)的又一具有廣譜抗真菌作用的四氮唑類化合物VT-1598 (見圖1c),顯示出對酵母菌、絲狀真菌等具有體外抑制活性,還能抑制耳念珠菌等耐藥真菌的生長[25-26],即將進入針對包括隱球菌性腦膜炎在內(nèi)的一系列侵襲性真菌感染的臨床試驗。
β-1,3-葡聚糖是真菌細胞壁的重要組成成分,構(gòu)成了50%以上的細胞壁,并連接殼聚糖和糖蛋白等其他細胞壁組分,抑制其合成有助于破壞真菌細胞壁,促進真菌細胞凋亡。棘白菌素類是最常用的β-1,3-葡聚糖合成酶的抑制劑,但半衰期短、口服生物利用度低等缺點 (例如常用的棘白菌素類藥物中最穩(wěn)定的阿尼芬凈的半衰期僅30 h),加上耐棘白菌素菌株的出現(xiàn),共同限制了它們的臨床使用[11]。目前研發(fā)的新型β-1,3-葡聚糖合成酶抑制劑中,具有代表性的包括長效棘白菌素類藥物CD101與非棘白菌素類藥物SCY-078等。
CD101 (Cidara Therapeutics Inc.,見圖2a)是目前最長效的一種棘白菌素類藥物,在人體內(nèi)的終末半衰期可達到約133 h[27-28]。CD101的體內(nèi)外抗真菌活性與其他棘白菌素類藥物相似[29-35],能夠有效抑制念珠菌 (白念珠菌和熱帶念珠菌的MIC90為0.06 μg/mL)和曲霉菌 (煙曲霉和黃曲霉的最低有效濃度MEC90為0.03 μg/mL),但對隱球菌無效[31-33]。CD101在棘白菌素類藥物中具有更好的穩(wěn)定性,不加入穩(wěn)定劑的條件下,在37℃的人類血漿中培養(yǎng)44 h后,可檢測到的殘余量為93%,而阿尼芬凈可檢測到的殘余量僅為7%[36]。棘白菌素類藥物體內(nèi)代謝產(chǎn)生的中間體可能是造成肝毒性的主要因素,CD101的高穩(wěn)定性使其在人體內(nèi)的代謝分解及中間體的生成減少,因而幾乎不產(chǎn)生肝毒性[34]。I期臨床試驗顯示,CD101在健康成年人體內(nèi)具有低累積量 (30%~55%)、低表觀清除率 (<0.28 L/h)和半衰期長 (>80 h)、組織分布廣等特點[28]。此外,給藥過程的差異能夠影響CD101的抗真菌效果,總劑量相同時,每周1次給藥比每周2次或每日1次表現(xiàn)出更好的殺菌作用[37]。CD101靜脈注射劑 (rezafungin)目前已經(jīng)完成II期臨床試驗,用于治療念珠菌血癥并局部用于治療初發(fā)或復發(fā)性陰道念珠菌病[31]。
SCY-078 (原名MK-3118,Scynexis Inc.,見圖2b)是天然化合物Enfumafungin[38-39](提取自植物內(nèi)生真菌Hormonemasp.)的半合成衍生物,具有不同于棘白菌素的三萜烯結(jié)構(gòu)[38],是一種新型的口服β-1,3-葡聚糖合成酶抑制劑[40]。SCY-078在體內(nèi)外均能發(fā)揮對念珠菌的抑制作用[41-42],對念珠菌或曲霉菌的抑制活性略低于棘白菌素[38,42-44],但對耐氮唑類藥物菌株及fsk基因突變引起的耐棘白菌素菌株活性較強[43,45-46],對非曲霉菌屬絲狀真菌的活性多與棘白菌素相似,對多育賽多孢的活性略強于其他藥物[47],此外還證實了SCY-078對耳念珠菌具有抗生物被膜形成的活性 (MIC90為1 μg/mL)[48]。藥動學研究[49]表明,SCY-078具有良好的口服生物利用度,體外利用Caco-2單層細胞評價其口服腸吸收的滲透性,5 μmol/L的SCY-078從腸腔側(cè)到基底側(cè)方向的表觀滲透速率為 (8.9±0.78)×10-6cm/s (>10-6cm/s即可認為口服吸收性良好)。SCY-078在小鼠、大鼠和犬類中的口服生物利用度分別為>51%、45%和35%,口服半衰期分別為8.3、9.1和15.2 h,腎組織暴露量是血漿暴露量的20~25倍,腎分布率高于棘白菌素類[49]。SCY-078目前已經(jīng)進入治療侵襲性真菌病的II期臨床試驗[49]。
由于棘白菌素類藥物只能通過靜脈滴注給藥,因此能夠口服給藥的SCY-078未來在臨床使用上將具有獨特的優(yōu)勢。
圖1 新型氮唑類藥物:a.VT-1161,b.VT-1129,c.VT-1598 圖2 新型葡聚糖合成酶抑制劑:a.CD101,b.SCY-078 (MK-3118)
細胞表面的蛋白在真菌的生命活動中發(fā)揮著重要作用,其中的部分功能蛋白屬于糖基磷脂酰肌醇 (glycosyl phosphatidyl inositol,GPI)錨定蛋白,即被GPI錨定于細胞膜外表面或交叉結(jié)合于真菌細胞壁的甘露糖蛋白[50]。盡管尚有超過半數(shù)的真菌GPI錨定蛋白的功能未知,但目前已知部分GPI錨定蛋白對真菌細胞壁的再生及對宿主細胞的黏附發(fā)揮著必不可少的作用[50],因此有望將GPI錨定蛋白的生物合成途徑作為治療真菌感染的新靶點[51-52]。
GPI錨定蛋白抑制劑E1210 (日本衛(wèi)材制藥,又名APX001A,見圖3a)能夠選擇性抑制真菌的GWT1基因編碼的肌醇?;D(zhuǎn)移酶Gwt1p蛋白,從而抑制GPI合成通路上游的GlcN-PI肌醇?;磻?yīng),但對人類GWT1同源基因PIG-W編碼的蛋白無抑制作用[51-53]。E1210通過抑制GlcN-PI的肌醇?;磻?yīng)抑制GPI的合成,導致GPI錨定蛋白的成熟和轉(zhuǎn)運過程的缺陷,使得細胞表面GPI錨定蛋白含量水平降低,從而抑制了真菌的黏附作用、菌絲生長和生物被膜形成等與真菌毒力相關(guān)的生命過程[53]。體外藥敏實驗[54-58]顯示E1210對念珠菌 (MIC90為0.06 μg/mL)[55]、曲霉菌 (MEC90≤0.06 μg/mL)[56]、鐮刀菌以及絲孢菌 (MEC90為0.12 μg/mL)[57]等具有顯著的抑制作用,并能夠抑制耐氮唑類或棘白菌素類藥物的白念珠菌和曲霉菌[54-56,58]。體內(nèi)活性方面,口服E1210能夠顯著減少口咽念珠菌病小鼠口腔中念珠菌的數(shù)量,提高播散性念珠菌病、肺曲霉病以及播散性珠鐮刀菌病小鼠的生存率,上述作用具有劑量依賴性,發(fā)揮藥效需要較高的體內(nèi)濃度[59]。相比于令人矚目的體外抗真菌結(jié)果,E1210的體內(nèi)利用則稍弱于體外作用。藥動學實驗顯示,E1210靜脈給藥后的血漿消除半衰期為2.2 h,與伏立康唑近似,但比其他陽性藥物短約2~5倍;口服給藥0.5 h后可達到最大吸收濃度,口服生物利用度為57.5%[59],相比其他口服藥物略顯不足,這使得E1210的臨床應(yīng)用將受到一定的限制。目前,E1210的前藥APX001已由Amplyx Pharmaceuticals公司完成了I期臨床試驗,將啟動針對侵襲性曲霉病與侵襲性念珠菌病的II期臨床項目。
細胞中的嘧啶不僅用于合成DNA與RNA,而且能夠用作脂質(zhì)和碳水化合物合成的前體物質(zhì),是細胞構(gòu)成中的必要成分。有研究表明,阻斷真菌中嘧啶的生物合成通路能夠減弱真菌的毒力,可作為真菌治療的新策略[60]。
二氫乳清酸脫氫酶 (DHODH)能夠催化嘧啶生物合成的第4步反應(yīng),即二氫乳清酸轉(zhuǎn)化為乳清酸的反應(yīng),是嘧啶生物合成通路中的關(guān)鍵酶[60]。F901318 (F2G Ltd.,見圖3b)是真菌DHODH的選擇性抑制劑,通過特異性抑制真菌的DHODH (IC50為44±10 nmol/L (n=11))阻斷真菌細胞中嘧啶的生物合成通路,發(fā)揮抗真菌作用[60]。盡管哺乳動物體內(nèi)也存在DHODH,但由于與真菌的同源性較低,F(xiàn)901318在體外對煙曲霉DHODH的作用超過對人體DHODH的作用2 200倍以上 (IC50>100 μmol/L)[60]。酶動力學實驗顯示,F(xiàn)901318是煙曲霉DHODH的可逆性抑制劑,同時也是與輔酶Q輔因子有關(guān)的競爭性抑制劑[60]。F901318對煙曲霉 (MIC90為0.125 μg/mL)等曲霉菌以及青霉菌、粗球孢子菌、莢膜組織胞漿菌、皮炎芽生菌、鐮刀菌以及多育賽多孢等多種致病性絲狀真菌或二態(tài)真菌具有抑制作用,但對念珠菌和接合菌等未檢測到體外活性,可能由F901318獨特的靶點所致[60-61]。由于F901318的作用靶點不同于氮唑類藥物,因此其作用不受Cyp51A基因突變所引起的氮唑類耐藥的影響[60]。目前F901318已完成了口服與靜脈注射治療侵襲性曲霉病的I期臨床試驗,進入II期臨床試驗階段。
中藥是我國傳統(tǒng)文化的瑰寶,從中藥中尋找具有抗真菌活性的有效成分是新藥發(fā)現(xiàn)的重要方式之一??拐婢鲂┑拈_發(fā)已經(jīng)成為抗真菌新藥開發(fā)的又一常用手段,中藥成分除直接作用于真菌外,也可作為增效劑,與其他藥物聯(lián)合用藥發(fā)揮協(xié)同抗真菌作用。本課題組通過對中藥有效成分的篩選,發(fā)現(xiàn)了能夠影響白念珠菌線粒體氧化呼吸的紫草素[62]、能夠抗白念珠菌生物被膜形成的紫檀茋[63-64]和漢防己甲素[65]等具有抗真菌作用的中藥成分,以及小檗堿[66-69]、黃芩素[70-72]、光甘草定[73]、蛇床子素[74]、覆盆子提取物[75]和月季花提取物[76]等具有抗真菌增效劑作用的中藥成分。
本課題組對小檗堿協(xié)同氟康唑等發(fā)揮抗真菌作用的機制開展了較為系統(tǒng)的研究。小檗堿 (見圖4a)又名黃連素,是中藥黃連中的主要生物堿,它單獨作用于耐藥白念珠菌的活性較弱 (MIC80>32 μg/mL),與氟康唑合用則能夠發(fā)揮協(xié)同抗真菌作用,合用后氟康唑與小檗堿抑制耐藥白念珠菌的平均MIC80分別降低至1 μg/mL與2 μg/mL,分數(shù)抑制濃度指數(shù) (FICI)范圍0.017~0.127[66]。小檗堿與氟康唑合用能夠引起耐藥白念珠菌核DNA損傷并影響其細胞周期,時間-殺菌曲線顯示二者的協(xié)同作用表現(xiàn)出對小檗堿的劑量依賴性,說明二者合用時小檗堿可能發(fā)揮了主要作用,已有研究證實小檗堿能夠結(jié)合于DNA并影響DNA的復制與轉(zhuǎn)錄并破壞細胞周期,熒光實驗顯示小檗堿可在白念珠菌細胞內(nèi)尤其是細胞核內(nèi)累積,而氟康唑可破壞真菌細胞膜的完整性,因此猜想細胞膜的破壞能夠增加小檗堿進入細胞中的濃度,從而增強其對耐藥真菌的作用[68]。除氟康唑外,小檗堿與酮康唑、伊曲康唑及兩性霉素B等作用于細胞膜的藥物均可發(fā)揮協(xié)同作用,與5-氟尿嘧啶、卡泊芬凈等則無協(xié)同作用,進一步支持了上述猜想[68]。后續(xù)研究還發(fā)現(xiàn),小檗堿可通過結(jié)合至相應(yīng)的藥物反應(yīng)元件 (DRE),阻斷白念珠菌耐藥基因CDR1的轉(zhuǎn)錄啟動過程,從而增強氟康唑抗耐藥白念珠菌的作用[69],這一發(fā)現(xiàn)提示氟康唑與小檗堿能夠相互促進對方的抗真菌作用。此外,比較蛋白質(zhì)組學研究顯示,氟康唑合用小檗堿可調(diào)節(jié)線粒體有氧呼吸并引起內(nèi)源性活性氧 (ROS)的增加,可能有助于協(xié)同作用的發(fā)揮[67]。相關(guān)機制有待更為深入的研究。
黃芩素 (見圖4b)是中藥黃芩的有效成分,具有多種藥理活性。黃芩素單獨作用于耐藥白念珠菌的作用較弱 (MIC80>64 μg/mL),與氟康唑合用后可使氟康唑?qū)δ退幇啄钪榫腗IC80平均降低256倍,同時自身對耐藥白念珠菌的平均MIC80降至2 μg/mL,F(xiàn)ICI范圍為0.037~0.098[70]。黃芩素與氟康唑合用對白念珠菌生物被膜具有抑制作用,二者合用影響白念珠菌與細胞表面疏水性、菌絲形成及黏附作用相關(guān)基因的表達,使得細胞表面疏水性降低、菌絲形成減少,從而降低細胞黏附能力[71]。此外還發(fā)現(xiàn)黃芩素單獨使用具有破壞白念珠菌的線粒體膜電位、誘導細胞凋亡的作用[72]。
T-2307 (日本富山化工,見圖5a)是新型的芳基嘧啶類抗真菌化合物,在體外對包括耐氟康唑菌株在內(nèi)的念珠菌 (MIC范圍0.000 25~0.007 8 μg/mL)、隱球菌 (MIC范圍0.003 9~0.062 5 μg/mL)與曲霉菌 (MIC范圍0.015 6~4 μg/mL)等均表現(xiàn)出良好的抗真菌活性,體內(nèi)活性近似或優(yōu)于其他常用抗真菌藥物[77-80]。T-2307注射劑已進行了I期臨床試驗。研究表明,T-2307可能通過作用于真菌的線粒體、破壞氧化呼吸鏈發(fā)揮對真菌的抑制作用,而T-2307對真菌線粒體的親和力是對哺乳動物的500倍,若這一機制成立,則T-2307有望成為具有選擇性的新靶點抗真菌藥物[81-82]。
尼可霉素Z (Valley Fever Solutions, Inc.,見圖5b)是一種幾丁質(zhì)合成酶抑制劑,通過干擾真菌細胞壁中幾丁質(zhì)的合成抑制真菌生長[83-84],目前將進入治療球孢子菌病的II期臨床試驗。但同類藥物的水解傾向以及體內(nèi)活性不足等缺點將是限制尼可霉素Z臨床應(yīng)用的主要因素[1]。
VL-2397 (又名ASP2397,Astellas Pharma Inc.,見圖5c)是利用線蟲感染模型從枝頂孢屬真菌的天然產(chǎn)物中篩選得到的抗真菌活性化合物,對曲霉菌具有較強抑制活性而對念珠菌無活性,對野生型和Cyp51A基因突變的耐氮唑類藥物煙曲霉的MIC50分別為0.25 μg/mL和0.125 μg/mL,其抗真菌藥效與兩性霉素B接近,但作用機制尚未明確[85-87],目前已進入治療侵襲性曲霉病的II期臨床試驗階段。
圖3新靶點抗真菌藥物:a.E1210 (AX001),b.F901318圖4抗真菌中藥及增效劑:a.鹽酸小檗堿,b.黃芩素圖5其他抗真菌新藥:a.T-2307,b.尼可霉素Z,c.VL-2397 (ASP2397)
Fig.3New target antifungal agents:a.E1210 (AX001),b.F901318Fig.4Traditional Chinese medicine antifungal synergists:a.Berberine hydrochloride,b.BaicaleinFig.5Other novel antifungal agents:a.T-2307,b.Nikkomycin Z,c.VL-2397 (ASP2397)
經(jīng)過長期的臨床實踐的檢驗,氮唑類、棘白菌素類等廣泛使用的抗真菌藥物的有效性與安全性已經(jīng)得到了驗證,作用機制的研究也比較深入。在此基礎(chǔ)上通過改進結(jié)構(gòu)等方法產(chǎn)生更安全有效的抗真菌新藥,仍是抗真菌新藥研發(fā)的重要方式。對真菌特異性新靶點的發(fā)現(xiàn),正在為抗真菌藥物的研發(fā)提供新的思路,據(jù)此已經(jīng)發(fā)現(xiàn)了數(shù)個新的抗真菌藥物靶點,并產(chǎn)生了基于新靶點的抗真菌藥物。此外,從中藥中尋找有效抗真菌藥物或增效劑正成為新藥研發(fā)的又一重要手段。隨著研究的深入,未來將涌現(xiàn)出更多值得人們關(guān)注的新型抗真菌藥物,為臨床治療侵襲性真菌感染提供更多可供選擇的藥物治療方案。
[1] Campoy S,Adrio JL.Antifungals[J].Biochem Pharmacol,2017,133: 86-96.
[2] Peyton LR,Gallagher S,Hashemzadeh M.Triazole antifungals: a review[J].Drugs Today (Barc),2015,51(12):705-718.
[3] Moore JN,Healy JR,Kraft WK.Pharmacologic and clinical evaluation of posaconazole[J].Expert Rev Clin Pharmacol,2015,83(3):321-334.
[4] Shirley M,Scott LJ.Isavuconazole: a review in invasive aspergillosis and mucormycosis[J].Drugs,2016,76(17):1647-1657.
[5] Osherov N,Kontoyiannis DP.The anti-Aspergillusdrug pipeline: is the glass half full or empty?[J].Med Mycol,2017,55(1):118-124.
[6] Torrado JJ,Espada R,Ballesteros MP,et al.Amphotericin B formulations and drug targeting[J].J Pharm Sci, 2008,97(7): 2405-2425.
[7] Halperin A,Shadkchan Y,Pisarevsky E,et al.Novel watersoluble amphotericin B-PEG conjugates with low toxicity and potentinvivoefficacy[J]. J Med Chem,2016,59(3):1197-1206.
[8] Ickowicz DE,F(xiàn)arber S,Sionov E,et al.Activity, reduced toxicity, and scale-up synthesis of amphotericin B-conjugated polysaccharide[J]. Biomacromolecules,2014,15(6):2079-2089.
[9] Shirkhani K,Teo I,Armstrong-James D,et al.Nebulised amphotericin B-polymethacrylic acid nanoparticle prophylaxis prevents invasive aspergillosis[J].Nanomedicine,2015,11(5):1217-1226.
[10] Denning DW.Echinocandin antifungal drugs[J].Lancet,2003,362(9390):1142-1151.
[11] Chang CC,Slavin MA,Chen SC.New developments and directions in the clinical application of the echinocandins[J].Arch Toxicol,2017,91(4):1613-1621.
[12] Roemer T,Krysan DJ.Antifungal drug development: challenges, unmet clinical needs, and new approaches[J]. Cold Spring Harb Perspect Med,2014,4(5):a019703.
[13] Denning DW,BromLey MJ.Infectious Disease. How to bolster the antifungal pipeline[J].Science,2015,347(6229):1414-1416.
[14] Hoekstra WJ,Garvey EP,Moore WR,et al.Design and optimization of highly-selective fungal CYP51 inhibitors[J].Bioorg Med Chem Lett,2014,24(15):3455-3458.
[15] Warrilow AGS,Martel CM,Parker JE,et al.The clinical candidate VT-1161 is a highly potent inhibitor ofCandidaalbicansCYP51 but fails to bind the human enzyme[J].Antimicrob Agents Chemother,2014,58(12):7121-7127.
[16] Garvey EP,Hoekstra WJ,Schotzinger RJ,et al.Efficacy of the clinical agent VT-1161 against fluconazole-sensitive and -resistantCandidaalbicansin a murine model of vaginal candidiasis[J].Antimicrob Agents Chemother,2015,59(9):5567-5573.
[17] Shubitz LF,Trinh HT,Galgiani JN,et al.Evaluation of VT-1161 for treatment of coccidioidomycosis in murine infection models[J].Antimicrob Agents Chemother,2015,59(12):7249-7254.
[18] Shubitz LF,Roy ME,Trinh HT,et al.Efficacy of the investigational antifungal VT-1161 in treating naturally occurring Coccidioidomycosis in dogs[J].Antimicrob Agents Chemother,2017,61(5):e00111-17.
[19] Garvey EP,Hoekstra WJ,Moore WR,et al.VT-1161 dosed once daily or once weekly exhibits potent efficacy in treatment of dermatophytosis in a guinea pig model[J].Antimicrob Agents Chemother,2015,59(4):1992-1997.
[20] Gebremariam T,Wiederhold NP,F(xiàn)othergill AW,et al.VT-1161 protects immunosuppressed mice fromRhizopusarrhizusvar.arrhizusinfection[J].Antimicrob Agents Chemother,2015,59(12):7815-7817.
[21] Lockhart SR,F(xiàn)othergill AW,Wiederhold NP,et al. The investigational fungal Cyp51 inhibitor VT-1129 demonstrates potentinvitroactivity againstCryptococcusneoformansandCryptococcusgattii[J].Antimicrob Agents Chemother,2016,60(4):2528-2531.
[22] Nielsen K,Vedula P,Smith KD,et al.Activity of VT-1129 againstCryptococcusneoformansclinical isolates with high fluconazole MICs[J].Med Mycol,2017,55(4):453-456.
[23] Warrilow AGS,Parker JE,Price CL,et al.The investigational drug VT-1129 is a highly potent inhibitor ofCryptococcusspecies CYP51 but only weakly inhibits the human enzyme[J].Antimicrob Agents Chemother,2016,60(8):4530-4538.
[24] Schell WA,Jones AM,Garvey EP,et al.Fungal CYP51 Inhibitors VT-1161 and VT-1129 exhibit stronginvitroactivity againstCandidaglabrataandC.kruseiisolates clinically resistant to azole and echinocandin antifungal compounds[J].Antimicrob Agents Chemother,2017,61(3):e01817-16.
[25] Hargrove TY,Garvey EP,Hoekstra WJ,et al. Crystal structure of the new investigational drug candidate VT-1598 in complex withAspergillusfumigatussterol 14α-Demethylase provides insights into its broad-spectrum antifungal activity[J].Antimicrob Agents Chemother,2017,61(7):e00570-17.
[26] Wiederhold NP,Patterson HP,Tran BH,et al. Fungal-specific Cyp51 inhibitor VT-1598 demonstratesinvitroactivity against Candida and Cryptococcus species, endemic fungi, including Coccidioides species, Aspergillus species and Rhizopus arrhizus[J]. J Antimicrob Chemother,2018,73(2):404-408.
[27] Ong V,James KD,Smith S,et al.Pharmacokinetics of the novel echinocandin CD101 in multiple animal species[J].Antimicrob Agents Chemother,2017,61(4):e01626-16.
[28] Sandison T,Ong V,Lee J,et al.Safety and pharmacokinetics of CD101 IV, a novel echinocandin, in healthy adults[J].Antimicrob Agents Chemother,2017,61(2):e01627-16.
[29] Zhao Y, Perez WB,Jiménez-Ortigosa C,et al. CD101: a novel long-acting echinocandin[J].Cell Microbiol,2016,18(9):1308-1316.
[30] Pfaller MA,Messer SA,Rhomberg PR,et al.Activity of a long-acting echinocandin, CD101, determined using CLSI and EUCAST reference methods, against Candida and Aspergillus spp., including echinocandin- and azole-resistant isolates[J].J Antimicrob Chemother,2016,71(10):2868-2873.
[31] James KD,Laudeman CP,Malkar NB,et al. Structure-Activity Relationships of a Series of Echinocandins and the Discovery of CD101, a Highly Stable and Soluble Echinocandin with Distinctive Pharmacokinetic Properties[J].Antimicrob Agents Chemother,2017,61(2):e01541-16.
[32] Pfaller MA,Messer SA,Rhomberg PR,et al. Activity of a long-acting echinocandin (CD101) and seven comparator antifungal agents tested against a global collection of contemporary invasive fungal isolates in the SENTRY 2014 Antifungal Surveillance Program[J].Antimicrob Agents Chemother,2017,61(3):e02045-16.
[33] Pfaller MA,Messer SA,Rhomberg PR,et al.CD101, a long-acting echinocandin, and comparator antifungal agents tested against a global collection of invasive fungal isolates in the SENTRY 2015 Antifungal Surveillance Program[J].Int J Antimicrob Agents,2017,50(3):352-358.
[34] Ong V,Hough G,Schlosser M,et al.Preclinical evaluation of the stability, safety, and efficacy of CD101, a novel echinocandin[J].Antimicrob Agents Chemother,2016,60(11):6872-6879.
[35] Zhao Y,Prideaux B, Nagasaki Y,et al. Unraveling Drug Penetration of Echinocandin Antifungals at the Site of Infection in an Intra-abdominal Abscess Model[J].Antimicrob Agents Chemother,2017,61(10):e01009-17.
[36] Krishnan BR,James KD,Polowy K,et al.CD101, a novel echinocandin with exceptional stability properties and enhanced aqueous solubility[J].J Antibiot (Tokyo),2017,70(2):130-135.
[37] Lakota EA,Bader JC,Ong V,et al.Pharmacological basis of CD101 efficacy: exposure shape matters[J]. Antimicrob Agents Chemother,2017,61(11):e00758-17.
[38] Hector RF,Bierer DE.New β-glucan inhibitors as antifungal drugs[J]. Expert Opin Ther Pat,2011,21(10):1597-1610.
[39] Onishi J,Meinz M,Thompson J,et al.Discovery of novel antifungal (1,3)-beta-D-glucan synthase inhibitors[J]. Antimicrob Agents Chemother,2000,44(2):368-377.
[40] Scorneaux B,Angulo D,Borroto-Esoda K,et al.SCY-078 is fungicidal against Candida species in time-kill studies[J].Antimicrob Agents Chemother,2017,61(3):e01961-16.
[41] Lepak AJ,Marchillo K,Andes DR.Pharmacodynamic target evaluation of a novel oral glucan synthase inhibitor, SCY-078 (MK-3118), using aninvivomurine invasive candidiasis model[J].Antimicrob Agents Chemother,2015,59(2):1265-1272.
[42] Schell WA,Jones AM,Borroto-Esoda K,et al.Antifungal activity of SCY-078 and standard antifungal agents against 178 clinical isolates of resistant and susceptibleCandidaspecies[J].Antimicrob Agents Chemother,2017,61(11):e01102-17.
[43] Pfaller MA,Messer SA,Motyl MR,et al.Activity of MK-3118, a new oral glucan synthase inhibitor, tested againstCandidaspp. by two international methods (CLSI and EUCAST)[J]. J Antimicrob Chemother,2013,68(4):858-863.
[44] Pfaller MA,Messer SA,Motyl MR,et al.Invitroactivitity of a new oral glucan synthase inhibitor (MK-3118) tested againstAspergillusspp. by CLSI and EUCAST broth microdilution methods[J].Antimicrob. Agents Chemother,2013,57(2):1065-1068.
[45] Jimenez-Ortigosa C,Paderu P,Motyl MR,et al.Enfumafungin derivative MK-3118 shows increasedinvitropotency against clinical echinocandin-resistantCandidaspecies andAspergillusspecies isolates[J].Antimicrob Agents Chemother,2014,58(2):1248-1251.
[46] Pfaller MA,Messer SA,Rhomberg PR,et al.Differential activity of the oral glucan synthase inhibitor SCY-078 against wild-type and echinocandin-resistant strains ofCandidaspecies[J].Antimicrob Agents Chemother,2017,61(8):e00161-17.
[47] Lamoth F,Alexander BD.Antifungal activities of SCY-078 (MK-3118) and standard antifungal agents against clinical non-Aspergillus mold isolates[J].Antimicrob Agents Chemother,2015,59(7):4308-4311.
[48] Larkin E,Hager C,Chandra J,et al.The emerging pathogen Candida auris: growth phenotype, virulence factors, activity of antifungals, and effect of SCY-078, a novel glucan synthesis inhibitor, on growth morphology and biofilm formation[J].Antimicrob Agents Chemother,2017,61(5):e02396-16.
[49] Wring SA,Randolph R,Park S,et al.Preclinical pharmacokinetics and pharmacodynamic target of SCY-078, a first-in-class orally active antifungal glucan synthesis inhibitor, in murine models of disseminated candidiasis[J].Antimicrob Agents Chemother,2017,61(4):e02068-16.
[50] Richard ML,Plaine A.Comprehensive analysis of glycosylphosphatidylinositol-anchored proteins inCandidaalbicans[J].Eukaryot Cell,2007,6(2):119-133.
[51] Tsukahara K,Hata K,Nakamoto K,et al.Medicinal genetics approach towards identifying the molecular target of a novel inhibitor of fungal cell wall assembly[J].Mol Microbiol,2003,48(4):1029-1042.
[52] Umemura M,Okamoto M,Nakayama K,et al.GWT1 gene is required for inositol acylation of glycosylphosphatidylinositol anchors in yeast[J]. J Biol Chem,2003,278(26):23639-23647.
[53] Watanabe NA,Miyazaki M,Horii T,et al.E1210, a new broad-spectrum antifungal, suppressesCandidaalbicanshyphal growth through inhibition of glycosylphosphatidylinositol biosynthesis[J].Antimicrob. Agents Chemother,2012,56(2):960-971.
[54] Miyazaki M,Horii T,Hata K,et al.Invitroactivity of E1210, a novel antifungal, against clinically important yeasts and molds[J].Antimicrob Agents Chemother,2011,55(10): 4652-4658.
[55] Pfaller MA,Hata K,Jones RN,et al.Invitroactivity of a novel broad-spectrum antifungal, E1210, tested againstCandidaspp. as determined by CLSI broth microdilution method[J].Diagn Microbiol Infect Dis,2011,71(2):167-170.
[56] Pfaller MA,Duncanson F,Messer SA,et al.Invitroactivity of a novel broad-spectrum antifungal, E1210, tested againstAspergillusspp. determined by CLSI and EUCAST broth microdilution methods[J].Antimicrob Agents Chemother,2011,55(11):5155-5158.
[57] Castanheira M,Duncanson FP,Diekema DJ,et al.Activities of E1210 and comparator agents tested by CLSI and EUCAST broth microdilution methods againstFusariumandScedosporiumspecies identified using molecular methods[J].Antimicrob Agents Chemother,2012,56(1):352-357.
[58] Wiederhold NP,Najvar LK,F(xiàn)othergill AW,et al.The investigational agent E1210 is effective in treatment of experimental invasive candidiasis caused by resistantCandidaalbicans[J].Antimicrob Agents Chemother,2015,59(1):690-692.
[59] Hata K,Horii T,Miyazaki M,et al.Efficacy of oral E1210, a new broad-spectrum antifungal with a novel mechanism of action, in murine models of candidiasis, aspergillosis, and fusariosis[J].Antimicrob Agents Chemother,2011,55(10):4543-4551.
[60] Oliver JD,Sibley GE,Beckmann N,et al.F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase[J].Proc Natl Acad Sci U S A,2016,113(45):12809-12814.
[61] Buil JB,Rijs AJMM,Meis JF,et al.Invitroactivity of the novel antifungal compound F901318 against difficult-to-treatAspergillusisolates[J].J Antimicrob Chemother,2017,72(9):2548-2552.
[62] Miao H,Jiang Y,Cao Y,et al.Inhibitory effect of Shikonin onCandidaalbicansgrowth[J].Biol Pharm Bull, 2012,35(11):1956-1963.
[63] Li DD,Zhao LX,Jiang YY,et al.Invitroandinvivoactivities of pterostilbene againstCandidaalbicansbiofilms[J].Antimicrob Agents Chemother,2014,58(4):2344-2355.
[64] Hu DD,Zhang RL,Jiang YY,et al.The structure-activity relationship of pterostilbene againstCandidaalbicansbiofilms[J]. Molecules, 2017,22(3):E360.
[65] Zhao LX,Li DD,Jiang YY et al.Effect of tetrandrine againstCandidaalbicansbiofilms[J].PLoS One,2013,8(11):e79671.
[66] Quan H,Cao YY,Jiang YY,et al.Potentinvitrosynergism of fluconazole and berberine chloride against clinical isolates ofCandidaalbicansresistant to fluconazole[J].Antimicrob Agents Chemother,2006,50(3):1096-1099.
[67] Xu Y,Wang Y,Jiang YY,et al.Proteomic analysis reveals a synergistic mechanism of fluconazole and berberine against fluconazole-resistantCandidaalbicans: endogenous ROS augmentation[J]. J Proteome Res,2009,8(11):5296-5304.
[68] Li DD,Xu Y,Jiang YY,et al.Fluconazole assists berberine to kill fluconazole-resistantCandidaalbicans[J]. Antimicrob Agents Chemother,2013,57(12):6016-6027.
[69] Zhu SL,Yan L,Jiang YY,et al.Berberine inhibits fluphenazine-induced up-regulation of CDR1 inCandidaalbicans[J].Biol Pharm Bull,2014, 37(2):268-273.
[70] Huang S,Cao YY,Jiang YY,et al.Invitrosynergism of fluconazole and baicalein against clinical isolates ofCandidaalbicansresistant to fluconazole[J].Biol Pharm Bull,2008,31(12):2234-2236.
[71] 趙柳婭,蔣京辰,姚響文,等.黃芩素與氟康唑協(xié)同抗白念珠菌生物被膜作用研究[J].中國真菌學雜志,2014,9(2):70-74.
[72] Dai BD,Cao YY,Jiang YY,et al.Baicalein induces programmed cell death inCandidaalbicans[J].J Microbiol Biotechnol,2009,19(8):803-809.
[73] Liu W,Li LP,Jiang YY,et al.Synergistic antifungal effect of glabridin and fluconazole[J].PLoS One,2014,9(7):e103442.
[74] Li DD,Chai D,Jiang YY.Potentinvitrosynergism of fluconazole and osthole against fluconazole-resistantCandidaalbicans[J].Antimicrob Agents Chemother,2017,61(8):e00436-17.
[75] Han B,Cao YB,Jiang YY,et al.Antifungal activity ofRubuschingiiextract combined with fluconazole against fluconazole-resistantCandidaalbicans[J].Microbiol Immunol,2016,60(2):82-92.
[76] Zhang L,Lin H,Jiang YY,et al.Antifungal activity of the ethanol extract from Flos Rosae Chinensis with activity against fluconazole-resistant clinicalCandida[J].Evid Based Complement Alternat Med,2017,2017:4780746.
[77] Mitsuyama J,Nomura N,Hashimoto K,et al.Invitroandinvivoantifungal activities of T-2307, a novel arylamidine[J].Antimicrob Agents Chemother,2008,52(4):1318-1324.
[78] Wiederhold NP,Najvar LK,F(xiàn)othergill AW,et al.The novel arylamidine T-2307 maintainsinvitroandinvivoactivity against echinocandin-resistantCandidaalbicans[J].Antimicrob Agents Chemother,2015,59(2):1341-1343.
[79] Wiederhold NP,Najvar LK,F(xiàn)othergill AW,et al.The novel arylamidine T-2307 demonstratesinvitroandinvivoactivity against echinocandin-resistantCandidaglabrata[J].J Antimicrob Chemother,2016,71(3): 692-695.
[80] Nishikawa H,F(xiàn)ukuda Y,Mitsuyama J,et al.Invitroandinvivoantifungal activities of T-2307, a novel arylamidine, againstCryptococcusgattii: an emerging fungal pathogen[J]. J Antimicrob Chemother,2017,72(6):1709-1713.
[81] Yamada E,Nishikawa H,Nomura N,et al.T-2307 shows efficacy in murine model ofCandidaglabratainfection despiteinvitrotrailing growth phenomena[J].Antimicrob Agents Chemother,2010,54(9):3630-3634.
[82] Shibata T,Takahashi T,Yamada E,et al.T-2307 causes collapse of mitochondrial membrane potential in yeast[J].Antimicrob Agents Chemother,2012,56(11):5892-5897.
[83] Holden WM,F(xiàn)ites JS,Reinert LK,et al.Nikkomycin Z is an effective inhibitor of the chytrid fungus linked to global amphibian declines[J].Fungal Biol,2014,118(1):48-60.
[84] Shubitz LF,Trinh HT,Perrill RH,et al.Modeling nikkomycin Z dosing and pharmacology in murine pulmonary coccidioidomycosis preparatory to phase 2 clinical trials[J].J Infect Dis,2014,209(12):1949-1954.
[85] Arendrup MC,Jensen RH,Cuenca-Estrella M.Invitroactivity of ASP2397 against Aspergillus isolates with or without acquired azole resistance mechanisms[J].Antimicrob Agents Chemother,2015,60(1):532-536.
[86] Nakamura I,Kanasaki R,Yoshikawa K,et al.Discovery of a new antifungal agent ASP2397 using a silkworm model ofAspergillusfumigatusinfection[J].J Antibiot (Tokyo),2017,70(1):41-44.
[87] Nakamura I,Yoshimura S,Masaki T,et al.ASP2397: a novel antifungal agent produced by Acremonium persicinum MF-347833[J].J Antibiot (Tokyo),2017,70(1):45-51.