閆麗 魏廣生
摘 要:為了豐富Sturm-Liouville(S-L)微分算子的譜理論,研究了閉區(qū)間[0,1]上邊界條件依賴譜參數(shù)的非連續(xù)S-L問題。首先利用該問題在直和空間上的等價(jià)刻畫,給出了非連續(xù)S-L問題特征值與連續(xù)S-L問題特征值間的交替關(guān)系,即在非連續(xù)S-L問題的特征值的每個(gè)開子區(qū)間內(nèi)都恰有連續(xù)S-L問題的一個(gè)特征值,進(jìn)而由連續(xù)S-L問題的振蕩理論推出非連續(xù)S-L問題的振蕩理論。然后通過Prüfer變換和Hergloz函數(shù)的轉(zhuǎn)換,建立了邊界條件依賴譜參數(shù)的非連續(xù)S-L問題與邊界條件為常值的非連續(xù)S-L問題的轉(zhuǎn)換,得出轉(zhuǎn)換后的特征值與轉(zhuǎn)換前(除去有限個(gè))的特征值相等。最后通過構(gòu)造邊界條件為常值的非連續(xù)S-L問題的特征函數(shù)求得其特征值的漸近式,從而得到了邊界條件依賴譜參數(shù)的非連續(xù)S-L問題的特征值的漸近表達(dá)式。新的研究方法可推廣到對間斷點(diǎn)條件依賴譜參數(shù)的S-L問題研究。
關(guān)鍵詞:算子代數(shù);Sturm-Liouville微分算子;非連續(xù)條件;參數(shù)邊界條件
中圖分類號:O175.1 MSC(2010)主題分類:47A75 文獻(xiàn)標(biāo)志碼:A
文章編號:1008-1542(2018)04-0321-10doi:10.7535/hbkd.2018yx04005
Abstract:In order to enrich the spectral theory of Sturm-Liouvillel (S-L) differential operators, the discontinuous S-L problem with boundary conditions dependent on spectral parameters on closed interval \[0,1\] is studied. Firstly, by using the equivalent characterization of the problem in the direct sum space, the alternating relation between the eigenvalues of the discontinuous S-L problem and the eigenvalues of the continuous S-L problem is given. That is, there is exactly one eigenvalue of the continuous S-L problem in every open subinterval of the eigenvalues of the discontinuous S-L problem, and then the oscillation theory of the discontinuous S-L problem is derived from the oscillation theory of the continuous S-L problem. Through the transformations of Prüfer and Hergloz function, the transformation between the discontinuous S-L problem with boundary conditions dependent spectral parameters and discontinuous S-L problem with constant boundary conditions is established. The obtained converted eigenvalues are equal to those (excluding the finite eigenvalues) before the conversion. Finally, the asymptotic expressions of eigenvalues of discontinuous S-L problems with boundary conditions dependent on spectral parameters are obtained by constructing the eigenfunctions of discontinuous S-L problems with constant boundary conditions. The new research method can be extended to the study of the S-L problem with boundary conditions dependent spectral parameters.
Keywords:operator algebras; Sturm-Liouville differential operator; discontinuity conditions; eigenparameter-dependent boundary condition
Sturm-Liouville(簡稱S-L)微分算子理論在研究許多數(shù)學(xué)物理問題中有重要的作用,其特征值問題長期以來受到物理學(xué)界和數(shù)學(xué)學(xué)界的關(guān)注。其中,非連續(xù)S-L問題基于許多物理背景和實(shí)際應(yīng)用問題,例如:中間有結(jié)點(diǎn)的弦振動(dòng)問題[1-4]、衍射問題[5-7]、質(zhì)量轉(zhuǎn)移問題[8-10]以及薄的疊層板塊的熱傳導(dǎo)問題[11-13];再比如地球物理中,地殼底部橫波的反射[14-16]也會導(dǎo)致相應(yīng)的S-L問題不連續(xù),會產(chǎn)生一個(gè)跨越界面的條件,這個(gè)條件一般稱之為“界面條件”或“轉(zhuǎn)移條件”,即特征函數(shù)及其導(dǎo)數(shù)產(chǎn)生間斷點(diǎn)。
3 結(jié) 論
基于文獻(xiàn)\[1\]中的結(jié)論,針對非連續(xù)且邊界條件含譜參數(shù)的S-L問題(1)—問題(5)的特征值給出了精細(xì)估計(jì), 首先利用Hergloz函數(shù)的轉(zhuǎn)換,建立了邊界條件含譜參數(shù)的S-L問題與常值邊界條件S-L問題的轉(zhuǎn)換。然后通過直和空間的等價(jià)刻畫, 證明了非連續(xù)S-L問題的特征值與連續(xù)S-L問題的特征值間的交替關(guān)系,并建立了該問題的振蕩理論。最后得到了特征值的漸近表達(dá)式。研究結(jié)果為該問題的逆問題提供了理論依據(jù)。
參考文獻(xiàn)/References:
[1] BENEDEK A I, PANZONE R. On Sturm-Liouville problems with the square root of the eigenvalue parameter conditions contained in the boundary conditions[J]. Notas Algebra Analysis, 1981, 10: 1-62.
[2] BINDING P A, HRYNIV R, LANGER H,et al. Elliptic eigenvalue problems with eigenparameter dependent boundary conditions[J]. J Differential Equations, 2001, 174: 30-54.
[3] DIJKSMA A. Eigenfunction expansions for a class of J-selfadjoint ordinary differential operators with boundary conditions containing the eigenvalue parameter[J]. Proc Roy Soc Edinburgh Sect A, 1980, 86: 1-27.
[4] EBERHARD W, FREILING G, SCHNEIDER A. Eigenfunction expansion for a regular fourth order eigenvalue problem with eigenvalue parameter in the boundary condition[J]. Int J Math Math Sci, 1992, 15: 809-811.
[5] FULTON C T. Singular eigenvalue problems with eigenvalue-parameter contained in the boundary conditions[J]. Proc Roy Soc Edinburgh Sect A, 1980, A 87: 1-34.
[6] HINTON D B, SHAW J K. Differential operators with spectral parameter incompletely in the boundary conditions[J]. Funkcial Ekvac, 1990, 33: 363-385.
[7] RUSSAKOVSKII E M. The matrix Sturm-Liouville problem with spectral parameter in the boundary conditions[J]. Algebraic and operator aspects, Trans Moscow Math Soc, 1996, 57: 159-184.
[8] HINTON D B. Eigenfunction expansions for a singular eigenvalue problem with eigenparameter in the boundary conditions[J]. SIAM J Math Anal, 1981, 12: 572-584.
[9] KOZHEVNIKOV A, YAKUBOV S. On operators generated by elliptic boundary problems with a spectral parameter in boundary conditions[J]. Integral Equations Operator Theory, 1995, 23: 205-231.
[10]RUSSAKOVSKII E M. Operator treatment of boundary problems with spectral parameters entering via ploynomials in the boundary conditions[J]. Funct Anal Appl, 1975, 9: 358-359.
[11]SHKALIKOV A A. Boundary problems for ordinary differential equations with parameter in the boundary conditions[J]. J Soviet Math, 1986, 33: 1311-1342.
[12]TRETTER C. On lambda-nonlinear boundary eigenvalue problems[J]. Mathematics Research Akademie, 1993, 71:1208-1216.
[13]ZAYED E M E, IBRAHIM S F. An expansion theorem for an eigenvalue problem on an arbitrary conditions[J]. Acta Math Sin (Engl Ser), 1995, 11: 399-407.
[14]WEI G, XU H K. Inverse spectral problem with partial information given on the potential and norming constants [J]. Trans Amer Math Soc, 2012, 364: 3265-3288.
[15]PIVOVARCHIK V N. An inverse Sturm-Liouville problem by three spectra[J]. Integral Equ Oper Theory, 1999, 34: 234-243.
[16]GESZTESY F, SIMON B. Inverse spectral analysis with partial information on the potential. II. The case of discrete sprctrum [J]. Trans Amer Math Soc, 2000, 35: 2765-2787.
[17]江衛(wèi)華,郭彥平,王斌.二階微分方程組邊值問題2個(gè)正解的存在性[J].河北科技大學(xué)學(xué)報(bào),2006,27(1):15-17.
JIANG Weihua, GUO Yanping, WANG Bin. Existence of two positive solutions to boundary value problems of second order systems[J]. Journal of Hebei University of Science and Technology, 2006,27(1):15-17.
[18]郭彥平,苗素榮,禹長龍.無窮區(qū)間上二階三點(diǎn)差分方程邊值問題正解的存在性[J].河北科技大學(xué)學(xué)報(bào),2016,37(6):556-561.
GUO Yanping, MIAO Surong, YU Changlong. Existence of positive solutions to boundary value problem of second-order three-point difference equations on infinite intervals[J]. Journal of Hebei University of Science and Technology, 2016,37(6):556-561.
[19]WEI G, XU H K. Inverse spectral problem for a string equation with partial information [J]. Inverse Problems, 2010, 26: 115004.
[20]GESZTESY F, SIMON B. On the determination of a potential from three spectra[J]. Amer Math Soc Transl, 1997, 2: 18-26.
[21]GESZTESY F, SIMON B. Inverse spectral analysis with partial information on the potential, Ⅰ. The case of an a.c. component in the sprctrum[J]. Helv Phys Acta, 1997, 70: 66-71.
[22] BINDING P A, BROWNE P J, WATSON B A. The Sturm-Liouville problem with the discontinuity conditions at an interior point and boundary conditions depending on the eigenparameter[J]. Proc Edinb Math Soc, 2002, 45: 631-645.
[23] 傅守忠, 王忠, 魏廣生. Sturm-Liouville問題及其逆問題[M]. 北京: 科學(xué)出版社, 2015.