郭樂 郭兆將 康師 孫丹 周君雷 龔莉君 張友軍
摘要 本實驗室前期研究表明,小菜蛾通過有絲分裂原激活的蛋白激酶(mitogen-activated protein kinase, MAPK)信號途徑上游轉(zhuǎn)錄激活的關(guān)鍵基因MAP4K4反式調(diào)控多個中腸受體基因的表達,從而介導(dǎo)其對蘇云金芽胞桿菌Bacillus thuringiensis(Bt)產(chǎn)生的Cry1Ac殺蟲蛋白的高抗性。為進一步明確MAP4K4基因轉(zhuǎn)錄激活而過量表達的順式調(diào)控機制,本文利用小菜蛾基因組數(shù)據(jù)庫中MAP4K4基因序列信息,首先克隆了Bt Cry1Ac敏感小菜蛾種群MAP4K4基因上游5′-側(cè)翼序列,得到了兩種不同形式的5′-側(cè)翼序列:MAP4K4-1和MAP4K4-2。隨后,預(yù)測分析了其中的潛在功能順式作用元件,同時發(fā)現(xiàn)其中核苷酸的轉(zhuǎn)換會導(dǎo)致順式作用元件的改變。本研究初步揭示了小菜蛾MAP4K4 基因的5′-側(cè)翼序列的遺傳多樣性,為后續(xù)明確MAP4K4的順式調(diào)控機制奠定了基礎(chǔ)。
關(guān)鍵詞 小菜蛾; MAPK信號途徑; MAP4K4; 5′-側(cè)翼序列; 順式調(diào)控機制
中圖分類號: S 433.4
文獻標(biāo)識碼: A
DOI: 10.16688/j.zwbh.2017265
Abstract Our previous studies indicated that the crucial gene MAP4K4, a constitutive transcriptionally-activated upstream gene of MAPK signaling pathway, could trans-regulate the expression of multiple midgut receptor genes thereby mediating the high-level resistance to Bt Cry1Ac toxin in Plutella xylostella (L.). In this study, to further clarify the cis-regulatory mechanism of transcriptional activation and overexpression of MAP4K4 gene, we utilized the genome database of P.xylostella and cloned the 5′-flanking sequence of MAP4K4 gene from Bt Cry1Ac-susceptible P.xylostella for the first time, and two isoforms including MAP4K4-1 and MAP4K4-2 were detected. Subsequently, the potential functional cis-acting elements in both MAP4K4-1 and MAP4K4-2 isoforms were predicted, and the results showed that the transformation between nucleotides could result in alterations of intrinsic cis-elements. This study revealed the genetic diversity of the 5′-flanking sequence of MAP4K4 gene in P.xylostella and lays a foundation for further exploration of the cis-regulatory mechanism of MAP4K4 gene in P.xylostella.
Key words Plutella xylostella; MAPK signaling pathway; MAP4K4; 5′-flanking sequence; cis-regulatory mechanism
小菜蛾P(guān)lutella xylostella (L.),屬于鱗翅目Lepidoptera菜蛾科 Plutellidae,是一種為害十字花科作物的世界性重大農(nóng)業(yè)害蟲,每年在世界范圍內(nèi)引起的經(jīng)濟損失高達40億~50億美元[1]。蘇云金芽胞桿菌Bacillus thuringiensis (Bt)是一種革蘭氏陽性土壤細菌,其在產(chǎn)孢階段能產(chǎn)生多種殺蟲晶體蛋白(又稱δ-內(nèi)毒素),從而能高效專一地殺死多種田間重要害蟲且對人畜及環(huán)境安全無害。Bt制劑被認為是化學(xué)殺蟲劑的優(yōu)良替代品,目前,Bt制劑已成為世界上產(chǎn)量最大、用途最廣的微生物殺蟲劑[2]。1990年,首次報道了小菜蛾在田間對Bt噴灑制劑產(chǎn)生抗性[3],隨后,它成為研究害蟲對Bt產(chǎn)生抗性的模式昆蟲之一。前期研究表明,小菜蛾對Bt產(chǎn)生高抗性的分子機制主要是由于其中腸Bt毒素受體的變化(突變或表達量變化)影響其與Bt毒素的結(jié)合導(dǎo)致的[4]。
近期,Baxter等通過遺傳圖譜定位的方法研究發(fā)現(xiàn)位于小菜蛾BtR-1抗性基因座內(nèi)的ABC轉(zhuǎn)運蛋白基因ABCC2序列突變導(dǎo)致小菜蛾NO-QA種群對Bt Cry1Ac毒素產(chǎn)生高抗性[5]。研究發(fā)現(xiàn),本實驗室小菜蛾對Bt Cry1Ac毒素的高抗性與中腸CAD基因和ABC轉(zhuǎn)運蛋白ABCH1基因無關(guān)[67]。本實驗室小菜蛾與NO-QA種群具有相同的BtR-1抗性基因座,因此,利用小菜蛾基因組和家蠶基因組的序列信息和染色體共線性關(guān)系成功組裝了小菜蛾約3.15 Mb的BtR-1抗性基因座,并通過一系列生化、分子生物學(xué)、遺傳學(xué)和生物信息學(xué)等技術(shù)最終在國際上首次發(fā)現(xiàn)小菜蛾對Bt的高抗性是由位于BtR-1抗性基因座內(nèi)的有絲分裂原激活的蛋白激酶(mitogen-activated protein kinase, MAPK)信號途徑上游恒定轉(zhuǎn)錄激活的關(guān)鍵基因MAP4K4反式調(diào)控BtR-1抗性基因座內(nèi)外的ALP和ABC轉(zhuǎn)運蛋白基因(ABCC2、ABCC3和ABCG1)表達下調(diào)導(dǎo)致的[89]。
1.3.4 MAP4K4基因5′-側(cè)翼區(qū)序列差異性及順式作用元件(cis-acting elements)預(yù)測及分析
利用Clustal Omega軟件(http:∥www.ebi.ac.uk/Tools/msa/clustalo/)及GeneDoc 2.7進行多重序列差異性比較。將克隆成功的序列利用啟動子轉(zhuǎn)錄起始位點分析網(wǎng)站BDGP(http:∥www.fruitfly.org/seq_tools/promoter.html)進行轉(zhuǎn)錄起始位點預(yù)測,而后手動校正TATA box所在位置。利用順式作用元件預(yù)測網(wǎng)站PROMO(http:∥alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3)和JASPAR(http:∥jaspar.genereg.net/)進行轉(zhuǎn)錄起始位點分析。
2 結(jié)果與分析
2.1 MAP4K4基因組信息
基于GenBank中小菜蛾基因組數(shù)據(jù)以及自寫的Perl腳本信息,可知MAP4K4位于Scaffold NW_011952173.1上,基因編號為LOC105387010。MAP4K4的走向與鄰近基因的走向相反。截取的5 000 bp位于MAP4K4及鄰近基因之間,該片段除了涵蓋全部MAP4K4的5′-側(cè)翼區(qū)外,還包括了MAP4K4的部分近端編碼區(qū)以及臨近基因的小部分側(cè)翼區(qū),保證了截取5′-側(cè)翼區(qū)的完整性(圖1)。
2.2 小菜蛾基因組DNA的提取
用整頭4齡小菜蛾幼蟲提取基因組DNA,1.5%瓊脂糖凝膠電泳鑒定完整性,結(jié)果表明,提取的單頭小菜蛾DNA濃度較高,部分樣品(MS1~MS7)電泳結(jié)果見圖2。用紫外分光光度計測定DNA的OD260/OD280比值均在1.8~2.0之間,表明所有模板均可用來MAP4K4基因5′-側(cè)翼區(qū)的克隆。
2.3 引物篩選及MAP4K4的5′-側(cè)翼區(qū)序列截短
設(shè)計的6對引物中,前5對均能克隆出包含目的片段的條帶(圖3a),連接轉(zhuǎn)化后,菌液測序,結(jié)果表明,這些區(qū)域中存在高級結(jié)構(gòu)而無法測通。引物P′能成功克隆出3 250 bp左右的片段(圖3b),同樣,用啟動子預(yù)測網(wǎng)站進行分析,該區(qū)域已經(jīng)包含了MAP4K4基因的整個5′啟動子核心區(qū)、5′非翻譯區(qū)(5′-UTR)以及近端編碼區(qū)。
2.4 序列差異性分析
為了保證克隆結(jié)果的真實性,本試驗以10頭未區(qū)分雌雄的生長狀況好的小菜蛾4齡初期或中期幼蟲基因組DNA為模板,用引物P′-F/P′-R進行了大量的克隆及測序,得到了兩種不同形式的目的片段:MAP4K4-1和MAP4K4-2,它們與基因組序列的相似度分別為97.04%、77.58%。隨后又分別用1頭4齡雌蟲和1頭4齡雄蟲的基因組DNA為模板進行克隆,兩個樣本中均擴增出MAP4K4-2(表2)。測序結(jié)果表明,從未區(qū)分雌雄的10個樣本中共得到50條MAP4K4序列,其中從5個樣本中獲得28條MAP4K4-1序列,從5個樣本中獲得22條MAP4K4-2序列。從雌雄樣本中分別得到4條MAP4K4-2序列。MAP4K4-1和 MAP4K4-2分別占據(jù)總測序量的48.3%、51.7%。表明這兩種形式的MAP4K4的 5′-側(cè)翼區(qū)在試驗小菜蛾種群中趨向于均勻分布,且與雌雄無關(guān)。
2.5 MAP4K4的5′-側(cè)翼區(qū)順式作用元件分析
MAP4K4-1及MAP4K4-2與基因組序列相互比較發(fā)現(xiàn),后兩者之間具有明顯差異,MAP4K4-2中間插入了260 bp的長片段。經(jīng)轉(zhuǎn)錄起始位點預(yù)測網(wǎng)站分析,三者的轉(zhuǎn)錄起始位點為同一個胸腺嘧啶T(圖4)。TATA box位于轉(zhuǎn)錄起始位點上游48-38 bp,序列為TATAAATTAA。5′-UTR區(qū)長83 bp,說明長片段的插入未改變MAP4K4基因的轉(zhuǎn)錄起始位點。利用多重序列比較,對MAP4K4基因5′-側(cè)翼的基因組數(shù)據(jù)24個位點進行了校正,分別為18個突變位點,5個缺失區(qū)以及1個插入位點(圖4)。MAP4K4-1與基因組序列及MAP4K4-2相比,存在27個差異位點。MAP4K4-2與MAP4K4-1及基因組序列比較,除了1個大片段的插入之外,還存在21個差異位點。
MAP4K4-1及MAP4K4-2的順式作用元件分析后,保留MAP4K4-2中與MAP4K4-1存在位點差異順式作用元件。結(jié)果顯示,在這些差異位點中,MAP4K4-1丟失了16個順式作用元件,而MAP4K4-2引入了21個新的元件。其中在長片段插入?yún)^(qū),引入的12個順式作用元件中有5個為Mad元件(圖4),該轉(zhuǎn)錄因子結(jié)合位點在該區(qū)域出現(xiàn)富集的現(xiàn)象。5′-UTR區(qū)沒有位點變化。這表明,位點的突變、插入和缺失可能導(dǎo)致順式作用元件的改變和丟失,同時也可能引入新的順式作用元件,且一個位點的改變甚至能引入多個順式作用元件。
3 討論
MAPK信號途徑是一個十分復(fù)雜而且龐大的調(diào)控網(wǎng)絡(luò)。多年來,盡管MAPK信號途徑在人類等哺乳動物中得以廣泛研究,但是它目前仍是醫(yī)學(xué)研究領(lǐng)域的熱點及難點,而這一重要信號途徑的上游關(guān)鍵基因MAP4K4在哺乳動物以及包括昆蟲在內(nèi)的無脊椎動物中研究甚少。研究表明,位于MAPK信號途徑上游的MAP4K4基因在秀麗隱桿線蟲Caenorhabditis elegans和果蠅Drosophila spp.等物種中發(fā)揮著重要的生理功能[1618]。在Bt研究領(lǐng)域,MAPK信號途徑已被證實參與了線蟲和昆蟲對Bt毒素的免疫防御反應(yīng)調(diào)控[1923]。
研究發(fā)現(xiàn),MAPK途徑可以調(diào)控哺乳動物ALP[2426]以及人類ABCC基因表達量[23,2729],而本實驗室郭兆將等也首次研究發(fā)現(xiàn)MAPK信號途徑可以調(diào)控小菜蛾中腸ALP和ABCC基因表達量從而導(dǎo)致小菜蛾對Bt產(chǎn)生高抗性,而這一調(diào)控過程中MAP4K4基因在Bt抗性小菜蛾中過量表達發(fā)揮了關(guān)鍵調(diào)控作用[6]。目前,基因調(diào)控研究主要集中在啟動子區(qū)的順式作用元件(cis-acting elements)及下游包括轉(zhuǎn)錄因子在內(nèi)的反式作用元件(trans-acting elements)的研究。為進一步了解MAPK信號途徑中MAP4K4基因在Bt敏感和抗性小菜蛾中的調(diào)控模式,本文對該基因的5′-側(cè)翼區(qū)進行了解析。利用小菜蛾基因組數(shù)據(jù)庫序列信息,克隆了Bt Cry1Ac敏感種群DBM1Ac-S的MAP4K4 基因5′-側(cè)翼區(qū)序列,與基因組原始序列相比,得到了兩種不同形式的側(cè)翼區(qū)序列MAP4K4-1及MAP4K4-2,它們基因組序列的相似度分別為97.04%、77.58%,測序結(jié)果表明,兩種形式的側(cè)翼序列在試驗種群中趨向均勻分布,且與雌雄無關(guān)。MAP4K4-1與基因組序列的差異主要集中在小位點的突變、插入和缺失,MAP4K4-2則主要為中間260 bp長片段的插入。此外,兩種形式的序列與基因組數(shù)據(jù)比較后,對基因組MAP4K4 的5′-側(cè)翼序列24個位點進行了校正。利用啟動子預(yù)測及順式作用元件預(yù)測軟件對克隆的序列進行分析可知,一個位點的改變會引起原有順式作用元件的消失,同時也可能引入一個或者多個新的順式作用元件,而在MAP4K4-2插入的長片段中,則出現(xiàn)了Mad轉(zhuǎn)錄因子結(jié)合位點的富集。
目前,DNA側(cè)翼序列的生物學(xué)功能,尤其是對基因的表達調(diào)控機制,是功能基因組學(xué)的研究熱點。基因組中大量的DNA非編碼序列都有某些特殊的功能[30],非編碼區(qū)中分布著許多功能元件,它們有些可作為順式調(diào)節(jié)元件發(fā)揮作用[31]。基因5′-側(cè)翼區(qū)核苷酸的突變引起順式作用元件的變化,從而調(diào)控基因在同一物種或不同物種時空表達發(fā)生差異[32]。
Mad(max dimerization protein)屬于堿性螺旋-環(huán)-螺旋(basic helix-loop-helix, bHLH)蛋白家族B亞族成員[33]。在小鼠中,該家族有4個成員,包括Mad1、Mxi1(max interactor 1)、Mad3和Mad4。它們均能與轉(zhuǎn)錄因子Max形成二聚體,阻遏細胞增殖循環(huán)[34],或者阻止啟動子中含有CACGTG位點的基因轉(zhuǎn)錄[35]。而線蟲僅有1個Mad家族成員,即Mdl-1(mad like 1),它能與Max家族的Mxl-1形成二聚體,在線蟲胚胎發(fā)育后期發(fā)揮著重要作用[36]。果蠅中未發(fā)現(xiàn)該家族成員[36]。目前在小菜蛾中未報道過Mad家族的作用機制及其功能。MAP4K4-2中長片段的插入中產(chǎn)生的多個Mad結(jié)合位點,是否同樣參與了相關(guān)功能仍是未知的。同時,該基因中的轉(zhuǎn)錄因子結(jié)合位點在調(diào)控小菜蛾MAPK信號途徑下游基因的表達中的作用也值得重視。
總之,本文基于本實驗室前期MAPK4K4基因的研究基礎(chǔ),對小菜蛾MAP4K4發(fā)揮調(diào)控功能的5′-側(cè)翼區(qū)進行了解析,明確了基因突變、插入和缺失引起的轉(zhuǎn)錄因子結(jié)合位點的改變情況,為進一步研究MAP4K4基因在小菜蛾Bt抗性種群中過量表達的順式調(diào)控機制提供了良好的實驗基礎(chǔ),為研究昆蟲順式作用元件突變在進化過程中的作用提供借鑒,這也為全面理解MAPK信號途徑在小菜蛾乃至其他昆蟲的Bt抗性調(diào)控機制奠定了基礎(chǔ)。
參考文獻
[1] FURLONG M J, WRIGHT D J, DOSDALL L M. Diamondback moth ecology and management: problems, progress and prospects [J].Annual Review of Entomology,2013,58:517541.
[2] BRAVO A, LIKITVIVATANAVONG S, GILL S S, et al. Bacillus thuringiensis: A story of a successful bioinsecticide [J]. Insect Biochemistry and Molecular Biology, 2011, 41: 423431.
[3] TABASHNIK B E, CUSHING N L, FINSON N, et al. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae)[J]. Journal of Economic Entomology, 1990, 83: 16711676.
[4] FERR J, VAN RIE J. Biochemistry and genetics of insect resistance to Bacillus thuringiensis[J]. Annual Review of Entomology, 2002, 47: 501533.
[5] BAXTER S W, BADENES-PREZ F R, MORRISON A, et al. Parallel evolution of Bacillus thuringiensis toxin resistance in Lepidoptera [J]. Genetics, 2011, 189: 675679.
[6] GUO Zhaojiang, KANG Shi, ZHU Xun, et al. The midgut cadherin-like gene is not associated with resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella (L.)[J]. Journal Invertebrate Pathology, 2015, 126: 2130.
[7] GUO Zhaojiang, KANG Shi, ZHU Xun, et al. The novel ABC transporter ABCH1 is a potential target for RNAi-based insect pest control and resistance management [J]. Scientific Reports, 2015, 5: 13728.
[8] GUO Zhaojiang, KANG Shi, CHEN Defeng, et al. MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in diamondback moth [J].PLoS Genetics,2015,11:e1005124.
[9] GUO Zhaojiang. KANG Shi, ZHU Xun, et al. Down-regulation of a novel ABC transporter gene (Pxwhite) is associated with Cry1Ac resistance in the diamondback moth, Plutella xylostella (L.)[J]. Insect Biochemistry and Molecular Biology, 2015, 59: 3040.
[10]周天軍. 有絲分裂原激活蛋白激酶信號轉(zhuǎn)導(dǎo)機制的結(jié)構(gòu)學(xué)研究[D]. 沈陽: 中國醫(yī)科大學(xué), 2006.
[11]HORTON A, WANG Bo, CAMP L, et al. The mitogen-activated protein kinome from Anopheles gambiae: identification, phylogeny and functional characterization of the ERK, JNK and p38 MAP kinases [J]. BMC Genomics, 2011, 12: 574.
[12]KRISHNA M, NARANG H. The complexity of mitogen-activated protein kinases (MAPKs) made simple [J]. Cellular and Molecular Life Sciences, 2008, 65: 35253544.
[13]JOHNSON G L, LAPADAT R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases [J]. Science, 2002, 298 (5600): 19111912.
[14]MULLAPUDI N, JOSEPH S J, KISSINGER J C.Identification and functional characterization of cis-regulatory elements in the apicomplexan parasite Toxoplasma gondii[J]. Genome Biology, 2009, 10(4): R34.
[15]TANG J D, GILBOA S, ROUSH R T, et al. Inheritance, stability, and lack-of-fitness costs of field-selected resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae) from Florida [J]. Journal of Economic Entomology, 1997, 90(3): 732741.
[16]CHAPMAN J O, LI Hua, LUNDQUIST E A. The MIG-15 NIK kinase acts cell-autonomously in neuroblast polarization and migration in C.elegans [J]. Developmental Biology, 2008, 324: 245257.
[17]COLLINS C S, HONG Jiyong, SAPINOSO L, et al. A small interfering RNA screen for modulators of tumor cell motility identifies MAP4K4 as a promigratory kinase [J]. Proceedings of the National Academy of Sciences the United States of America, 2006, 103(10): 37753780.
[18]SU Y C, TREISMAN J E, SKOLNIK E Y. The Drosophila Ste20-related kinase misshapen is required for embryonic dorsal closure and acts through a JNK MAPK module on an evolutionarily conserved signaling pathway [J]. Genes and Development, 1997, 11(8): 559571.
[19]CANCINO-RODEZNO A, ALEXANDER C, VILLASEOR R, et al. The mitogen-activated protein kinase p38 is involved in insect defense against Cry toxins from Bacillus thuringiensis[J]. Insect Biochemistry and Molecular Biology, 2010, 40: 5863.
[20]PORTA H, CANCINO-RODEZNO A, SOBERóN M, et al. Role of MAPK p38 in the cellular responses to pore-forming toxins [J]. Peptides, 2011, 32: 601606.
[21]VALAITIS A P. Bacillus thuringiensis pore-forming toxins trigger massive shedding of GPI-anchored aminopeptidase N from gypsy moth midgut epithelial cells [J]. Insect Biochemistry and Molecular Biology, 2008, 38: 611618.
[22]HUFFMAN D L, ABRAMI L, SASIK R, et al. Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 1099511000.
[23]TAN K P H, ITO S. Coordinate induction of ATP-binding cassette (ABC) proteins by bile acids via Nrf2 is mediated by mitogen activated protein kinases (MAPK)[J]. American Journal of Gastroenterology, 2000,213(12):4350.
[24]HAGER S, LAMPERT F M, ORIMO H, et al. Up-regulation of alkaline phosphatase expression in human primary osteoblasts by cocultivation with primary endothelial cells is mediated by p38 mitogen-activated protein kinase-dependent mRNA stabilization [J]. Tissue Engineering Part A, 2009, 15(11): 34373447.
[25]SUZUKI A, GUICHEUX J, PALMER G, et al. Evidence for a role of p38 MAP kinase in expression of alkaline phosphatase during osteoblastic cell differentiation [J].Bone, 2002, 30(1): 9198.
[26]SOWA H, KAJI H, YAMAGUCHI T, et al. Activations of ERK1/2 and JNK by transforming growth factor β negatively regulate smad3-induced alkaline phosphatase activity and mineralization in mouse osteoblastic cells [J]. The Journal of Biological Chemistry, 2002, 277(39): 3602436031.
[27]EL AZREQ M A, NACI D, AOUDJIT F. Collagen/β1 integrin signaling up-regulates the ABCC1/MRP-1 transporter in an ERK/MAPK-dependent manner[J]. Molecular Biology of the Cell, 2012, 23(17): 34733484.
[28]KIM S H, BARK H, CHOI C H. Mercury induces multidrug resistance-associated protein gene through p38 mitogen-activated protein kinase [J]. Toxicology Letters, 2005, 155(1): 143150.
[29]SUKHAI M, PIQUETTE-MILLER M. Regulation of the multidrug resistance genes by stress signals [J].Journal of Pharmacy and Pharmaceutical Sciences,2000,3(2):268280.
[30]秦丹, 徐存拴. 非編碼DNA序列的功能及其鑒定[J]. 遺傳, 2013, 35(11): 12531264.
[31]ALEXANDER R P, FANG Gang, ROZOWSKY J, et al. Annotating non-coding regions of the genome [J]. Nature Reviews Genetics, 2010, 11(8): 559571.
[32]WITTKOPP P J, KALAY G.Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence [J]. Nature Reviews Genetics, 2012, 13: 5969.
[33]FOLEY K P, EISENMAN R N. Two MAD tails: what the recent knockouts of Mad1 and Mxi1 tell us about the MYC/MAX/MAD network [J].Biochimica et Biophysica Acta,1999,1423:M37-M47.
[34]HURLIN P J, QUEVA C, KOSKINEN P J, et al. Mad3 and Mad4: novel Max-interacting transcriptional repressors that suppress c-myc dependent transformation and are expressed during neural and epidermal differentiation[J]. The EMBO Journal, 1995, 14(22): 56465659.
[35]YUAN J, TIRABASSI R S, BUSH A B, et al. The C.elegans MDL-1 and MXL-1 proteins can functionally substitute for vertebrate MAD and MAX [J].Oncogene,1998,17(9):11091118.
[36]王勇,姚勤,陳可平.動物bHLH轉(zhuǎn)錄因子家族成員及其功能[J].遺傳,2010,32(4):307330.
(責(zé)任編輯:田 喆)