孟慶軍 張玲 賈索爾·肖克熱提 王雪生 周賢惠 湯寶鵬
[摘要] 目的 探討低強(qiáng)度迷走神經(jīng)刺激(LL-VNS)干預(yù)阻塞性睡眠呼吸暫停(OSA)誘發(fā)犬心房顫動的機(jī)制。 方法 18只成年健康雄性比格犬隨機(jī)分為3組:對照組(n=6)、OSA組(n=6)和OSA+LL-VNS組(n=6)。將各組犬在全身麻醉狀態(tài)下進(jìn)行氣管插管,OSA組和OSA+LL-VNS組模擬OSA過程,即憋氣2 min,通氣8 min,每10分鐘為1個循環(huán),持續(xù)6 h;OSA+LL-VNS組從第3 h至實驗結(jié)束給予LL-VNS;對照組不憋氣。分別檢測3組動物建模0、1、3、6 h的血?dú)庵笜?biāo)以及建模0、3、6 h的炎癥指標(biāo)腫瘤壞死因子-α(TNF-α)、白細(xì)胞介素-2(IL-2)和白細(xì)胞介素-6(IL-6)的變化。全程記錄犬的動脈血壓。實驗結(jié)束后取心房肌組織用于做蘇木精-伊紅(HE)染色。 結(jié)果 成功建立了OSA模型。憋氣前后OSA組和OSA+LL-VNS組收縮壓均有顯著變化(P < 0.05),兩組間收縮壓比較差異無統(tǒng)計學(xué)意義(P > 0.05)。OSA組炎癥指標(biāo)TNF-α、IL-2在6 h處較對照組明顯升高,OSA+LL-VNS組較OSA組明顯降低,差異均有統(tǒng)計學(xué)意義(P < 0.05)。各個時間段,IL-6未表現(xiàn)出明顯差異(P > 0.05),OSA組的心房有效不應(yīng)期(ERP)逐漸縮短,心房顫動(AF)持續(xù)時間逐漸延長(P < 0.05)。在OSA+LL-VNS組建模0~3 h,心房ERP是逐漸縮短的,AF持續(xù)時間是逐漸延長的(P < 0.05);在3~6 h給予LL-VNS后與前3 h相比,心房ERP又會逐漸延長,AF持續(xù)時間逐漸縮短(P < 0.05)。OSA組與對照組相比心房肌組織的HE染色切片顯示心房肌細(xì)胞排列紊亂,細(xì)胞裂隙增寬,經(jīng)LL-VNS干預(yù)以后上述改變在一定程度上得到了逆轉(zhuǎn)。 結(jié)論 炎性因子與AF的發(fā)生和發(fā)展存一定的正相關(guān),同時LL-VNS能夠降低OSA對AF的誘發(fā)率。因此,降低機(jī)體炎性反應(yīng)可能是LL-VNS減少AF誘發(fā)率的機(jī)制之一。
[關(guān)鍵詞] 低強(qiáng)度迷走神經(jīng)刺激;心房顫動;阻塞性睡眠呼吸暫停;炎性因子
[中圖分類號] R766.43 [文獻(xiàn)標(biāo)識碼] A [文章編號] 1673-7210(2018)02(b)-0004-05
[Abstract] Objective To investigate the mechanism of low-level vagus nerve stimulation (LL-VNS) in the treatment of atrial fibrillation (AF) induced by obstructive sleep apnea (OSA) in dogs. Methods Eighteen adult male healthy beagle dogs were randomly divided into three groups:control group (n = 6),OSA group (n = 6) and OSA + LL-VNS group (n = 6). All animals were intubated under general anesthesia. Both the OSA group and the LL-VNS group performed the same OSA process,which was suffocated for 2 min, ventilated for 8 min, and 10 min was a cycle lasting 6 h. The OSA + LL-VNS group was given LL-VNS from the third hour to the end of the experiment and the control group was not suffocated. The changes of blood gas indexes at 0, 1, 3 h, and 6 h, and inflammatory markers including tumor necrosis factor-α (TNF-α), interleukin-2 (IL-2) and interleukin-6 (IL-6) at 0, 3 h and 6 h after modeling were detected. The canine arterial blood pressure was recorded throughout the whole experiment. At the end of the experiment, the atrial muscle tissue was taken for hematoxylin-eosin (HE) staining. Results OSA model was successfully established (P < 0.05). The systolic blood pressure of OSA group and OSA + LL-VNS group had significantly changed before and after OSA (P < 0.05), but there was no significant difference between the two groups (P > 0.05). Inflammation indicators-TNF-α, IL-2 at 6 hours in OSA group were significantly higher than the control group, but in OSA + LL-VNS group, it was significantly lower than the control group, the differences were statistically significant (P < 0.05). IL-6 showed no significant change in each time period (P > 0.05). In OSA group the atrial relative refractory period (ERP) was gradually shortened, and AF duration was gradually prolonged (P < 0.05). In OSA + LL-VNS group, from 0 h to 3 h the atrial ERP was gradually shortened and the duration of AF was gradually prolonged (P < 0.05); from 3 h to 6 h after given LL-VNS, the atrial ERP was gradually extended and AF duration reduced compared with 0 h to 3 h (P < 0.05). Compared with the control group, the HE slices of the atrial muscle in the OSA group showed that the atrial myocytes were disordered and the cell gap widened and After LL-VNS intervention, the above changes were reversed to some extent. Conclusion Inflammatory factors are positively correlated with the genesis and development of AF, and LL-VNS can reduce the incidence of AF. Therefore, reducing the body's inflammatory response may be one of the mechanisms by which LL-VNS reduces AF inducibility.
[Key words] Low-level vagus nerve stimulation; Atrial fibrillation; Obstructive sleep apnea; Inflammatory factors
心房顫動(atrial fibrillation,AF)是最常見的心律失常之一,有很高的發(fā)病率和致殘率[1]。近期研究顯示AF患者中阻塞性睡眠呼吸暫停(obstructive sleep apnea,OSA)的發(fā)病率約占AF患者的1/3,這表明OSA可能參與了AF的發(fā)生和維持[2-3]。在臨床研究中,低強(qiáng)度迷走神經(jīng)刺激(low-level vagus nerve stimulation,LL-VNS)不僅能夠抑制AF的發(fā)生,還可以抑制炎性反應(yīng)[4]。但對于因OSA誘發(fā)的AF,LL-VNS的作用機(jī)制并不清楚,本研究主要探討LL-VNS對OSA誘發(fā)AF的影響。
1 對象與方法
1.1 對象
18條成年健康雄性比格犬,體重18~22 kg,隨機(jī)分為對照組(n=6)、OSA組(n=6)和OSA+LL-VNS組(n=6),所有實驗動物均購于江蘇亞東實驗動物有限公司,動物合格證編號:201717718。該實驗已通過新疆醫(yī)科大學(xué)第一附屬醫(yī)院(以下簡稱“我院”)動物倫理委員會審批,審批號:IACUC-20170706-09。實驗在取得國際實驗動物評估和認(rèn)可委員會(Association for Assessment and Accreditation of Laboratory Animal Care,AAALAC)認(rèn)證的我院實驗動物科學(xué)研究部顯微手術(shù)室進(jìn)行。
1.2 實驗方法
1.2.1 OSA模型的構(gòu)建 所有實驗動物初始麻醉采用舒泰50(維克制藥公司,法國)與速眠新Ⅱ注射液的混合液(吉林省敦化市圣達(dá)動物藥品有限公司)(0.05 mL/kg,1︰1),分別給予7.5號氣管插管。后期每隔1 h給予3%的戊巴比妥鈉(西格瑪公司,美國)溶液1 mL補(bǔ)充麻醉。同時監(jiān)測標(biāo)準(zhǔn)體表六導(dǎo)聯(lián)心電圖。在呼氣末夾閉氣管插管人為模擬OSA過程2 min,然后松開氣管插管自由呼吸8 min,10 min為1個循環(huán),整個實驗過程持續(xù)6 h[5]。
1.2.2 電生理檢測 經(jīng)右側(cè)頸靜脈插入10極電極至高位右心房以測量心房有效不應(yīng)期(effective refractory period,ERP)。分離出OSA組和OSA+LL-VNS組犬左側(cè)頸部迷走神經(jīng),其中OSA組不做處理,OSA+LLVS組從第3小時起給予LL-VNS至實驗結(jié)束。刺激儀選用Grass88(20 Hz,脈寬0.1 ms,刺激5 s,間歇5 s)(四川錦江電子科技有限公司),刺激電壓恰能引起竇性心率或房室傳導(dǎo)減慢時電壓的20%為刺激電壓,持續(xù)3 h。每次進(jìn)行模擬OSA過程中都進(jìn)行心房ERP以及AF誘發(fā)率、AF持續(xù)時間的測量。各項電生理指標(biāo)使用LEAD-7000系列多道生理記錄儀(四川錦江電子科技有限公司)進(jìn)行記錄。程序刺激包括8個連續(xù)刺激(S1S1=330 ms)后跟隨一個早搏刺,S1S2間期從180 ms逐漸遞減,每次遞減幅度為10 ms。AF的定義為心律絕對不齊持續(xù)時間≥5 s[6]。
1.2.3 血?dú)夥治觥⒀装Y指標(biāo)檢測以及HE染色 使用LEAD-7000系列多道生理記錄儀(四川錦江電子科技有限公司)自帶血壓監(jiān)測裝置監(jiān)測左側(cè)股動脈血壓。抽取建模0、1、3、6 h股動脈血,使用型號為i-STAT1(300型)手掌血?dú)夥治鰞x(雅培公司,美國)用于血?dú)夥治?。使用(Enzyme linked immunosorbent assay,ELISA)試劑盒(北京綠源伯德生物科技有限公司)分別檢測建模0、3、6 h的炎癥指標(biāo)IL-6(貨號:CSB-E11260c)、IL-2(貨號:CSB-E11258c)和TNF-α(貨號:CSB-E11737c)的變化。血?dú)夥治雠cELISA的實驗流程圖如圖1所示。實驗結(jié)束后取心房肌組織用于做HE染色,觀察心房肌的結(jié)構(gòu)變化。
1.3 統(tǒng)計學(xué)方法
采用SPSS 17.0統(tǒng)計學(xué)軟件進(jìn)行數(shù)據(jù)分析,計量資料用均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,兩組間比較采用t檢驗,多組間比較采用單因素方差分析,重復(fù)測量資料,采用重復(fù)測量的方差分析,組間兩兩比較采用LSD檢驗;計數(shù)資料用率表示,組間比較采用χ2檢驗,以P < 0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2.1 OSA模型制作結(jié)果
血?dú)夥治鼋Y(jié)果顯示,在各個時間段模擬OSA后PH值和PO2是顯著降低的(P < 0.05),PCO2是顯著升高的(P < 0.05),提示成功建立了犬急性O(shè)SA模型。見表1。
2.2 OSA前后OSA組與OSA+LL-VNS組血壓變化情況
OSA組和OSA+LL-VNS組憋氣前后血壓變化差異有統(tǒng)計學(xué)意義(P < 0.05),但OSA組與OSA+LL-VNS組兩組之間血壓變化差異無統(tǒng)計學(xué)意義(P > 0.05)。提示LL-VNS對血壓的影響不大。見圖2。
2.3 LL-VNS對AF持續(xù)時間和心房ERP的影響
在整個實驗過程中,OSA組的AF持續(xù)時間是逐漸延長的,心房ERP是逐漸縮短的,差異均有統(tǒng)計學(xué)意義(P < 0.05)。在OSA+LL-VNS組中,給予LL-VNS之前AF持續(xù)時間是逐漸延長的,心房ERP是逐漸縮短的。從第3 h給予LL-VNS以后,AF持續(xù)時間又開始逐漸縮短,心房ERP也在逐漸延長,差異均有統(tǒng)計學(xué)意義(P < 0.05)。見圖3。
2.4 LL-VNS對炎癥指標(biāo)的影響
TNF-α和IL-2兩個指標(biāo)在OSA組建模6 h時是顯著升高的,而在OSA+LLVS組建模6 h時與OSA組比較是顯著降低的,差異均有統(tǒng)計學(xué)意義(P < 0.05),但在建模0 h和3 h差異無統(tǒng)計學(xué)意義(P > 0.05)。IL-6在建模3個時間段均未表現(xiàn)出明顯差異(P > 0.05)。見圖4。
2.5 HE染色的變化
對照組心房肌細(xì)胞排列緊密,無細(xì)胞裂隙。OSA組心房肌細(xì)胞排列紊亂,細(xì)胞間隙增寬。OSA+LL-VNS組經(jīng)LL-VNS干預(yù)以后又逐漸恢復(fù)了最初的有序狀態(tài)。見圖5。
3 討論
大量證據(jù)表明,LL-VNS對多種因素誘發(fā)的AF具有很好的抑制作用[7-8]。其抗心律失常作用的主要表現(xiàn)是延長心房ERP[9],縮短AF持續(xù)時間以及降低AF的誘發(fā)率。動物研究表明,LL-VNS能夠逆轉(zhuǎn)因快速心房起搏誘發(fā)的AF[8]。LL-VNS不僅逆轉(zhuǎn)電重構(gòu),而且逆轉(zhuǎn)神經(jīng)重構(gòu)[10]。自主神經(jīng)在AF的發(fā)生和發(fā)展過程起到十分關(guān)鍵的作用。動物研究發(fā)現(xiàn)OSA能夠誘發(fā)AF,而給予右肺靜脈消融和自主神經(jīng)阻斷可以抑制AF的誘發(fā)。Li等[11]發(fā)現(xiàn)LL-VNS不僅能夠通過抑制內(nèi)源性心臟自主神經(jīng)系統(tǒng)(cardiac autonomic nervous system,CANS)神經(jīng)節(jié)叢(ganglion plexus,GP)和星狀神經(jīng)節(jié)[9]以及交感副交感神經(jīng)的活性抑制AF觸發(fā)[12-13],還可以通過調(diào)節(jié)外源性自主神經(jīng)系統(tǒng)腦和脊髓與內(nèi)源性自主神經(jīng)系統(tǒng)的相互作用來抑制房性心律失常的發(fā)生[14]。在本研究中,OSA縮短了心房ERP,增加了AF的誘發(fā)率并且延長了AF的持續(xù)時間。給予LL-VNS干預(yù)以后心房ERP又開始逐漸延長,AF的誘發(fā)率和持續(xù)時間是明顯降低的(P < 0.05)。
本研究發(fā)現(xiàn)LL-VNS 能夠抑制因OSA誘發(fā)的炎性反應(yīng),另外有諸多證據(jù)支持本研究的結(jié)果[15-16]。在臨床研究中,Stavrakis等[4]發(fā)現(xiàn)低強(qiáng)度耳屏迷走神經(jīng)刺激具有抗炎作用。對排除了其他心血管危險因素的人群進(jìn)行隨訪發(fā)現(xiàn)血液中C-反應(yīng)蛋白的水平能夠預(yù)測AF的發(fā)生和發(fā)展,并且C-反應(yīng)蛋白的升高水平與AF的發(fā)生呈正相關(guān)[17]。在AF患者中的TNF-α水平也比普通人群高并且與心血管事件的發(fā)生率也呈正相關(guān),能夠用于預(yù)測心血管事件的復(fù)發(fā)[18]。在動物實驗中,研究發(fā)現(xiàn)LL-VNS 既能夠減弱犬心衰模型的炎性反應(yīng)也能夠抑制內(nèi)毒素血癥小鼠炎性因子的產(chǎn)生[19]。LL-VNS主要是通過干預(yù)中樞神經(jīng)系統(tǒng)對機(jī)體炎性反應(yīng)起調(diào)節(jié)作用的[19]。在本實驗中,我們發(fā)現(xiàn)OSA組TNF-α和IL-2在建模6 h是明顯升高,在OSA+LL-VNS組經(jīng)LL-VNS干預(yù)以后炎性因子水平是明顯降低的(P < 0.05)。IL-6在整個實驗過程未表現(xiàn)出明顯差異(P > 0.05),由于實驗時間僅有6 h,需延長實驗時間做進(jìn)一步探索,本次研究結(jié)果與既往研究基本保持一致。另外,LL-VNS還可以通過其他的途徑來降低AF的誘發(fā)率。Chen等[20]發(fā)現(xiàn)LL-VNS可以通過保護(hù)心房縫隙連接蛋白起到降低AF的誘發(fā)率的作用。
綜上所述,炎性因子與AF的發(fā)生和發(fā)展存一定的相關(guān)性,同時LL-VNS能夠降低OSA對AF的誘發(fā)率。因此,本研究得出降低機(jī)體炎性反應(yīng)可能是LL-VNS減少AF誘發(fā)率的機(jī)制之一。
[參考文獻(xiàn)]
[1] Delgado V,Di BL,Leung M,et al. Structure and Function of the Left Atrium and Left Atrial Appendage [J]. J Am Coll Cardiol,2017,70(25):3157-3172.
[2] Sun L,Yan S,Wang X,et al. Metoprolol prevents chronic obstructive sleep apnea-induced atrial fibrillation by inhibiting structural,sympathetic nervous and metabolic remodeling of the atria [J]. Sci Rep,2017,7(1):14 941.
[3] Anter E,Di BL,Contreras-valdes FM,et al. Atrial Substrate and Triggers of Paroxysmal Atrial Fibrillation in Patients With Obstructive Sleep Apnea [J]. Circ Arrhythm Electrophysiol,2017,10(11):e005407.
[4] Stavrakis S,Humphrey M,Scherlag B,et al. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation [J]. J Am Coll Cardiol,2015,65(9):867-875.
[5] Zhao J,Xu W,Yun F,et al. Chronic obstructive sleep apnea causes atrial remodeling in canines:mechanisms and implications [J]. Basic Res Cardiol,2014,109(5):427.
[6] Yu L,Li X,Huang B,et al. Atrial Fibrillation in Acute Obstructive Sleep Apnea:Autonomic Nervous Mechanism and Modulation [J]. J Am Heart Assoc,2017,6(9):e006264.
[7] Linz D. Electrical baroreflex stimulation to treat atrial fibrillation:More complex than expected [J]. Heart Rhythm,2016,13(11):2213-2214.
[8] Yu L,Scherlag B,Li S,et al. Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve:a noninvasive approach to treat the initial phase of atrial fibrillation [J]. Heart Rhythm,2013,10(3):428-435.
[9] Yu L,Scherlag B,Li S,et al. Low-level vagosympathetic nerve stimulation inhibits atrial fibrillation inducibility:direct evidence by neural recordings from intrinsic cardiac ganglia [J]. J Cardiovasc Electrophysiol,2011,22(4):455-463.
[10] Yu L,Scherlag B,Sha Y,et al. Interactions between atrial electrical remodeling and autonomic remodeling:how to break the vicious cycle [J]. Heart Rhythm,2012,9(5):804-809.
[11] Li S,Scherlag BJ,Yu L,et al. Low-Level Vagosympathetic Stimulation:A Paradox and Potential New Modality for the Treatment of Focal Atrial Fibrillation [J]. Circ Arrhythm Electrophysiol,2009,2(6):645-651.
[12] Sha Y,Scherlag BJ,Yu L,et al. Low-Level Right Vagal Stimulation:Anticholinergic and Antiadrenergic Effects [J]. J Cardiovasc Electrophysiol,2011,22(10):1147-1153.
[13] Yu L,Scherlag BJ,Li S,et al. Low-Level Vagosympathetic Nerve Stimulation Inhibits Atrial Fibrillation Inducibility:Direct Evidence by Neural Recordings from Intrinsic Cardiac Ganglia [J]. J Cardiovasc Electrophysiol,2011, 22(4):455-463.
[14] Yu L,Scherlag BJ,Li S,et al. Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve:A noninvasive approach to treat the initial phase of atrial fibrillation [J]. Heart Rhythm,2013,10(3):428-435.
[15] Friedrichs K,Klinke A,Baldus S. Inflammatory pathways underlying atrial fibrillation [J]. Trends Mol Med,2011, 17(10):556-563.
[16] Lim H,Willoughby S,Schultz C,et al. Effect of atrial fibrillation on atrial thrombogenesis in humans:impact of rate and rhythm [J]. J Am Coll Cardiol,2013,61(8):852-860.
[17] Chang SN,Tsai CT,Wu CK,et al. A functional variant in the promoter region regulates the C-reactive protein gene and is a potential candidate for increased risk of atrial fibrillation [J]. J Intern Med,2017,282(5):465.
[18] Zuo S,Li L,Ruan Y,et al. Acute administration of tumour necrosis factor-α induces spontaneous calcium release via the reactive oxygen species pathway in atrial myocytes [J]. Europace,2017. doi:10.1093/europace/eux271.
[19] Huston J,Gallowitsch-puerta M,Ochani M,et al. Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis [J]. Crit Care Med,2007,35(12):2762-2768.
[20] Chen M,Zhou X,Liu Q,et al. Left-sided Noninvasive Vagus Nerve Stimulation Suppresses Atrial Fibrillation by Upregulating Atrial Gap Junctions in Canines [J]. J Cardiovasc Pharmacol,2015,66(6):593-599.