劉森 王丹 蔡國(guó)才 王沛堅(jiān)
[摘要] 心血管代謝性疾病患病率及死亡率持續(xù)攀升,嚴(yán)重威脅人類健康。過(guò)氧化物酶體增殖物激活受體β(PPARβ)及其配體具有抗炎、抗氧化應(yīng)激及改善糖、脂代謝的作用,即展現(xiàn)出心血管保護(hù)及代謝調(diào)節(jié)的作用。本文就PPARβ及其配體在降低血壓、抗動(dòng)脈粥樣硬化、改善內(nèi)皮功能、逆轉(zhuǎn)心肌細(xì)胞肥大、改善胰島素敏感性以及預(yù)防肥胖等方面進(jìn)行綜述,為同行進(jìn)一步挖掘PPARβ對(duì)心血管代謝性疾病的防治價(jià)值提供參考。
[關(guān)鍵詞] 過(guò)氧化物酶體增殖物激活受體β;心血管代謝疾病;炎癥;氧化應(yīng)激
[中圖分類號(hào)] R541 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-7210(2018)02(b)-0032-05
[Abstract] The prevalence and mortality rate of cardiometabolic diseases continue to rise, which seriously threaten humans health. Peroxisome proliferator activated receptor β (PPARβ) and its ligands has the role of anti-inflammatory, anti-oxidative stress and improving the metabolism of glucose and lipid, that is to show the role of protecting cardiovascular and adjusting metabolism. In this paper, PPARβ and its ligands were reviewed in the aspects of lowering blood pressure, anti-atherosclerosis, improving endothelial function, reversing cardiomyocyte hypertrophy, improving insulin sensitivity and preventing obesity, to provide a reference for colleagues to further dig the prevention and treatment value of PPARβ on cardiovascular disease.
[Key words] Peroxisome proliferator activated receptorβ; Cardiometabolic diseases; Inflammation; Oxidative stress
心血管疾病仍是人類死亡的主要原因。每年有1750萬(wàn)人死于心血管疾病,約占全球死亡人數(shù)的31%[1]。我國(guó)心血管病死亡率居于首位,高于腫瘤和其他疾病,占居民疾病死亡構(gòu)成的40%以上。高血壓(患病率25.2%)、糖尿?。―M)(患病率10.9%)、肥胖(患病率32.3%)等心血管病的危險(xiǎn)因素相互促進(jìn),導(dǎo)致我國(guó)心血管病患病率及死亡率仍處于上升階段,此外相關(guān)的醫(yī)療支出快速增長(zhǎng),已成為重要的公共衛(wèi)生問(wèn)題[2-4]。
炎癥與氧化應(yīng)激被認(rèn)為是心血管代謝病發(fā)生、發(fā)展的共同基礎(chǔ)。過(guò)氧化物酶體增殖物激活受體β(PPARβ)又稱為過(guò)氧化物酶體增殖物激活受體δ(PPARδ),參與了炎癥、氧化應(yīng)激、胰島素抵抗(IR)等過(guò)程[5],激活PPARβ可降低血壓、抗動(dòng)脈粥樣硬化(AS)、改善內(nèi)皮舒張功能、改善胰島素敏感性、預(yù)防肥胖以及逆轉(zhuǎn)心肌細(xì)胞肥大,關(guān)于PPARβ及其配體的研究已經(jīng)成為近年的熱點(diǎn)[6-7]。本文就PPARβ及其配體的相關(guān)研究進(jìn)行綜述,為同行提供參考。
1 PPARβ的功能
PPARs是一類配體活化的核轉(zhuǎn)錄因子,分為α、β和γ3個(gè)亞型。PPARβ分布廣泛,在心臟、血管、脂肪等組織中均有表達(dá)。有研究表明[8]PPARβ在結(jié)腸癌、乳腺癌和肺癌中均有保護(hù)作用。PPARβ可作為生理和免疫過(guò)程中的關(guān)鍵調(diào)節(jié)器,皮膚損傷后的修復(fù)工具[9]。局部應(yīng)用PPARβ配體可防治化學(xué)誘導(dǎo)的皮膚癌[10]。此外,PPARβ可在脊髓損傷后發(fā)揮抗炎和神經(jīng)保護(hù)作用[11]。近年發(fā)現(xiàn),PPARβ血管特異性過(guò)表達(dá)誘導(dǎo)心肌血管快速生成,激活PPARβ可發(fā)揮急性舒張血管的作用[12]。激活PPARβ可治療DM及肥胖等疾病,提示PPARβ具有心血管保護(hù)及代謝調(diào)節(jié)的作用。
2 PPARβ在心血管代謝系統(tǒng)中的作用
2.1 PPARβ在高血壓中的作用
自2011年開(kāi)始,PPARβ在高血壓中的作用逐漸被揭開(kāi)。炎癥和氧化應(yīng)激在與高血壓相關(guān)的血管損傷中起關(guān)鍵作用[13],PPARβ激動(dòng)劑GW0742治療遺傳性自發(fā)型高血壓大鼠表明,激活PPARβ可降低血壓。這可能通過(guò)降低煙酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶介導(dǎo)的超氧陰離子的產(chǎn)生,增加NO的生物活性實(shí)現(xiàn)。這與內(nèi)皮型一氧化氮合酶(eNOS)和蛋白激酶B通路的上調(diào)及微囊蛋白-l表達(dá)下降使細(xì)胞外信號(hào)調(diào)節(jié)激酶1/2(ERK1/2)活性下降,與G-蛋白信號(hào)轉(zhuǎn)導(dǎo)調(diào)節(jié)子4/5(RGS4/5)表達(dá)上調(diào)有關(guān)。在鹽皮質(zhì)激素誘導(dǎo)的高血壓模型中再次證實(shí)激活PPARβ可拮抗高血壓,但需20 mg/kg,其機(jī)制為激活PPARβ上調(diào)RGS5表達(dá),降低NADPH氧化酶介導(dǎo)的超氧陰離子的生成,增加抗氧化酶活性,進(jìn)而增加NO水平,發(fā)揮舒張血管作用而降低血壓[14]。GW0742在血管緊張素Ⅱ(Ang-Ⅱ)誘導(dǎo)的小鼠血壓升高模型中也具有抗高血壓效應(yīng),并且是第1次提出PPARβ活化可降低交感神經(jīng)活性,同時(shí)激活大腦和血管中PPARβ,可上調(diào)RGS5表達(dá),從而抑制Ang-Ⅱ介導(dǎo)的相關(guān)信號(hào)激活,降低血壓[15]。Toral等[12]綜述了PPARβ激動(dòng)劑抗高血壓的作用和分子機(jī)制,通過(guò)上調(diào)RGS5,拮抗炎癥與氧化應(yīng)激,舒張血管,改善內(nèi)皮功能,降低交感神經(jīng)興奮和血管收縮反應(yīng)。
2.2 PPARβ在AS形成中的作用
炎癥被認(rèn)為是AS發(fā)生的機(jī)制之一,PPARβ調(diào)節(jié)肥大細(xì)胞、內(nèi)皮細(xì)胞、巨噬細(xì)胞、T細(xì)胞、B細(xì)胞等多種細(xì)胞表型,發(fā)揮抗炎作用[16]。細(xì)胞泡沫化是AS形成的起始環(huán)節(jié),以LPS和ox-LDL刺激RAW264.7細(xì)胞建立細(xì)胞泡沫化模型,并分別用PPARβ激動(dòng)劑和抑制劑干預(yù),進(jìn)而檢測(cè)AS相關(guān)炎癥因子的表達(dá),發(fā)現(xiàn)激活PPARβ可抑制泡沫細(xì)胞形成而抗AS[17]。但也有研究表明PPARβ激動(dòng)劑可能與AS并無(wú)明顯相關(guān)性。曾有研究指出PPARα和PPARγ激動(dòng)劑抑制腹腔巨噬細(xì)胞泡沫細(xì)胞的形成,將可能成為抗AS的藥理學(xué)機(jī)制[18]。
2.3 PPARβ對(duì)血管功能的調(diào)節(jié)
早期研究表明[19],PPARβ激動(dòng)劑介導(dǎo)血管舒張部分依賴于NO,與激活PI3K-Akt-eNOS通路有關(guān)。以GW0742孵育人臍靜脈內(nèi)皮細(xì)胞發(fā)現(xiàn),其可防止高糖誘導(dǎo)的NO減少,保護(hù)高糖損傷的胰島素Akt-eNOS通路[20]。也有研究表明,PPARβ激活降低NADPH氧化酶活性氧和內(nèi)皮素生成,從而增加NO的生物利用度,修復(fù)1型DM大鼠血管內(nèi)皮功能[21]。及后多個(gè)研究結(jié)果都提示激活PPARβ可改善內(nèi)皮功能,但信號(hào)通路卻有不同。Toral等[22]報(bào)道激活PPARβ可恢復(fù)脂質(zhì)誘導(dǎo)的內(nèi)皮功能障礙,主要通過(guò)上調(diào)肉堿脂酰轉(zhuǎn)移酶-1,降低蛋白激酶C介導(dǎo)的活性氧產(chǎn)生,促進(jìn)eNOS磷酸化實(shí)現(xiàn)。PPARβ活化通過(guò)解偶聯(lián)蛋白2改善LPS誘導(dǎo)的內(nèi)皮舒張功能障礙。激活PPARβ還通過(guò)誘導(dǎo)丙酮酸脫氫酶激酶4表達(dá),減輕血管氧化應(yīng)激和保護(hù)電壓門(mén)控KV7鉀離子通道功能,從而舒張高糖作用下的冠狀動(dòng)脈[23]。以GW0742治療狼瘡小鼠的實(shí)驗(yàn)中發(fā)現(xiàn),PPARβ可降低血漿抗雙鏈DNA抗體,發(fā)揮靶組織抗炎和抗氧化作用,可以作為系統(tǒng)性紅斑狼瘡及相關(guān)血管損傷治療的靶點(diǎn)[24]。此外,PPARβ激動(dòng)劑還可通過(guò)抑制血管平滑肌細(xì)胞增殖和促進(jìn)血管再內(nèi)皮化,進(jìn)而實(shí)現(xiàn)改善血管功能的作用[25]。
2.4 PPARβ與心臟重構(gòu)
Eleftheria等[26]研究發(fā)現(xiàn),PPARβ激動(dòng)劑GW0742可通過(guò)降低氧化應(yīng)激水平,抑制基質(zhì)金屬蛋白酶(MMPs)的表達(dá),減輕心肌細(xì)胞損傷,從而改善心肌重構(gòu)。PPARβ信號(hào)和MMPs抑制之間的關(guān)聯(lián)可能是研究氧化應(yīng)激引起心功能不全的一個(gè)新方向。Chang等[27]在一項(xiàng)接受替米沙坦治療的DM患者的前瞻性隊(duì)列研究和鏈脲佐菌素誘導(dǎo)1型DM大鼠動(dòng)物模型中證實(shí),替米沙坦能激活內(nèi)源性PPARβ,通過(guò)上調(diào)轉(zhuǎn)錄活化因子3(STAT3)的表達(dá),對(duì)抗結(jié)締組織生長(zhǎng)因子/MMP9在高血糖環(huán)境誘導(dǎo)的心肌纖維化。上述研究發(fā)現(xiàn)闡明了替米沙坦對(duì)左心室結(jié)構(gòu)和功能恢復(fù)的有益作用。在主動(dòng)脈弓縮窄手術(shù)誘導(dǎo)的壓力超負(fù)荷小鼠模型中,黃芩苷可使PPARβ表達(dá)上調(diào),抑制心肌細(xì)胞凋亡,心肌纖維化及心肌肥厚,從而減輕壓力負(fù)荷引起的心功能不全和心室重構(gòu)[28]。
2.5 PPARβ在DM中的作用
Daoudi等[29]在人源細(xì)胞和小鼠的實(shí)驗(yàn)中發(fā)現(xiàn),PPARβ活化增加胰高血糖素樣肽-1(GLP-1)表達(dá)。PPARβ激動(dòng)劑,尤其是與二肽基肽酶IV抑制劑組合時(shí)為2型DM患者提供了一個(gè)新的治療方法。也有研究報(bào)道PPARβ激活通過(guò)上調(diào)GLP-1受體表達(dá),保護(hù)棕櫚酸誘導(dǎo)的胰島β細(xì)胞凋亡[30]。PPARβ在脂肪細(xì)胞、胰島β細(xì)胞、骨骼肌細(xì)胞和肝細(xì)胞等均有表達(dá),可影響小鼠胰島細(xì)胞的數(shù)量和胰島素的分泌,展現(xiàn)了其預(yù)防IR和2型DM的潛力[31]。IR往往先于2型DM出現(xiàn)[32],研究結(jié)果表明,PPARβ激活可通過(guò)抑制ERK1/2和阻止信號(hào)轉(zhuǎn)導(dǎo)和STAT3-熱休克蛋白90結(jié)合,防止IL-6誘導(dǎo)的STAT3的活化,這可能有助于防止細(xì)胞因子誘導(dǎo)的脂肪細(xì)胞IR。在骨骼肌細(xì)胞中,PPARβ可通過(guò)激活A(yù)MPK阻止內(nèi)質(zhì)網(wǎng)應(yīng)激,炎性反應(yīng)和IR。肉桂醛可通過(guò)PPARγ輔激活因子-1α和PPARβ促進(jìn)葡萄糖轉(zhuǎn)運(yùn)子4的表達(dá),從而刺激線粒體生物合成,使患者在IR引起的2型DM等代謝性疾病的治療中獲益[33-34]。
2.6 PPARβ對(duì)肥胖的影響
研究顯示PPARβ在白色脂肪組織中有表達(dá),替米沙坦等相關(guān)激動(dòng)劑被用來(lái)治療肥胖。有學(xué)者發(fā)現(xiàn)高脂飲食組小鼠的白色、棕色脂肪組織中PPARα、β和γ表達(dá)下降,從而導(dǎo)致葡萄糖攝取受損,產(chǎn)熱不足[35]。替米沙坦可通過(guò)提高PPARs基因及蛋白在脂肪組織中的表達(dá),治療飲食誘導(dǎo)的肥胖小鼠,同時(shí)具有改善炎癥,IR的效應(yīng)。Ming等[36]構(gòu)建了鋅指并列基因1(JAZF1)過(guò)表達(dá)載體和合成了JAZF1小干擾RNA(JAZF1 siRNA),然后轉(zhuǎn)染脂肪酸誘導(dǎo)的脂肪細(xì)胞。結(jié)果表明,JAZF1可通過(guò)上調(diào)PPARβ表達(dá),進(jìn)而激活內(nèi)脂素轉(zhuǎn)錄,可改善脂代謝紊亂、治療肥胖。Derosa等[37]也提出PPARβ的過(guò)度表達(dá)可防止肥胖和降低心肌細(xì)胞的脂質(zhì)儲(chǔ)備,即使對(duì)于高脂飲食的病人,也同樣有效。
3 小結(jié)與展望
PPARβ在體內(nèi)組織中廣泛表達(dá),在炎性反應(yīng)、氧化應(yīng)激、IR中發(fā)揮重要作用,展現(xiàn)出心血管保護(hù)和代謝調(diào)節(jié)的作用。激活大腦和血管中PPARβ,可調(diào)節(jié)體內(nèi)的炎性反應(yīng),抑制相關(guān)炎癥因子的表達(dá),從而降低血壓。PPARβ可抑制炎性反應(yīng)及單核細(xì)胞、平滑肌細(xì)胞等泡沫化,發(fā)揮抗AS的作用。血管內(nèi)皮細(xì)胞PPARβ活化,可拮抗氧化應(yīng)激,從而改善血管內(nèi)皮功能。在心肌細(xì)胞中,PPARβ可通過(guò)抑制炎癥因子表達(dá),防止心肌細(xì)胞的損傷及凋亡,改善心臟重構(gòu)。在脂肪細(xì)胞、胰島β細(xì)胞、骨骼肌細(xì)胞和肝細(xì)胞中PPARβ防止線粒體氧化應(yīng)激損傷,改善IR,從而預(yù)防DM。在白色脂肪組織中PPARβ可改善炎癥,IR,預(yù)防肥胖。目前研究表明,PPARβ在心血管多種代謝性疾病中均發(fā)揮積極作用,但是關(guān)于其在細(xì)胞泡沫化、AS中的表達(dá)和作用尚存在不同的見(jiàn)解,仍需要進(jìn)一步研究證實(shí)。但總的來(lái)說(shuō),目前的研究結(jié)論充分肯定了PPARβ在機(jī)體心血管代謝系統(tǒng)中的積極意義,可能為心血管代謝病的一個(gè)重要靶點(diǎn)。
[參考文獻(xiàn)]
[1] WHO. On World Heart Day WHO calls for accelerated action to prevent the worlds leading global killer [EB/OL].(2017-09-22)[2017-11-14]. http://www.who.int/cardiovascular_diseases/en/.
[2] 陳偉偉,高潤(rùn)霖,劉力生,等.《中國(guó)心血管病報(bào)告2016》概要[J].中國(guó)循環(huán)雜志,2017,32(6):521-530.
[3] Wang L,Gao P,Zhang M,et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013 [J]. JAMA,2017,317(24):2515-2523.
[4] 何宇納,趙文華,趙麗云,等.中國(guó)2010-2012年成年人代謝綜合征流行特征[J].中華流行病學(xué)雜志,2017,38(2):212-215.
[5] Gourdin M,Keum YY,Pham XY. Chronic peroxisome proliferator-activated receptorβ/δagonist GW0742 prevents hypertension, vascular inflammatory and oxidative status, and endothelial dysfunction in diet-induced obesity [J]. J Hypertens,2015,33(9):1831-1844.
[6] Maccallini C,Mollica A,Amoroso R. The positive regulation of eNOS signaling by PPAR agonists in cardiovascular diseases [J]. Am J Cardiovasc Drugs,2017,17(4):273-281.
[7] Cheang WS,Tian X,Wong W,et al. The peroxisome proliferator-activated receptors in cardiovascular diseases:experimental benefits and clinical challenges [J]. Br J Pharmacol,2015,172(23):5512-5522.
[8] Peters JM,F(xiàn)oreman JE,Gonzalez FJ. Dissecting the role of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in colon, breast, and lung carcinogenesis [J]. Cancer Metastasis Rev,2011,30(3-4):619-640.
[9] Michalik L,Wahli W. Peroxisome proliferator-activated receptors(PPARs)in skin health,repair and disease [J]. Biochim Biophys Acta,2007,1771(8):991-998.
[10] Bility MT,Devlindurante MK,Blazanin N,et al. Ligand activation of peroxisome proliferator-activated receptor β/δ(PPARβ/δ) inhibits chemically induced skin tumorigenesis [J]. Carcinogenesis,2008,29(12):2406-2414.
[11] Paterniti I,Impellizzeri D,Crupi R,et al. Molecular evidence for the involvement of PPAR-δ and PPAR-γ in anti-inflammatory and neuroprotective activities of palmitoylethanolamide after spinal cord trauma [J]. J Neuroinflammation,2013,10(1):787.
[12] Toral M,Romero M,Perez-vizcaino F,et al. Antihypertensive effects of peroxisome proliferator-activated receptor-beta/delta activation [J]. Am J Physiol Heart Circ Physiol,2017,312(2):189-200.
[13] Zarzuelo MJ,Jiménez R,Galindo P,et al. Antihypertensive effects of peroxisome proliferator-activated receptor-beta activation in spontaneously hypertensive rats [J]. Hypertension,2011,58(4):733-743.
[14] Zarzuelo MJ,Gómezguzmán M,Jiménez R,et al. Effects of peroxisome proliferator-activated receptor-beta activation in endothelin-dependent hypertension [J]. Cardiovasc Res,2013,99(4):622-631.
[15] Romero M,Jimenez R,Toral M,et al. Vascular and Central activation of peroxisome proliferator-activated receptor-beta attenuates angiotensin II-Induced hypertension:Role of RGS-5 [J]. J Pharmacol Exp Ther,2016, 358(1):151-163.
[16] Yao PL,Morales JL,Gonzalez FJ,et al. Peroxisome proliferator-activated receptor-beta/delta modulates mast cell phenotype [J]. Immunology,2017,150(4):456-467.
[17] 秦春煥,李紅莉.PPARβ及其配體在RAW264.7泡沫細(xì)胞模型中的作用[J].中國(guó)分子心臟病學(xué)雜志,2014,14(6):1139-1143.
[18] Li AC,Binder CJ,Gutierrez A,et al. Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARalpha,beta/delta,and gamma [J]. J Clin Invest,2004,114(11):1564-1576.
[19] Jiménez R,Sánchez M,Zarzuelo MJ,et al. Endothelium-dependent vasodilator effects of peroxisome proliferator-activated receptor beta agonists via the phosphatidyl-inositol-3 kinase-Akt pathway [J]. J Pharmacol Exp Ther,2010,332(2):554-561.
[20] Quintela A M,Jiménez R,Piqueras L,et al. PPARbeta activation restores the high glucose-induced impairment of insulin signalling in endothelial cells [J]. Br J Pharmacol,2014,171(12):3089-3102.
[21] Quintela AM,Jiménez R,Gómez-Guzmán M,et al. Activation of peroxisome proliferator-activated receptor-beta/-delta(PPARbeta/delta)prevents endothelial dysfunction in type 1 diabetic rats [J]. Free Radic Biol Med,2012,53(4):730-741.
[22] Toral M,Romero M,Jiménez R,et al. Carnitine palmitoyltransferase-1 up-regulation by PPAR-beta/delta prevents lipid-induced endothelial dysfunction [J]. Clin Sci(Lond),2015,129(9):823-837.
[23] Morales-Cano D,Moreno L,Barreira B,et al. Activation of PPARbeta/delta prevents hyperglycaemia-induced impairment of Kv7 channels and cAMP-mediated relaxation in rat coronary arteries [J]. Clin Sci(Lond),2016, 130(20):1823-1836.
[24] Romero M,Toral M,Robles-Vera I,et al. Activation of peroxisome proliferator activator receptor beta/delta improves endothelial dysfunction and protects kidney in murine lupus [J]. Hypertension,2017,69(4):641-650.
[25] Wawrzyniak M,Pich C,Gross B,et al. Endothelial, but not smooth muscle,peroxisome proliferator-activated receptor beta/delta regulates vascular permeability and anaphylaxis [J]. J Allergy Clin Immunol,2015,135(6):1625-1635.
[26] Eleftheria B,Anikó G,Renáta G,et al. Activation of PPARβ/δ protects cardiac myocytes from oxidative stress-induced apoptosis by suppressing generation of reactive oxygen/nitrogen species and expression of matrix metalloproteinases [J]. Pharmacol Res,2015,95(8):102-110.
[27] Chang WT,Cheng JT,Chen ZC. Telmisartan improves cardiac fibrosis in diabetes through peroxisome proliferator activated receptor delta(PPARdelta):from bedside to bench [J]. Cardiovasc Diabetol,2016,15(1):113.
[28] Zhang Y,Liao P,Zhu M,et al. Baicalin attenuates cardiac dysfunction and myocardial remodeling in a chronic pressure-overload mice model [J]. Cell Physiol Biochem,2017,41(3):849-864.
[29] Daoudi M,Hennuyer N,Borland MG,et al. PPARbeta/delta activation induces enteroendocrine L cell GLP-1 production [J]. Gastroenterology,2011,140(5):1564-1574.
[30] Yang Y,Tong Y,Gong M,et al. Activation of PPARbeta/delta protects pancreatic beta cells from palmitate-induced apoptosis by upregulating the expression of GLP-1 receptor [J]. Cell Signal,2014,26(2):268-278.
[31] Iglesias J,Barg S,Vallois D,et al. PPARbeta/delta affects pancreatic beta cell mass and insulin secretion in mice [J]. J Clin Invest,2012,122(11):4105-4117.
[32] Vázquez-Carrera M. Unraveling the effects of PPARbeta/delta on insulin resistance and cardiovascular disease [J]. Trends Endocrinol Metab,2016,27(5):319-334.
[33] Serrano-Marco L,Rodríguez-Calvo R,El Kochairi I,et al. Activation of peroxisome proliferator-activated receptor-beta/-delta (PPAR-beta/-delta) ameliorates insulin signaling and reduces SOCS3 levels by inhibiting STAT3 in interleukin-6-stimulated adipocytes [J]. Diabetes,2011, 60(7):1990-1999.
[34] Salvadó L,Barroso E,Gómezfoix AM,et al. PPARbeta/delta prevents endoplasmic reticulum stress-associated inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism [J]. Diabetologia,2014,57(10):2126-2135.
[35] Penna-de-Carvalho A,Graus-Nunes F,Rabelo-Andrade J,et al. Enhanced pan-peroxisome proliferator-activated receptor gene and protein expression in adipose tissue of diet-induced obese mice treated with telmisartan [J]. Exp Physiol,2014,99(12):1663-1678.
[36] Ming GF,Li X ,Yin JY,et al. JAZF1 regulates visfatin expression in adipocytes via PPARalpha and PPARbeta/delta signaling [J]. Metabolism,2014,63(8):1012-1021.
[37] Derosa G,Sahebkar A,Maffioli P. The role of various peroxisome proliferator-activated receptors and their ligands in clinical practice [J]. J Cell Physiol,2017,233(1):153-161.