趙高遠,譚雪瑩,王占春
(青島大學(xué)醫(yī)學(xué)院附屬青島市市立醫(yī)院,山東青島 266011)
急性肝衰竭最有效的治療方法為原位肝移植,行緊急肝移植的患者預(yù)期生存率約為75%[2]。但目前因存在肝臟供體嚴(yán)重不足、手術(shù)損傷、免疫排斥反應(yīng)及費用昂貴等諸多問題,使得急性肝衰竭的治療成為了一個國際性的難題[2,3]。肝細胞移植是將分離純化的肝細胞植入患者體內(nèi)暫時性地對遺傳性代謝性肝病和急性肝衰竭等患者提供代謝性支持,與原位肝移植比較,具有價廉、操作簡單、可重復(fù)進行、移植細胞可體外培養(yǎng)增殖及冷凍保存,還可進行基因修飾等優(yōu)點[4],是目前的研究熱點。但肝細胞來源短缺、肝細胞移植后增殖能力差及免疫排斥等問題限制了其臨床應(yīng)用。目前細胞來源的研究主要集中于胚胎干細胞(ESC)與成體干細胞(ASC)上,二者雖各有優(yōu)點,但ESC的應(yīng)用仍有倫理、道德、法律等方面的爭議,向肝細胞系分化的報道局限于鼠體外研究。ASC可分化成為其他組織細胞,亦即具有可塑性。目前成體干細胞移植方面的研究主要是骨髓間充質(zhì)干細胞以及脂肪間充質(zhì)干細胞(ADSCs),脂肪組織中的間充質(zhì)干細胞(MSC)可分化為神經(jīng)元、內(nèi)皮細胞、肌細胞、成骨細胞、成軟骨細胞等[5,6],并可以橫向分化為肝前體細胞和肝細胞[7],其具有取材容易,增殖能力強,體外培養(yǎng)、傳代及擴增容易,可以直接取材于患者本人,能避免移植后免疫排斥反應(yīng)的發(fā)生等特點。用ADSCs替代成熟肝細胞進行移植治療肝病,有望使細胞移植在肝病治療方面取得重大突破。本文就脂肪間充質(zhì)干細胞(ADSCs)移植治療急性肝功能衰竭的機制作一綜述。
大量研究表明急性肝衰竭與肝細胞凋亡的關(guān)系十分密切,肝細胞凋亡是肝衰竭發(fā)病的關(guān)鍵環(huán)節(jié)[8]。ADSCs可以分泌大量抗凋亡因子,如VEGF、Caspase、HGF等因子[9,10]。VEGF作為一種促進血管再生的重要因子,在ADSCs治療急性肝衰竭時表達上升[11,12]。Caspase是一組含半胱氨酸的天冬氨酸蛋白水解酶,是一種存在于細胞質(zhì)中具有類似結(jié)構(gòu)的蛋白酶。Caspase與真核細胞凋亡密切相關(guān),并參與細胞的生長、分化與凋亡調(diào)節(jié),急性肝衰竭時其表達上升,鄧?yán)甑萚13]研究發(fā)現(xiàn),應(yīng)用Caspase抑制劑后急性肝衰竭小鼠肝細胞凋亡率明顯下降。HGF是存在于急性肝損傷動物血漿中的蛋白因子,能刺激肝細胞的DNA合成,在肝再生過程中起重要作用。HGF不同于再生肝和胚胎肝細胞中的肝刺激物質(zhì)(HSS),愈來愈多的報道表明,HGF不僅作用于肝再生,且對許多組織和細胞的生長、分化起重要調(diào)控作用[14]。Nishino等[15]研究發(fā)現(xiàn),HGF基因移植能夠在早期改善行部分肝切除術(shù)的肝纖維化大鼠生存,其機制可能與HGF上調(diào)Bcl-xl的表達從而抑制肝細胞凋亡有關(guān)。許多研究證實ADSCs治療急性肝衰竭小鼠后,較模型組相比治療組肝細胞凋亡率明顯下降[16]。以上研究說明ADSCs可以通過抑制肝細胞凋亡進而治療急性肝衰竭。
急性肝衰竭時細胞大量凋亡伴隨而來的是肝內(nèi)星狀細胞(成纖維細胞)大量增生,肝臟纖維化形成。因此抑制肝臟纖維化可以延緩肝衰竭的進程。如前所述,ADSCs移植治療急性肝衰竭小鼠時,VEGF和HGF分泌增加;而VEGF可通過減少膠原蛋白的沉積減輕肝臟纖維化[17]。Narmada等[18]研究表明,對肝纖維化小鼠靶向輸注HGF基因后其肝纖維化標(biāo)志物α-SMA和膠原蛋白的表達顯著下降,這可能與HGF抑制Ⅰ型膠原合成酶有關(guān)。Jin等[19]報道,經(jīng)CCl4處理后肝硬化小鼠移植轉(zhuǎn)染Bcl-2基因的ADSCs后HLCs、mRNA、ALB及CK18蛋白水平明顯上升,肝纖維化程度及肝功能較模型組改善明顯。肝星狀細胞(HSCs)在肝纖維化形成過程中起關(guān)鍵性作用[20],其活化可以通過自分泌和旁分泌信號通路,其中一條主要通路是PDGF-β通路。PDGF-β通路可以激活其他通路,如Ras/MAPK、PKC、Phosphoinositide 3-kinase-AKT通路,導(dǎo)致HSCs增殖。陳國忠等[21]將間充質(zhì)干細胞與HSCs共培養(yǎng)后研究發(fā)現(xiàn),HSCs的增殖明顯受到抑制。目前對ADSCs治療肝纖維化的基因及通路研究較少,有待進一步完善。
炎性因子浸潤及免疫介導(dǎo)的肝損傷是肝衰竭發(fā)生中的核心環(huán)節(jié)之一。研究表明,免疫因子(如NK細胞、Kupffer細胞、DC細胞等)的活化在肝衰竭的發(fā)病中起到關(guān)鍵作用。ADSCs的免疫原性很低而能顯著的表現(xiàn)出一些免疫調(diào)節(jié)的特點,其免疫原性可以通過成軟骨分化和IFN-γ的處理后得到加強[22]。在急性肝衰竭早期,免疫細胞尤其是Kupffer細胞分泌大量炎性介質(zhì)。而He等[23]通過靜脈注射ADSCs治療急性胰腺炎小鼠,檢測發(fā)現(xiàn)TNF-α、IL-1β、IL-6、IFN-γ等炎性因子表達明顯下降,這表明ADSCs可以通過抑制炎癥因子的分泌起到抗炎的作用。Shen等[24]的研究發(fā)現(xiàn)間充質(zhì)干細胞可以促進M2型巨噬細胞的增殖及VEGF的分泌,抑制炎癥反應(yīng)。以上研究表明ADSCs可以在抗炎及免疫調(diào)節(jié)方面治療急性肝衰竭。
目前國內(nèi)外有大量的實驗證明了ADSCs的多向分化潛能[25~30],其肝樣分化治療肝衰竭的潛能同樣受到了廣泛的關(guān)注。Guan等[28]研究發(fā)現(xiàn)ADSCs具有肝向分化潛能,并發(fā)現(xiàn)這種肝向分化可能與Caveolin-1通過MAPK通路調(diào)節(jié)有關(guān)。肝衰竭的發(fā)生與病毒性肝炎密切相關(guān),Wang等[29]的研究發(fā)現(xiàn)與骨髓間充質(zhì)干細胞相比ADSCs分化為肝細胞的潛能更大。研究發(fā)現(xiàn),從慢性乙肝患者身上分離出的ADSCs在試管內(nèi)培養(yǎng)時不易感染HBV病毒;Lee等[30]從人大腿脂肪組織分離ADSCs,加入細胞因子等誘導(dǎo)其向肝細胞分化,發(fā)現(xiàn)肝細胞標(biāo)志mRNA表達上調(diào),亦檢測到白蛋白表達,本實驗為得到ADSCs提供了新的選擇。目前國內(nèi)外研究骨髓間充質(zhì)干細胞肝樣分化較多,關(guān)于ADSCs分化為肝細胞的機制研究較少,有待進一步完善。
目前對ADSCs移植治療急性肝衰竭的研究很多,但主要集中在細胞體外培養(yǎng)及誘導(dǎo)分化方面,體內(nèi)移植實驗較少,且移植后細胞存活率較低。目前已有研究者通過基因工程的方法對移植前ADSCs進行靶基因轉(zhuǎn)入,以提高移植后細胞的存活率及目的基因的表達[31]。靶基因的轉(zhuǎn)染及移植前預(yù)處理ADSCs已成為新的研究熱點。
[1] Sugawara K, Nakayama N, Mochida S. Acute liver failure in Japan:definition, classification, and prediction of the outcome[J]. Gastroenterol, 2012,47(8):849-861.
[2] Donnelly MC, Hayes PC, Simpson KJ. Role of inflammation and infection in the pathogenesis of human acute liver failure: clinical implications for monitoring and therapy[J]. World J Gastroenterol, 2016,22(26):5958-5970.
[3] 趙欽軍,任紅英,韓忠.間充質(zhì)干細胞的來源及其對肝臟損傷及修復(fù)的研究進展[J].中華細胞與干細胞雜志:電子版,2014,4(4):258-267.
[4] Zheng YW, Ohkohchi N, Taniguchi H. Quantitative evaluation of long-term liver repopulation and the reconstitution of bile ductules after hepatocellular transplantation[J]. World J Gastroenterol, 2005,11(39):6176-6181.
[5] Gu H, Xu J, Huang Z, et al. Identification and differential expression of microRNAs in 1, 25-dihydroxyvitamin D3-induced osteogenic differentiation of human adipose-derived mesenchymal stem cells[J]. Am J Transl Res, 2017,9(11):4856-4871.
[6] Miao C, Lei MM, Hu WN, et al. A brief review:the therapeutic potential of bone marrow mesenchymal stem cells in myocardial infarction [J]. Stem Cell Res Ther, 2017,8(1):242.
[7] Kholodenko IV, Konstantin NY. Cellular mechanisms of liver regeneration and cell-based therapies of liver diseases [J]. Biomed Res Int, 2017(14):8910821.
[8] Monsel A, Zhu YG, Gennai S, et al. Cell-based therapy for acute organ injury: preclinical evidence and on-going clinical trials using mesenchymal stem cells[J]. Anesthesiology, 2014,121(5):1099-1121.
[9] Berardis S, Lombard C, Evraerts J, et al. Gene expression profiling and secretome analysis differentiate adult-derived human liver stem/progenitor cells and human hepatic stellate cells[J]. PLoS One, 2014,9(1):e86137.
[10] 金銀鵬,陳光風(fēng),傅青春,等.人脂肪干細胞治療急性肝功能衰竭大鼠療效的探索[J].中國肝臟,2013,18(8):530-534.
[11] WangYN, Yu XP, Chen EM, et al. Liver-derived human mesenchymal stem cells: a novel therapeutic source for liver diseases[J]. Stem Cell Research & Therapy, 2016,7(1):1-8.
[12] Chen G, Jin Y, Shi X, et al. Adipose-derived stem cell-based treatment for acute liver failure[J]. Stem Cell Research & Therapy, 2015,6(1):40.
[13] 鄧?yán)?,李湛軍,羅楹,等.急性肝衰竭大鼠肝細胞凋亡的影響.中國臨床藥理學(xué)與治療學(xué),2010,15(11):1229-1233.
[14] Kato T. Biological roles of hepatocyte growth factor-Met signaling from genetically modified animals[J]. Biomed Rep, 2017,7(6):495-503.
[15] Nishino M, Iimuro Y, Ueki T, et al. Hepatocyte growth factor improves survival afterpartial hepatectomy in cirrhotic rats suppressing apoptosis of hepatocytes[J]. Surgery, 2008,144(3):374-384.
[16] Jin G, Qiu G, Wu D, et al. Allogeneic bone marrow-derived mesenchymal stem cells attenuate hepatic ischemia-reperfusion injury by suppressing oxidative stress and inhibiting apoptosis in rats[J]. Int J Mol Med, 2013,31(6):1395-1401.
[17] Fang B, Shi M, Liao L, et al. Systemic infusion of FLK1(+) mesenchymal stem cells ameliorate carbon tetrachloride-induced liver fibrosis in mice[J]. Transplantation, 2004,78(1):83-88.
[18] Narmada BC, Kang Y, Venkatraman L, et al. Hepatic stellate cell-targeted delivery of hepatocyte growth factor transgene via bile duct infusion enhances its expression at fibrotic foci to regress dimethylnitrosamine-induced liver fibrosis[J]. Hum Gene Ther, 2013,24(5):508-519.
[19] Jin S, Li H, Han M, et al. Mesenchymal Stem Cells with Enhanced Bcl-2 Expression Promote Liver Recovery in a Rat Model of Hepatic Cirrhosis[J]. Cell Physiol Biochem, 2016,40(5):1117-1128.
[20] Berardis S, Dwisthi Sattwika P, Najimi M, et al. Use of mesenchymal stem cells to treat liver fibrosis: current situation and future prospects[J]. World J Gastroenterol, 2015,21(3):742-758.
[21] 陳國忠,姜海行,陸正峰,等.骨髓間充質(zhì)干細胞共培養(yǎng)對肝星狀細胞增殖、凋亡和RohA表達的調(diào)控[J].世界華人消化雜志,2010,18(16):1643-1649.
[22] Zhu XS, Zhang B, Zhao HY, et al. Jagged-2 enhances immunomodulatory activity in adipose derived mesenchymal stem cells[J]. Scientific Reports, 2015,5:14284.
[23] He ZG, Hua J, Qian DH, et al. Intravenous hMSCs Ameliorate Acute Pancreatitis in Mice via Secretion of Tumor Necrosis Factor-α Stimulated Gene/Protein 6[J]. Scientific RepoRts, 2016,6:38438.
[24] Shen H, Kormpakis I, Havlioglu N, et al. The effect of mesenchymal stromal cell sheets on the inflammatory stage of flexor tendon healing[J]. Stem Cell Research & Therapy, 2016,7(1):144.
[25] Fu YL, Deng J, Jiang QY,et al. Rapid generation of functional hepatocyte-like cells from human adipose-derived stem cells[J]. Stem Cell Research & Therapy, 2016,7(1):105.
[26] Roato I, Alotto D, Belisario DC, et al. Adipose Derived-Mesenchymal Stem Cells Viability and Differentiating Features for Orthopaedic Reparative Applications: Banking of Adipose Tissue[J]. Stem Cells Int, 2016(4):4968724.
[27] Griffin MF, Ibrahim A, Seifalian AM, et al. Chemical group-dependent plasma polymerisation preferentially directs adipose stem cell differentiation towards osteogenic or chondrogenic lineages[J]. Acta Biomater, 2016,50:450-461
[28] Guan X, Wang N, Cui FG, et al. Caveolin-1 is essential in the differentiation of human adipose-derived stem cells into hepatocyte-like cells via an MAPK pathway-dependent mechanism[J]. Mol Med Rep, 2016,13(2):1487-1494.
[29] Wang Y, Wang F, Zhao H, et al. Human adipose-derived mesenchymal stem cells are resistant to HBV infection during differentiation into hepatocytes in vitro[J]. Int J Mol Sci, 2014,15(4):6096-6110.
[30] Lee JH, Lee KH, Kim MH, et al. Possibility of undifferentiated human thigh adipose stem cells differentiating into functional hepatocytes[J]. Arch Plast Surg, 2012,39(6):593-599.
[31] Ma HC, Shi XL, Ren HZ, et al. Targeted migration of mesenchymal stem cells modified with CXCR4 to acute failing liver improves liver regeneration[J]. World J Gastroenterol, 2014,20(40):14884-14894.