袁亞芳+陳文宇+潘稚芬
[摘要] 睡眠呼吸暫停低通氣綜合征是一組常見的睡眠疾病,包括阻塞性睡眠呼吸暫停低通氣綜合征(obstructive sleep apnea-hypopnea syndrome,OSAHS)、中樞性睡眠呼吸暫停低通氣綜合征(central sleep apnea-hypopnea syndrome,CSAHS)和混合性睡眠呼吸暫停低通氣綜合征(mixed sleep apnea-hypopnea syndrome,MSAHS),其中OSAHS是這組疾病中最常見的一種。近來研究表明隨著OSAHS病情逐漸加重,可并發(fā)多種心血管疾病,其中充血性心力衰竭是重要合并癥之一,研究表明合并心衰會對OSAHS疾病進展及預后產(chǎn)生不利影響,但目前對其機制尚不十分明確,本文就目前國內(nèi)外OSAHS伴發(fā)心衰可能機制進行綜述。
[關鍵詞] 阻塞性睡眠呼吸暫停低通氣綜合征;充血性心力衰竭;發(fā)病機制;研究進展
[中圖分類號] R766 [文獻標識碼] A [文章編號] 1673-9701(2017)35-0165-04
[Abstract] Sleep apnea hypopnea syndrome is a common group of sleep disorders, including obstructive sleep apnea-hypopnea syndrome(OSAHS), central sleep apnea-hypopnea syndrome(CSAHS) and mixed sleep apnea-hypopnea syndrome(MSAHS), of which OSAHS is the most common of this group of diseases. Recent studies have shown that with the gradual increase of OSAHS condition, a variety of cardiovascular diseases can be complicated, including congestive heart failure, which is one of the important complications. Studies have showed that combined heart failure will have adverse effect on OSAHS disease progression and prognosis. But its mechanism is still not very clear. This article summarizes the possible mechanisms of OSAHS associated with heart failure at home and abroad.
[Key words] Obstructive sleep apnea hypopnea syndrome; Congestive heart failure; Pathogenesis; Research progress
OSAHS指患者睡眠狀態(tài)下由于氣道塌陷性增加引起上氣道部分或完全阻塞、氣流受限,導致反復出現(xiàn)低通氣和(或)呼吸中斷,引起間歇性低氧血癥伴高碳酸血癥以及睡眠結(jié)構紊亂,進而使機體發(fā)生一系列病理生理改變的臨床綜合征。隨著OSAHS患者間歇性缺氧程度的加重可引起機體神經(jīng)內(nèi)分泌失調(diào)、氧化應激及能量調(diào)節(jié)障礙,如若未行干預可進一步導致高血壓、冠心病、心律失常及肺動脈高壓等一系列心血管并發(fā)癥[1-3]。近年來人們對上述諸多心血管并發(fā)癥進行深入研究后發(fā)現(xiàn),心衰可能是導致OSAHS預后不良的獨立危險因素。研究顯示40%~60%慢性充血性心力衰竭患者存在睡眠呼吸暫停,而與OSAHS相關的心力衰竭患者占到心力衰竭總數(shù)的5%~10%[4]。心衰有可能加重機體上氣道阻力,促進OSAHS疾病發(fā)生發(fā)展,然而目前OSAHS并發(fā)心衰的研究相對較少,本文就目前國內(nèi)外有關OSAHS并發(fā)心衰的可能機制研究進行綜述。
1 OSAHS并發(fā)充血性心力衰竭的研究概況
國外流行病學調(diào)查發(fā)現(xiàn)OSAHS與充血性心力衰竭(congestive heart failure,CHF)發(fā)生相關,美國學者Shahar E等[5]進行的一項睡眠心臟健康專題研究表明睡眠呼吸暫停低通氣指數(shù)(apnea hypopnea index,AHI)>11次/h的OSA患者發(fā)生CHF的相對危險性為2.38,且獨立于其他危險因素。進一步研究顯示11%~37%的CHF患者合并有OSA,該數(shù)據(jù)提示心血管疾病患者睡眠障礙發(fā)生率較高。同期一項關于慢性心衰與OSAHS關系的前瞻性研究顯示左室射血分數(shù)(left ventricular ejection fraction,LVEF)與CHF相關,45%的研究對象中有26%合并有OSAHS[6]。國內(nèi)學者周新春等[7]對328例CHF患者進行多導睡眠呼吸監(jiān)測后發(fā)現(xiàn),合并OSAHS的患者高達61.6%,并且該組患者OSAHS發(fā)病率隨心衰程度加重而增加。蔡煦等[8]通過流行病學調(diào)查顯示在60歲以上的OSAHS老年患者中,心衰程度隨AHI值增加而加重,該學者對研究數(shù)據(jù)分析后指出OSAHS可能是CHF發(fā)生的獨立危險因素。另有數(shù)據(jù)研究表明約10%的收縮性心力衰竭患者可能患有OSAHS[9]。上述研究表明,OSAHS并發(fā)心衰并不少見。
2 OSAHS并發(fā)充血性心力衰竭機制的研究概況
目前OSAHS并發(fā)CHF的具體機制尚不十分明確,多項研究表明交感神經(jīng)興奮性增加、氧化應激、內(nèi)皮功能障礙、肺動脈高壓、心肌細胞凋亡、RAAS系統(tǒng)激活等可能是疾病發(fā)生發(fā)展的重要因素。
2.1交感神經(jīng)系統(tǒng)興奮性增加endprint
多項研究提示OSAHS患者睡眠及清醒狀態(tài)下交感神經(jīng)活性高于健康人[10],而Kim SJ等[11]也通過動物模型證實這一現(xiàn)象的存在,其研究發(fā)現(xiàn)OSAHS模型大鼠體內(nèi)交感神經(jīng)活性一直持續(xù)到間歇低氧結(jié)束后1 h。該機制可能與OSAHS睡眠時反復呼吸暫停引起的低氧血癥及高碳酸血癥對頸動脈竇和主動脈體長期刺激有關[12],另外缺氧可增加外周化學反射對其的敏感性,并直接影響交感神經(jīng)中樞控制系統(tǒng)。進一步研究發(fā)現(xiàn)持續(xù)交感神經(jīng)興奮可引起OSAHS患者體內(nèi)去甲腎上腺素(norepinephrine,NE)顯著升高。相關研究也顯示OSAHS患者NE增高明顯[13,14]。NE既參與心室重構又增強心肌收縮力、收縮周圍血管、增加后負荷及加快心率從而使心肌耗氧量增加,因此NE與CHF密切相關[15]。OSAHS患者交感神經(jīng)興奮性增加使其患高血壓風險相應增高,研究提示約50%的OSAHS患者同時合并高血壓,約30%高血壓患者伴有OSAHS,進一步研究發(fā)現(xiàn)其血壓呈非勺形改變,而這種改變可進一步引起左心室肥厚和CHF[16-18]。另一方面,OSAHS交感神經(jīng)系統(tǒng)過度興奮也可能引起機體心率變異率(heart rate variation,HRV)下降,下降的程度與OSAHS病情的嚴重程度正相關,有學者[19]發(fā)現(xiàn)心衰患者HRV降低,降低程度與心功能分級呈負相關,因此認為OSAHS患者心率變異率下降可能與心衰有某種聯(lián)系,但是其確切機制尚不十分明確。
2.2氧化應激、炎癥及內(nèi)皮功能障礙
氧化應激是指由于活性氧(reactive oxygen species,ROS)過度產(chǎn)生與抗氧化防御機制減弱,兩者平衡失調(diào)造成的組織損傷[20]。研究表明OSAHS患者血清及呼吸道局部氧化應激標志物水平增高,而抗氧化物水平下降,且與其病情嚴重程度相關[21-23]。該機制可能與慢性間歇性缺氧有關,它類似于心肌缺血再灌注損傷,另外交感神經(jīng)興奮性增強及睡眠紊亂也可能發(fā)揮一定作用[20]。氧化應激可選擇性激活依賴核因子κB(NF-κB)的促炎癥反應途徑,并調(diào)節(jié)黏附分子、炎癥細胞因子、脂肪因子的產(chǎn)生,包括IL-6、IL-8和腫瘤壞死因子α(TNF-α)、細胞黏附因子-1(ICAM-1)等[24]。ROS及炎癥介質(zhì)可共同作用于心肌亞細胞結(jié)構如蛋白質(zhì)、核酸、線粒體等,引起心肌細胞能量代謝障礙、結(jié)構發(fā)生改變等使心肌收縮舒張功能受損促進心衰發(fā)生[25]。姜秀峰等[26]通過鼠OSAHS模型發(fā)現(xiàn)血清ROS標志物升高程度與心功能指標(LVEF)呈顯著負相關,從而說明氧化應激與心衰關系密切。研究發(fā)現(xiàn)ROS作用于血管內(nèi)皮可使其釋放的主要縮血管物質(zhì)內(nèi)皮素水平升高,而主要的舒血管物質(zhì)一氧化氮水平降低,血管強烈收縮、內(nèi)皮損傷功能障礙及血管重建,升高血壓[27]、肺動脈壓力[28,29],增加心臟負荷促成CHF發(fā)展。另外,有學者認為ROS作用于血管內(nèi)皮細胞可造成大量氧化的低密度脂蛋白(Oxidized low density lipoprotein,OLDL)產(chǎn)生,誘導大量炎癥因子及血管基因表達改變[27],促成動脈粥樣硬化發(fā)生從而影響心肌供血。
2.3 腎素-血管緊張素系統(tǒng)(renin-angiotensin-aldosterone system,RAAS)
RAAS主要由腎素、血管緊張素轉(zhuǎn)換酶(angioten-sin-converting enzyme,ACE)、血管緊張素原組成,最后生成血管緊張素、醛固酮而發(fā)揮生理效應。OSAHS與RAAS的關系十分復雜,目前尚不十分明確。研究表明OSAHS體內(nèi)存在循環(huán)和局部RAAS激活[30-32],其機制可能與低氧、高碳酸血癥、交感神經(jīng)過度激活及氧化應激有關[33,34]。RAAS的激活促進生長因子的產(chǎn)生、促原癌基因表達及增加胞外基質(zhì)合成等作用,參與心肌肥厚及心室重構[35]。此外,其效應物血管緊張素Ⅱ(angiotensinⅡ,AngⅡ)可直接收縮全身微動脈使血壓升高,并可促進交感神經(jīng)末梢釋放遞質(zhì),導致血兒茶酚胺水平進一步升高加強對心血管作用,另外AngⅡ也可促進醛固酮釋放,導致血容量增加、心臟前負荷增加[34,35]。國外有學者通過犬心衰模型發(fā)現(xiàn)RAAS活性增高與心肌舒縮功能障礙密切相關[36]。然而另有研究[37]稱OSAHS體內(nèi)脂肪細胞產(chǎn)生的未酯化脂肪酸通過氧化應激反應,產(chǎn)生氧化的脂肪酸作用于腎上腺分泌醛固酮,同時負反饋導致RAAS活性降低。因此RAAS可能對OSAHS并發(fā)心衰起到一定促進作用,但是具體機制尚未得到證實。
2.4 其他
OSAHS患者睡眠時上氣道阻力增加,因?qū)乖撟枇е滦厍回搲涸龃?,進而降低右心房壓力、增加靜脈回流和長期往復使得右心前負荷增加,右心擴大促成右心衰。右室前負荷增加后,室間隔左移,左心室充盈及順應性下降,從而導致心搏出量減少,使左心功能受損[12]。另外,缺氧激活心肌原癌基因介導心肌細胞凋亡[38],并可啟動心肌細胞自噬性死亡,最終出現(xiàn)心肌病理性重塑[39]。OSAHS患者反復發(fā)作的夜間低氧會刺激腎臟分泌促紅細胞生成素(erythropoietin,EPO)的增加,導致紅細胞生成增多,血液黏稠度增加,血流緩慢,加速心血管受損的發(fā)生[12]。有學者[40]發(fā)現(xiàn)OSAHS伴發(fā)CHF患者出現(xiàn)的低碳酸血癥、低氧血癥、通氣增益效應增高、循環(huán)時間增長以及微覺醒可介導一種特殊模式的中樞性睡眠呼吸暫停(central sleep apnea,CSA),即陳-氏呼吸(Cheyne-Stokes respiration,CSR),常將二者統(tǒng)稱為CSR-CSA,其主要通過低氧和微覺醒引起交感神經(jīng)活性增強,形成惡性循環(huán)進一步加重心臟負擔。
3 小結(jié)與展望
CHF發(fā)病機制較為復雜且受到多重因素的綜合影響,隨著多導睡眠監(jiān)測技術(polysomography technology,PSG)的普及,有越來越多CHF被檢出合并有OSAHS,然而OSAHS是否是其患病的獨立危險因素目前尚無定論。OSAHS并發(fā)CHF的機制目前研究較少,現(xiàn)階段的研究多集中于交感神經(jīng)系統(tǒng)興奮性增加、氧化應激、炎癥反應、內(nèi)皮功能障礙、RAAS、胸腔負壓增大及心肌凋亡等方面?,F(xiàn)有研究結(jié)果顯示缺氧與高二氧化碳、神經(jīng)內(nèi)分泌系統(tǒng)激活、心肌細胞凋亡、肺動脈高壓、氧化應激、內(nèi)皮功能紊亂等的綜合作用可能是OSAHS患者心功能惡化的主要原因,但是上述研究中所涉及的交感神經(jīng)遞質(zhì)(如兒茶酚胺、神經(jīng)肽Y、降鈣素基因相關肽、5-羥色胺等)及血管活性物質(zhì)(如心鈉肽、腦鈉肽、降鈣素基因相關肽及血管活性肽等)是否確實受到OSAHS產(chǎn)生的病理生理環(huán)境影響,又在OSAHS并發(fā)CHF的過程中扮演了何種角色及具體作用機制仍未闡明,因此尚不能完全揭示這一發(fā)病機制。另外,OSAHS并發(fā)CHF患者體內(nèi)是否存在基因表達、信號轉(zhuǎn)導通路、心臟受體、細胞離子通道、蛋白酶的異常及其生理機制亦無相關研究。未來隨著分子生物學技術的發(fā)展,可在基因分子水平、細胞水平等方面對OSAHS合并CHF的機制進行更加深入的研究,并可通過多中心、大樣本研究加以驗證,最終為該疾病的臨床診治和藥物研發(fā)提供新的循證醫(yī)學證據(jù)。endprint
[參考文獻]
[1] 中華醫(yī)學會呼吸病學分會. 阻塞性睡眠呼吸暫停低通氣綜合征診治指南(2011修訂版)[J]. 中華結(jié)核和呼吸雜志,2012,35(1):9-12.
[2] 中華醫(yī)學會呼吸病學分會. 阻塞性睡眠呼吸暫停低通氣綜合征患者持續(xù)氣道正壓通氣臨床應用專家共識(草案)[J]. 中華結(jié)核和呼吸雜志,2012,35(1):13-18.
[3] 阻塞性睡眠呼吸暫停低通氣綜合征診治指南(基層版)寫作組. 阻塞性睡眠呼吸暫停低通氣綜合征診治指南(基層版)[J].中華全科醫(yī)師雜志,2015,14(7):509-515.
[4] Sehulz R,Grebem M,Eisele HJ,et al.Obstructive sleep apnea-related cardiovascular disease[J].Med Klin,2006, 101(4):321-327.
[5] Shahar E,Whitney CW,Redline S,et al. Sleep-disordered breathing and cardiovascular disease:Cross-sectional results of the Sleep Heart Health Study[J]. Am J Respir Crit Care Med,2001,163(1):19-25.
[6] Wang H,Parker JD,Newton GE,et al.Influence of obstructive sleep apnea on mortality in patients with heart failure[J].J Am Coil Cardiol,2007,49(15):1625-1631.
[7] 周新春,孫勝波,王新本,等. 氣道正壓通氣治療對CHF合并睡眠呼吸暫?;颊咦畲髷z氧量等的影響[J]. 心血管康復醫(yī)學雜志,2015,24(1):54-56.
[8] 蔡煦,黃劍鋒,徐非,等. 應用便攜式多導睡眠監(jiān)測儀對邊遠地區(qū)慢性心力衰竭伴睡眠呼吸暫停患者的臨床意義[J]. 中國循環(huán)雜志,2015,30(5):433-437.
[9] Costanzo MR,Khayat R,Ponikowski P,et al. Mechanisms and clinical consequences of untreated central sleep apnea in heart failure[J].J Am Coll Cardiol,2015,65(1):72-84.
[10] Chouchou F,Pichot V,Barthelemy JC,et al. Cardiac sympathetic modulation in response to apneas/hypopneas through heart rate variability analysis[J]. PLoS One,2014, 9(1):e86434.
[11] Kim SJ,Pilowsky PM,F(xiàn)arnham MMJ. Intrathecal intermittent Orexin-A causes sympathetic long-term facilitation and sensitizes the peripheral chemoreceptor response to hypoxia in rats[J]. J Pharmacol Exp Ther,2016,358(3):492-501.
[12] Goya TT,Silva RF,Guerra RS,et al. Increased muscle sympathetic nerve activity and impaired executive performance capacity in obstructive sleep apnea[J]. Sleep,2016,39(1):25-33.
[13] Bodez D,Guellich A,Kharoubi M,et al. Prevalence,severity,and prognostic value of sleep apnea syndromes in cardiac amyloidosis[J]. Sleep,2016,39(7):1333-1341.
[14] Aziz M,Ali SS,Das S,et al. Association of subjective and objective sleep duration as well as sleep quality with non-invasive markers of sub-clinical cardiovascular disease(CVD):A systematic review[J]. J Atheroscler Thromb,2017,24(3):208-226.
[15] Hendrikx T,Sundqvist M,Sandstrm H,et al. Atrial fibrillation among patients under investigation for suspected obstructive sleep apnea[J]. PloS One,2017,12(2):e0171575.
[16] O'Brien LM,Bullough AS,Chames MC,et al. Hypertension,snoring,and obstructive sleep apnoea during pregnancy:A cohort study[J]. BJOG, 2014,121(13):1685-1693.endprint
[17] Floras JS,Ponikowski P. The sympathetic/parasympathetic imbalance in heart failure with reduced ejection fraction[J]. Eur Heart J,2015,36(30):1974-1982.
[18] Groehs RV,Toschi-Dias E,Antunes-Correa LM,et al. Exercise training prevents the deterioration in the arterial baroreflex control of sympathetic nerve activity in chronic heart failure patients[J]. Am J Physiol Heart Circ Physiol,2015,308(9):H1096-H1102.
[19] 黃樹生. 阻塞性睡眠呼吸暫停綜合征患者心律失常發(fā)生率及影響因素[J]. 中國老年學雜志,2016,36(15):3753-3754.
[20] Drager LF,Polotsky VY,O'Donnell CP,et al. Translational approaches to understanding metabolic dysfunction and cardiovascular consequences of obstructive sleep apnea[J]. Am J Physiol Heart Circ Physiol,2015,309(7): 1101-1111.
[21] Kim KS,Kwak JW,Lim SJ,et al. Oxidative stress-induced telomere length shortening of circulating leukocyte in patients with obstructive sleep apnea[J]. Aging Dis,2016,7(5):604-613.
[22] Lim DC,Brady DC,Po P,et al. Simulating obstructive sleep apnea patients 9 oxygenation characteristics into a mouse model of cyclical intermittent hypoxia[J]. J Appl Physiol,2015,118(5):544-557.
[23] Micheu MM,Rosca AM,Deleanu OC. Stem/progenitor cells and obstructive sleep apnea syndrome-new insights for clinical applications[J]. World J Stem Cells,2016,8(10):332-341.
[24] Nerfeldt P,F(xiàn)riberg D. Effectiveness of oral appliances in obstructive sleep apnea with respiratory arousals[J]. J Clin Sleep Med,2016,12(8): 1159-1165.
[25] Kondo K,Bhushan S,King A L,et al. H2S Protects Against Pressure Overload Induced Heart Failure via Upregulation of Endothelial Nitric Oxide Synthase(eNOS)[J].Circulation,2013,127(10):1116-1127.
[26] 姜秀峰,蘇梅,丁文筱,等. 慢性間歇低氧對大鼠心血管系統(tǒng)的影響及脂聯(lián)素的保護作用[J]. 中華結(jié)核和呼吸雜志,2014,37(12):888-892.
[27] Zhang M,Perino A,Ghigo A,et al. NADPH oxidases in heart failure:Poachers or gamekeepers?[J]. Redox Biol,2013,18(9):1024-1041.
[28] Wojciak-Stothard B,Abdul-Salam VB,Lao KH,et al. Aberrant chloride intracellular channel 4 expression contributes to endothelial dysfunction in pulmonary arterial hypertension[J]. Circulation,2014,129(17):1770-1780.
[29] 繆莉莉,楊楠,張錦. 睡眠呼吸暫停低通氣綜合征與肺動脈高壓的相關研究[J]. 中國呼吸與危重監(jiān)護雜志,2014,13(2):146-149.
[30] 喻淑慧,李園園,胡克. 去腎交感神經(jīng)術治療頑固性高血壓合并阻塞性睡眠呼吸暫停的研究進展[J]. 中國呼吸與危重監(jiān)護雜志,2015,14(3):317-320.
[31] Nisbet LC,Yiallourou SR,Biggs SN,et al. Preschool children with obstructive sleep apnea:The beginnings of elevated blood pressure[J]. Sleep,2013,36(8):1219-1226.endprint
[32] Hohl M,Linz B,Bohm M,et al. Obstructive sleep apnea and atrial arrhythmogenesis[J]. Curr Cardiol Rev,2014, 10(4):362-368.
[33] Zhao Q,Huang H,Wang X,et al. Changes of serum neurohormone after renal sympathetic denervation in dogs with pacing-induced heart failure[J]. Int J Clin Exp Med,2014,7(11):4024-4030.
[34] 莫曉云,劉建紅,謝宇萍,等. 阻塞性睡眠呼吸暫停低通氣綜合征合并高血壓的特點及危險因素[J]. 中華醫(yī)學雜志,2016,96(8):605-609.
[35] Mentz RJ,Stevens SR,Devore AD,et al. Decongestion strategies and renin-angiotensin-aldosterone system activation in acute heart failure[J]. JACC Basic Transl Sci,2015,3(2):97-107.
[36] Patel VB,Zhong JC,Grant MB,et al. Role of the ACE2/Angiotensin 1-7 Axis of the Renin-Angiotensin System in Heart Failure[J]. Circ Res,2016,118(8):1313-1326.
[37] Araghi MH,Chen YF,Jagielski A,et al. Effectiveness of lifestyle interventions on obstructive sleep apnea(OSA):Systematic review and meta-analysis[J]. Sleep,2013,36(10):1553-1562.
[38] Kendzerska T,Gershon AS,Hawker G,et al. Obstructive sleep apnea and risk of cardiovascular events and all-cause mortality:A decade-long historical cohort study[J]. PLoS Med,2014,11(2):e1001599.
[39] Hglund N,Sahlin C,Kesek M,et al. Cardioversion of atrial fibrillation does not affect obstructive sleep apnea[J].Ups J Med Sci,2017,122(2):114-118.
[40] Gami AS,Olson EJ,Shen WK,et al. Obstructive sleep apnea and the risk of sudden cardiac death:A longitudinal study of 10,701 adults[J]. J Am Coll Cardiol,2013, 62(7):610-616.
(收稿日期:2017-08-17)endprint