張 倩,梁曉春
中國醫(yī)學(xué)科學(xué)院 北京協(xié)和醫(yī)學(xué)院 北京協(xié)和醫(yī)院中醫(yī)科,北京 100730
糖尿病周圍神經(jīng)病變(diabetic peripheral neuropathy,DPN)是糖尿病最常見的慢性并發(fā)癥之一,可以引起反復(fù)下肢感染、潰瘍、非創(chuàng)傷性截肢等,是糖尿病患者致殘致死的重要原因。隨著病程延長,50%以上的糖尿病患者可發(fā)生神經(jīng)病變[1]。DPN是一種由長期高血糖引起的周圍神經(jīng)系統(tǒng)變性疾病,目前越來越多的研究發(fā)現(xiàn)DPN的病理機(jī)制與周圍神經(jīng)系統(tǒng)線粒體功能異常有關(guān)。線粒體是生物細(xì)胞能量代謝的重要場(chǎng)所,在能量消耗較多的周圍神經(jīng)系統(tǒng)中,細(xì)胞間液糖濃度升高引起的生物能量代謝異??蓪?dǎo)致周圍神經(jīng)側(cè)索芽生及軸突再生修復(fù)障礙[2]。腺苷酸活化蛋白激酶(adenosine monophosphate-activated protein kinase,AMPK)/過氧化物酶體增殖活化受體γ共激活因子(peroxisome proliferator-activated receptor-γ coactivator 1α,PGC- 1α)是調(diào)節(jié)細(xì)胞能量代謝的重要信號(hào)通路,與線粒體生物發(fā)生及功能異常有著密切關(guān)系[3- 4]。DPN中周圍神經(jīng)元丟失、神經(jīng)脫髓鞘、軸索變性、神經(jīng)再生修復(fù)障礙等過程均可能與AMPK/PGC- 1α信號(hào)途徑缺陷引起線粒體功能異常有關(guān)[2,5]。研究發(fā)現(xiàn),周圍神經(jīng)線粒體功能障礙與AMPK/PGC- 1α信號(hào)通路改變可能是DPN發(fā)生發(fā)展的重要病理生理機(jī)制之一,本文就該領(lǐng)域有關(guān)的新發(fā)現(xiàn)及研究概況綜述如下。
DPN線粒體蛋白質(zhì)與其結(jié)構(gòu)和功能的關(guān)系線粒體結(jié)構(gòu)和功能異常在糖尿病慢性并發(fā)癥的病理生理過程中發(fā)揮了關(guān)鍵作用,在臨床糖尿病患者和糖尿病動(dòng)物模型中均發(fā)現(xiàn)肌肉、心臟、腎臟和神經(jīng)等組織中存在線粒體結(jié)構(gòu)和功能異常[5]。正常的線粒體活性可以維持神經(jīng)元的代謝和功能,在DPN相關(guān)的研究中則發(fā)現(xiàn)周圍神經(jīng)中存在線粒體蛋白質(zhì)異常、線粒體功能損傷及超微結(jié)構(gòu)異常。正常糖濃度時(shí)周圍背根神經(jīng)節(jié)神經(jīng)元線粒體中膜電位維持在相對(duì)穩(wěn)定的狀態(tài),而高糖濃度培養(yǎng)條件下線粒體明顯腫脹、線粒體裂解和融合的動(dòng)態(tài)平衡打亂、線粒體裂解增多,并且膜電位不穩(wěn)定,推測(cè)高糖先引起線粒體膜電位超極化,后再出現(xiàn)去極化,該過程產(chǎn)生的大量活性氧簇(reactive oxygen species,ROS)則進(jìn)一步導(dǎo)致細(xì)胞的氧化應(yīng)激損傷[6- 7]。Freeman等[8]采用蛋白組學(xué)方法檢測(cè)發(fā)現(xiàn),糖尿病大鼠的坐骨神經(jīng)中存在線粒體氧化磷酸化蛋白異常,其中坐骨神經(jīng)的線粒體復(fù)合物Ⅰ、Ⅲ、Ⅵ和Ⅴ表達(dá)量增加。通過分析線粒體蛋白質(zhì)組發(fā)現(xiàn),糖尿病大鼠的坐骨神經(jīng)中一種可以調(diào)節(jié)軸突線粒體電子傳遞的蛋白質(zhì)線粒體ρ-鳥苷三磷酸酶1(ρ-guanosine triphosphatase 1,ρ-GTPase 1)表達(dá)上調(diào),線粒體傳遞鏈?zhǔn)С#⑶以谳S突中還存在線粒體不正常的聚集。Akude等[9]分析了糖尿病大鼠的周圍感覺神經(jīng)元線粒體蛋白組,發(fā)現(xiàn)腰背根神經(jīng)節(jié)線粒體蛋白組中的呼吸鏈復(fù)合物下調(diào),如細(xì)胞色素C氧化酶亞基Ⅳ(即復(fù)合物Ⅳ蛋白)、還原型煙酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotid,NADH)脫氫酶鐵硫蛋白3(即復(fù)合物Ⅰ蛋白)等,并與損傷的呼吸鏈活性相關(guān)。Edwards等[10]研究發(fā)現(xiàn),相對(duì)于非糖尿病小鼠,糖尿病小鼠的脊髓背根神經(jīng)節(jié)神經(jīng)元中的線粒體生物合成顯著增加,動(dòng)物實(shí)驗(yàn)和體外細(xì)胞研究的結(jié)果均提示高糖濃度刺激雖然能引起線粒體的生物合成增加,但主要是產(chǎn)生了大量形態(tài)小、結(jié)構(gòu)異常的線粒體,并且線粒體裂解增多,不能滿足神經(jīng)元細(xì)胞的能量代謝負(fù)荷,如果抑制線粒體裂解則有助于平衡線粒體融合裂解的動(dòng)態(tài)穩(wěn)定,增強(qiáng)神經(jīng)元的生存能力。該過程可能受到調(diào)節(jié)線粒體裂解的蛋白質(zhì)Drp1調(diào)節(jié),DRP1基因敲除的糖尿病鼠周圍神經(jīng)病變減輕,提示Drp1蛋白可能通過調(diào)控線粒體的裂解而增強(qiáng)周圍神經(jīng)組織對(duì)高血糖損傷的敏感性。有研究還發(fā)現(xiàn),糖尿病周圍感覺神經(jīng)病變的神經(jīng)元凋亡與線粒體功能異常有關(guān),從糖尿病大鼠背根神經(jīng)節(jié)分離的神經(jīng)元中觀察到線粒體基礎(chǔ)電位升高并且去極化后延遲恢復(fù),調(diào)控細(xì)胞凋亡相關(guān)的因子Bcl- 2減少及線粒體內(nèi)細(xì)胞色素C轉(zhuǎn)移到細(xì)胞漿中均可能是神經(jīng)元凋亡的重要機(jī)制[11]。上述研究共同反映了糖尿病周圍神經(jīng)系統(tǒng)中存在線粒體功能下降,與線粒體蛋白質(zhì)表達(dá)異常、線粒體超微結(jié)構(gòu)破壞、電子傳遞鏈異常等有關(guān)。
周圍神經(jīng)損傷與髓鞘線粒體維持遠(yuǎn)端神經(jīng)、表皮神經(jīng)纖維支配的皮膚等區(qū)域的功能需要神經(jīng)軸索側(cè)突的芽生或再生作用,這一過程依賴于神經(jīng)營養(yǎng)因子,消耗大量來源于線粒體的ATP,以維持周圍神經(jīng)軸索和神經(jīng)纖維的不斷生長和保持神經(jīng)纖維富有彈性[12- 13]。DPN最常見的病變類型為遠(yuǎn)端對(duì)稱性多神經(jīng)病變,主要引起患者的痛覺過敏或感覺喪失。糖尿病引起的遠(yuǎn)端對(duì)稱性多神經(jīng)病變的病理生理機(jī)制一般包括周圍神經(jīng)結(jié)構(gòu)改變,如微血管病變和神經(jīng)節(jié)段性脫髓鞘,并伴有感覺/運(yùn)動(dòng)神經(jīng)傳導(dǎo)異常、表皮神經(jīng)纖維密度減低、遠(yuǎn)端軸突變性等。神經(jīng)變性與側(cè)索芽生和再生障礙、軸突水腫及可塑性減弱,均阻礙了周圍神經(jīng)纖維對(duì)組織的神經(jīng)支配[14],亦是1型及2型糖尿病周圍神經(jīng)損傷的重要機(jī)制[2]。
髓鞘是一層包裹在軸突表面的類脂膜,參與神經(jīng)電信號(hào)的傳導(dǎo),并具有保護(hù)神經(jīng)軸突、營養(yǎng)、絕緣等多重作用。DPN中存在著一種重要的病理改變?yōu)橹車窠?jīng)節(jié)段或彌漫性髓鞘皺縮、脫髓鞘病變,可導(dǎo)致神經(jīng)動(dòng)作電位傳導(dǎo)障礙[8,15]。神經(jīng)損傷后髓鞘再生亦對(duì)于神經(jīng)修復(fù)再生具有重要意義。周圍神經(jīng)系統(tǒng)最主要的髓鞘形成細(xì)胞為施萬細(xì)胞[16],可以促進(jìn)神經(jīng)的軸突再生和再生軸突的髓鞘化。近期研究發(fā)現(xiàn),施萬細(xì)胞線粒體功能障礙與軸突變性有關(guān)[17],髓鞘線粒體可能是維持周圍神經(jīng)元與軸突穩(wěn)態(tài)的最重要的細(xì)胞器[18- 19],DPN等一些神經(jīng)脫髓鞘性疾病與施萬細(xì)胞線粒體功能和能量代謝通道變化有密切關(guān)系[20]。Gonzalez等[21]提出了一個(gè)由施萬細(xì)胞參與的可能的導(dǎo)致周圍神經(jīng)脫髓鞘病變的線粒體分子機(jī)制,即高血糖等損傷因素導(dǎo)致線粒體電壓依賴性陰離子通道1(voltage-dependent anion channel 1,VDAC1)活性變化,使施萬細(xì)胞鈣離子泄漏到細(xì)胞漿,進(jìn)一步刺激絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)等途徑,導(dǎo)致髓鞘合成施萬細(xì)胞的神經(jīng)脫髓鞘改變。而抑制線粒體的鈣釋放可以防止糖尿病動(dòng)物模型周圍神經(jīng)脫髓鞘改變,促進(jìn)神經(jīng)傳導(dǎo)和神經(jīng)肌肉功能的恢復(fù),提示髓鞘線粒體可能是早期糖尿病周圍神經(jīng)病變形成脫髓鞘病變的生物分子機(jī)制發(fā)生的起點(diǎn)。Zhang等[22]運(yùn)用細(xì)胞培養(yǎng)穩(wěn)定同位素標(biāo)記(stable isotope labeling with amino acids in cell culture,SILAC)技術(shù)和代謝路徑分析方法,發(fā)現(xiàn)體外高糖培養(yǎng)的施萬細(xì)胞中,與線粒體功能、氧化磷酸化、三羧酸循環(huán)及神經(jīng)細(xì)胞解毒作用相關(guān)的蛋白表達(dá)明顯增加,并且其線粒體總耗氧率增加而耦合呼吸效能卻顯著下降。在DPN中線粒體呼吸效能降低可能與施萬細(xì)胞的生物能量代謝異常有關(guān)。
AMPK/PGC- 1α是生物細(xì)胞能量代謝調(diào)節(jié)的重要信號(hào)通路。線粒體的生物發(fā)生和功能直接通過AMPK/PGC- 1α信號(hào)通路來感知細(xì)胞對(duì)能量的需求。研究發(fā)現(xiàn),在肝臟、骨骼肌及心肌等組織中,AMPK/PGC- 1α參與調(diào)節(jié)線粒體效能,在能量耗竭后,AMP/ATP比率升高啟動(dòng)該途徑,通過復(fù)雜的調(diào)控機(jī)制,AMP與AMPK交聯(lián),增強(qiáng)分解代謝,刺激ATP合成[23- 24]。AMPK/PGC- 1α通路是周圍神經(jīng)線粒體功能異常的主要通路,并與DPN的形成和進(jìn)展有關(guān)。
線粒體能量代謝共激活因子PGC-1α在線粒體能量代謝途徑中,PGC- 1α是關(guān)鍵的共激活因子,對(duì)協(xié)調(diào)線粒體生物發(fā)生和代謝基因信號(hào)網(wǎng)絡(luò)發(fā)揮至關(guān)重要的作用[24]。PGC- 1α基因的過度表達(dá)可以增加線粒體的數(shù)量和功能,反之,該因子耗竭導(dǎo)致線粒體功能障礙、糖代謝異常[25]。較新的研究觀察到,PGC- 1α在糖尿病模型動(dòng)物的周圍感覺神經(jīng)節(jié)背根神經(jīng)節(jié)中顯著降低[26]。而且在體外培養(yǎng)的周圍感覺神經(jīng)的背根神經(jīng)節(jié)(dorsal root ganglia,DRG)神經(jīng)元中,PGC- 1α下調(diào)可致線粒體功能障礙,并伴隨著線粒體呼吸鏈的異常,可能是DPN的重要病理機(jī)制;增加感覺神經(jīng)元PGC- 1α的表達(dá)還可以減輕氧化應(yīng)激反應(yīng)[27]。Choi等[28]研究發(fā)現(xiàn),PGC- 1α基因敲除糖尿病小鼠出現(xiàn)線粒體DNA含量降低,蛋白氧化增加,引起了更嚴(yán)重的神經(jīng)病變。
糖尿病動(dòng)物模型的周圍感覺神經(jīng)病變與AMPK/PGC- 1α信號(hào)途徑缺陷和線粒體呼吸鏈異常有關(guān)。在1型和2型糖尿病神經(jīng)病變大鼠的背根神經(jīng)節(jié)中,AMPK/PGC- 1α的表達(dá)和磷酸化以及線粒體呼吸鏈復(fù)合物蛋白均有明顯下調(diào)[28],并影響神經(jīng)元的神經(jīng)突生長。而軸突的線粒體功能異常可引起能量代謝障礙,耗竭ATP,進(jìn)一步引起Na+/K+ATP酶活性降低、離子通道電壓改變,導(dǎo)致神經(jīng)軸索變性[29]。在該信號(hào)通路中PGC- 1α可以激活核呼吸因子(nuclear respiratory factor 1,NRF1)和線粒體轉(zhuǎn)錄因子A(mitochondrial transcription factor A,TFAM)的轉(zhuǎn)錄,調(diào)節(jié)線粒體呼吸相關(guān)蛋白和基因的表達(dá)[30- 31],還有研究發(fā)現(xiàn)PGC- 1α基因敲除的糖尿病大鼠周圍神經(jīng)元NRF1、TFAM表達(dá)均有明顯降低[26]。
AMPK/PGC-1α與蛋白脫乙酰酶沉默調(diào)節(jié)因子SIRT3SIRT3是存在于線粒體的蛋白脫乙酰酶沉默調(diào)節(jié)因子家族的成員之一,其針對(duì)的蛋白質(zhì)是參與能量代謝過程中的酶,包括線粒體呼吸鏈、三羧酸循環(huán)等過程,控制線粒體氧化途徑及ROS產(chǎn)生的速率。SIRT3通過與AMPK/PGC- 1α通路的相互作用參與線粒體能量代謝調(diào)節(jié),如PGC- 1α誘導(dǎo)SIRT3的表達(dá)促進(jìn)線粒體生物合成,SIRT3可以使AMPK的監(jiān)管激酶LKB1激活而促進(jìn)AMPK激活,刺激ATP產(chǎn)生[32]。Yerra等[33]研究發(fā)現(xiàn),AMPK激活劑不僅可以改善糖尿病大鼠機(jī)械及疼痛閾值,增加運(yùn)動(dòng)神經(jīng)及感覺神經(jīng)傳導(dǎo)速度,在細(xì)胞實(shí)驗(yàn)中還可以參與調(diào)節(jié)線粒體超氧化物生成、膜電位去極化,促進(jìn)神經(jīng)芽生作用。該研究還觀察到AMPK激活劑可抑制神經(jīng)炎癥反應(yīng),刺激PGC- 1α介導(dǎo)的線粒體生物合成和減少細(xì)胞自噬作用。
改善AMPK/PGC-1α信號(hào)通路——DPN治療新靶點(diǎn)DPN的病理機(jī)制非常復(fù)雜,目前尚缺乏針對(duì)性的治療,既然DPN的發(fā)生和進(jìn)展與線粒體功能異常及AMPK/PGC- 1α信號(hào)通路有關(guān),而且AMPK激活劑(如A769662)具有改善DPN的作用[33],那么針對(duì)該通路的藥物可能具有神經(jīng)保護(hù)或減緩DPN進(jìn)展的效果,具有一定的臨床應(yīng)用前景。降糖藥物二甲雙胍也是一種AMPK激活劑,可以通過抑制AMP脫氫酶及促進(jìn)LKB1等多種途徑來激活A(yù)MPK,從而起到改善周圍神經(jīng)損傷尤其是減輕神經(jīng)病理性疼痛的作用[34]。有研究發(fā)現(xiàn)白藜蘆醇可以通過增加AMPK的表達(dá)和磷酸化起到調(diào)節(jié)感覺神經(jīng)元線粒體內(nèi)膜電位、促進(jìn)軸突生長的作用,并改善了糖尿病大鼠熱痛覺減退,減少足部表皮神經(jīng)纖維的損失[28]。高血糖誘導(dǎo)的微血管病變可以引起神經(jīng)營養(yǎng)障礙,因此有研究認(rèn)為DPN與脂質(zhì)代謝異常亦有關(guān),并發(fā)現(xiàn)調(diào)脂藥物非諾貝特可以減緩DPN進(jìn)展,其參與機(jī)制包括了調(diào)節(jié)AMPK/PGC- 1α信號(hào)通路[35]。Yu等[36]研究發(fā)現(xiàn),中藥丹參中提取的有效水溶性成分丹酚酸A可以增加AMPK磷酸化水平,上調(diào)PGC- 1α及Sirt3表達(dá),改善糖尿病大鼠坐骨神經(jīng)的病理損傷,促進(jìn)其機(jī)械痛閾值及運(yùn)動(dòng)神經(jīng)傳導(dǎo)速度的恢復(fù)。另外,可能通過AMPK/PGC- 1α信號(hào)途徑而具有治療DPN潛力的還有附子多糖[37]等中藥成分。但上述藥物目前僅進(jìn)行了前期的DPN動(dòng)物或體外細(xì)胞實(shí)驗(yàn)研究,尚未應(yīng)用到臨床,缺乏足夠的循證醫(yī)學(xué)證據(jù)。
線粒體結(jié)構(gòu)和功能異常在DPN的病理生理過程中起到關(guān)鍵作用,糖尿病周圍神經(jīng)中存在線粒體超微結(jié)構(gòu)改變、線粒體蛋白質(zhì)組學(xué)異常、線粒體電子傳遞鏈及線粒體功能障礙。AMPK/PGC- 1α是調(diào)節(jié)細(xì)胞能量代謝的重要信號(hào)通路,直接影響線粒體的生物發(fā)生及生理功能。在DPN動(dòng)物模型及分離細(xì)胞中存在著AMPK/PGC- 1α通路障礙,如AMPK激活障礙、PGC- 1α下調(diào)等,可致線粒體功能異常。另外,Sirt3可能通過與AMPK/PGC- 1α通路的相互作用參與到線粒體能量代謝的調(diào)節(jié)過程中。線粒體功能和AMPK/PGC- 1α信號(hào)途徑的異常是DPN的重要病理機(jī)制,線粒體可能是DPN發(fā)生的分子學(xué)起點(diǎn),亦是今后研究熱點(diǎn),已發(fā)現(xiàn)部分藥物可能通過改善AMPK/PGC- 1α信號(hào)通路而起到神經(jīng)保護(hù)或減緩DPN進(jìn)展的作用,具有一定的臨床應(yīng)用前景。但目前在DPN中針對(duì)該通路的研究非常有限,直接參與通路的蛋白質(zhì)和影響到該通路的其他病理機(jī)制均未明確,通路上下游的各個(gè)具體環(huán)節(jié)尚需要進(jìn)一步的研究來闡述,比如促進(jìn)和干擾該通路的影響因素有哪些,高糖作用下線粒體能量代謝異常是否可以逆轉(zhuǎn),如何保護(hù)周圍神經(jīng)系統(tǒng)線粒體功能,積極尋找可改善促進(jìn)該通路的藥物并進(jìn)行相應(yīng)的臨床研究等方面還可以做更深入的探索,為DPN治療提供新的思路和方法。
[1] Hajas G,Kissova V,Tirpakova A. A 10-yr follow-up study for the detection of peripheral neuropathy in young patients with type 1 diabetes[J]. Pediatr Diabetes,2016,17(8):632- 641. DOI:10.1111/pedi.12382.
[2] Fernyhough P. Mitochondrial dysfunction in diabetic neuropathy:a series of unfortunate metabolic events[J]. Curr Diab Rep,2015,15(11):89. DOI:10.1007/s11892- 015- 0671- 9.
[3] Zhang CL,F(xiàn)eng H,Li L,et al. Globular CTRP3 promotes mitochondrial biogenesis in cardiomyocytes through AMPK/PGC- 1αpathway[J]. Biochim Biophys Acta,2017,1861(1 Pt A):3085- 3094. DOI:10.1016/j.bbagen.2016.10.022.
[4] Yuan Y,Shi M,Li L,et al. Mesenchymal stem cell-conditioned media ameliorate diabetic endothelial dysfunction by improving mitochondrial bioenergetics via the Sirt1/AMPK/PGC- 1αpathway[J]. Clin Sci,2016,130(23):2181- 2198. DOI:10.1042/CS20160235.
[5] Chowdhury SK,Dobrowsky RT,F(xiàn)ernyhough P. Nutrient excess and altered mitochondrial proteome and function contribute to neurodegeneration in diabetes[J]. Mitochondrion,2011,11(6):845- 854. DOI:10.1016/j.mito.2011.06.007.
[6] Russell JW,Golovoy D,Vincent AM,et al. High glucose-induced oxidative stress and mitochondrial dysfunction in neurons[J]. FASEB J,2002,16(13):1738- 1748. DOI:10.1096/fj.01- 1027com.
[7] Yu T,Robotham JL,Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology[J]. Proc Natl Acad Sci USA,2006,103(8):2653- 2658. DOI:10.1073/pnas.0511154103.
[8] Freeman OJ,Unwin RD,Dowsey AW,et al. Metabolic dysfunction is restricted to the sciatic nerve in experimental diabetic neuropathy[J]. Diabetes,2016,65(1):228- 238. DOI:10.2337/db15- 0835.
[9] Akude E,Zherebitskaya E,Chowdhury SK,et al. Diminished superoxide generation is associated with respiratory chain dysfunction and changes in the mitochondrial proteome of sensory neurons from diabetic rats[J]. Diabetes,2011,60(1):288- 297. DOI:10.2337/db10- 0818.
[10] Edwards JL,Quattrini A,Lentz SI,et al. Diabetes regulates mitochondrial biogenesis and fission in neurons[J]. Diabetologia,2010,53(1):160- 169. DOI:10.1007/s00125- 009- 1553-y.
[11] Srinivasan S,Stevens M,Wiley JW. Diabetic peripheral ne-uropathy:evidence for apoptosis and associated mitochondrial dysfunction[J]. Diabetes,2000,49(11):1932- 1938.DOI:10.2337/diabetes.49.11.1932.
[12] Taylor AM,Ribeiro-da-Silva A. GDNF levels in the lower lip skin in a rat model of trigeminal neuropathic pain:implications for nonpeptidergic fiber reinnervation and parasympathetic sprouting[J]. Pain,2011,152(7):1502- 1510. DOI:10.1016/j.pain.2011.02.035.
[13] Bennett GJ,Liu GK,Xiao WH,et al. Terminal arbor degeneration-a novel lesion produced by the antineoplastic agent paclitaxel[J]. Eur J Neurosci,2011,33(9):1667- 1676. DOI:10.1111/j.1460- 9568.2011.07652.x.
[14] Akude E,Zherebitskaya E,Roy Chowdhury SK,et al. 4-hydroxy- 2-nonenal induces mitochondrial dysfunction and aberrant axonal outgrowth in adult sensory neurons that mimics features of diabetic neuropathy[J]. Neurotox Res,2010,17(1):28- 38. DOI:10.1007/s12640- 009- 9074- 5.
[15] Malik RA. Pathology of human diabetic neuropathy[J]. Handb Clin Neurol,2014,126:249- 259. DOI:10.1016/B978- 0- 444- 53480- 4.00016- 3.
[16] Nave KA. Myelination and support of axonal integrity by glia[J]. Nature,2010,468(7321):244- 252. DOI:10.1038/nature09614.
[17] Viader A,Sasaki Y,Kim S,et al. Aberrant Schwann cell lipid metabolism linked to mitochondrial deficits leads to axon degeneration and neuropathy[J]. Neuron,2013,77(5):886- 898. DOI:10.1016/j.neuron.2013.01.012.
[18] Funfschilling U,Supplie LM,Mahad D,et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity[J]. Nature,2012,485(7399):517- 521. DOI:10.1038/nature11007.
[19] Viader A,Golden JP,Baloh RH,et al. Schwann cell mitochondrial metabolism supports long-term axonal survival and peripheral nerve function[J]. J Neurosci,2011,31(28):10128- 10140. DOI:10.1523/JNEUROSCI.0884- 11.2011.
[20] Fernyhough P,Roy Chowdhury SK,Schmidt RE. Mitochondrial stress and the pathogenesis of diabetic neuropathy[J]. Expert Rev Endocrinol Metab,2010,5(1):39- 49.
[21] Gonzalez S,Berthelot J,Jiner J,et al. Blocking mitochondrial calcium release in Schwann cells prevents demyelinating neuropathies[J]. J Clin Invest,2016,126(3):1023- 1038. DOI:10.1172/JCI84505.
[22] Zhang L,Yu C,Vasquez FE,et al. Hyperglycemia alters the schwann cell mitochondrial proteome and decreases coupled respiration in the absence of superoxide production[J]. J Proteome Res,2010,9(1):458- 471. DOI:10.1021/pr900818g.
[23] Hardie DG. AMPK:a key regulator of energy balance in the single cell and the whole organism[J]. Int J Obes(Lond),2008,32(Suppl):S7- S12. DOI:10.1038/ijo.2008. 116.
[24] Feige JN,Auwerx J. Transcriptional coregulators in the control of energy homeostasis[J]. Trends Cell Biol,2007,17(6):292- 301. DOI:10.1016/j.tcb.2007. 04.001.
[25] Handschin C,Chin S,Li P,et al. Skeletal muscle fiber-type switching,exercise intolerance,and myopathy in PGC- 1alpha muscle-specific knock-out animals[J]. J Biol Chem,2007,282(41):30014- 30021. DOI:10.1074/jbc.M704817200.
[26] Chowdhury SK,Smith DR,F(xiàn)ernyhough P. The role of aberrant mitochondrial bioenergetics in diabetic neuropathy[J]. Neurobiol Dis,2013,51:56- 65. DOI:10. 1016/j.nbd.2012.03.016.
[27] Choi J,Chandrasekaran K,Inoue T,et al. PGC- 1α regulation of mitochondrial degeneration in experimental diabetic neuropathy[J]. Neurobiol Dis,2014,64:118- 130. DOI:10.1016/j.nbd.2014.01.001.
[28] Roy Chowdhury SK,Smith DR,Saleh A,et al. Impaired adenosine monophosphate-activated protein kinase signalling in dorsal root ganglia neurons is linked to mitochondrial dysfunction and peripheral neuropathy in diabetes[J]. Brain,2012,135(Pt 6):1751- 1766. DOI:10.1093/brain/aws097.
[29] Zenker J,Ziegler D,Chrast R. Novel pathogenic pathways in diabetic neuropathy [J]. Trends Neurosci,2013,36(8):439- 449. DOI:10.1016/j.tins.2013. 04.008.
[30] Kelly DP,Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function[J]. Genes Dev,2004,18(4):357- 368. DOI:10.1101/gad.1177604.
[31] Puigserver P,Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC- 1 alpha):transcriptional coactivator and metabolic regulator[J]. Endocr Rev,2003,24(1):78- 90. DOI:10.1210/er.2002- 0012.
[32] Giralt A,Villarroya F. SIRT3,a pivotal actor in mitochondrial functions:metabolism,cell death and aging[J]. Biochem J,2012,444(1):1- 10. DOI:10.1042/BJ20120030.
[33] Yerra VG,Kumar A. Adenosine monophosphate-activated protein kinase abates hyperglycaemia-induced neuronal injunry in experimental models of diabetic neuropathy:Effects on mitochondrial biogenesis,autophagy and neuroinflammation [J]. Mol Neurobiol,2017,54(3):2301- 2312. DOI:10.1007/s12035- 016- 9824- 3.
[34] Price TJ,Das V,Dussor G,et al. Adenosine monophosphate-activated protein kinase(AMPK) activators for the prevention,treatment and potential reversal of pathological pain[J]. Curr Drug Targets,2016,17(8):908- 920.
[35] Cho YR,Lim JH,Kim MY,et al. Therapeutic effects of fenofibrate on diabetic peripheral neuropathy by improving endothelial and neural survival in db/db mice[J]. PLoS One,2014,9(1):e83204. DOI:10.1371/journal.pone.0083204.
[36] Yu X,Zhang L,Yang X,et al. Salvianolic acid A protects the peripheral nerve function in diabetic rats through regulation of the AMPK-PGC1α-Sirt3 axis[J]. Molecules,2012,17(9):11216- 11228. DOI:10.3390/molecules170911216.
[37] Wang BB,Wang JL,Yuan J,et al. Sugar composition analysis of Fuzi polysaccharides by HPLC-MSn and their protective effects on Schwann cells exposed to high glucose[J]. Molecules,2016,21(11):1496. DOI:10.3390/molecules21111496.