姜 渭 李舒麗 李春英
白癜風(fēng)是一種進(jìn)展性皮膚色素脫失性疾病,由皮膚和(或)毛囊的功能性黑素細(xì)胞的減少或缺失引起。該病的患病率約為0.5%~1.0%,局部或泛發(fā)性色素脫失形成白斑為該疾病特征。目前針對白癜風(fēng)發(fā)病機(jī)制,有如下幾種可能理論:氧化應(yīng)激、自身免疫、環(huán)境因素及遺傳機(jī)制等。與其他多發(fā)皮膚病比較,白癜風(fēng)在治療方面的進(jìn)展相對緩慢。
他汀類藥物是一類羥甲基戊二酰輔酶A還原酶抑制劑,為目前治療高脂血癥和心血管系統(tǒng)疾病一線藥物。大量證據(jù)表明,他汀類藥物在清除自由基產(chǎn)物、保護(hù)抗氧化系統(tǒng)及調(diào)節(jié)免疫應(yīng)答上有較好作用,可應(yīng)用于多種氧化應(yīng)激及自身免疫相關(guān)疾病的治療[1-3]。本文圍繞他汀類藥物與白癜風(fēng)在氧化應(yīng)激及免疫調(diào)節(jié)方面的研究進(jìn)展,探討他汀類藥物在治療白癜風(fēng)方面的可能及應(yīng)用前景。
黑素細(xì)胞位于表皮基底層,通過系列氧化還原反應(yīng)產(chǎn)生黑素,抵御紫外線損傷。在黑素合成過程中會有大量活性氧成分產(chǎn)生,因而黑素細(xì)胞更易受到氧化應(yīng)激損傷[4]。已有較多證據(jù)表明累積活性氧成分可導(dǎo)致黑素細(xì)胞DNA損害、脂質(zhì)及蛋白質(zhì)過氧化,是白癜風(fēng)患者黑素細(xì)胞減少的重要病理生理基礎(chǔ)[5]。研究發(fā)現(xiàn),白癜風(fēng)患者黑素細(xì)胞內(nèi)抗氧化酶活性及功能降低[6]。有證據(jù)表明,他汀類藥物能通過清除自由基產(chǎn)物和恢復(fù)抗氧化酶活性的機(jī)制而在氧化應(yīng)激方面起到治療效果[1]。在雙氧水誘導(dǎo)成骨細(xì)胞氧化應(yīng)激損傷模型中,辛伐他汀治療使其氧化應(yīng)激損傷程度降低,進(jìn)一步證明他汀類藥物抗氧化應(yīng)激的作用[7]。在糖尿病-高脂血癥大鼠模型中,他汀類藥物通過上調(diào)細(xì)胞內(nèi)輔酶Q水平進(jìn)而改善抗氧化系統(tǒng)[8]。葡萄糖-6-磷酸脫氫酶(G-6-PD)為一種重要的抗氧化酶并且該酶活性在白癜風(fēng)患者降低。對此,有人發(fā)現(xiàn)辛伐他汀可通過上調(diào)cAMP可促進(jìn)黑素生成、黑素干細(xì)胞增殖及增強(qiáng)(G-6-PD)活性[9]。也有報(bào)道發(fā)現(xiàn)辛伐他汀可通過提高細(xì)胞內(nèi)cAMP濃度發(fā)揮抗氧化應(yīng)激作用[10]。
我們課題組前期研究發(fā)現(xiàn),白癜風(fēng)患者黑素細(xì)胞 Nrf2-ARE通路激活障礙,導(dǎo)致其下游血色素加氧酶-1(HO-1)表達(dá)下調(diào),是導(dǎo)致白癜風(fēng)患者黑素細(xì)胞氧化應(yīng)激及死亡的關(guān)鍵[11,12]。有人也發(fā)現(xiàn)Nrf2還可上調(diào)相應(yīng)的下游基因并合成過氧化氫酶、谷胱甘肽還原酶及NQO1等在黑素細(xì)胞中起至關(guān)重要作用的抗氧化物質(zhì)[13]。Jang等發(fā)現(xiàn),辛伐他汀可通過促進(jìn)Nrf2核轉(zhuǎn)位誘導(dǎo)HO-1表達(dá)來進(jìn)一步產(chǎn)生抗氧化應(yīng)激治療效果[14]。此外,尚有人在體外發(fā)現(xiàn)角質(zhì)細(xì)胞通過SIRT1激活A(yù)kt-ASK1信號進(jìn)而調(diào)節(jié)MAPK通路,使凋亡分子表達(dá)下調(diào)而改善氧化應(yīng)激及黑素細(xì)胞死亡[15]。此外還有證據(jù)表明他汀類藥物可通過上調(diào)SIRT1通路表達(dá)而增強(qiáng)細(xì)胞抗氧化能力[16]。以上證據(jù)提示我們,他汀類藥物可能通過提高細(xì)胞內(nèi)cAMP濃度、誘導(dǎo)Nrf2通路及上調(diào)SIRT1通路調(diào)控白癜風(fēng)氧化應(yīng)激狀態(tài),從而起到治療效果,這也為治療白癜風(fēng)提出可能的治療方案和新的前景。此外,還有學(xué)者認(rèn)為他汀類藥物可通過改善黑素細(xì)胞氧化應(yīng)激損傷來進(jìn)一步預(yù)防黑素細(xì)胞表達(dá)新的抗原表位,間接調(diào)節(jié)自身免疫應(yīng)答并給白癜風(fēng)患者帶來獲益[5]。
大量證據(jù)表明,白癜風(fēng)發(fā)病機(jī)制與自身免疫有密切關(guān)聯(lián)。Michelsen發(fā)現(xiàn)局灶型白癜風(fēng)和泛發(fā)型白癜風(fēng)分別由體液免疫和細(xì)胞免疫介導(dǎo)黑素細(xì)胞破壞[17]。研究發(fā)現(xiàn),將正常人皮膚移植至接受白癜風(fēng)患者血漿的裸鼠,正常皮膚出現(xiàn)了白癜風(fēng)樣表現(xiàn)[18]。有人發(fā)現(xiàn)在白癜風(fēng)患者血清中存在抗黑素細(xì)胞抗體且疾病嚴(yán)重程度與抗體滴度成正相關(guān),隨后,人們分別在發(fā)現(xiàn)針對黑素小體中的酪氨酸酶、gp100/Pmel17、酪氨酸相關(guān)蛋白1和2的抗體[5]。上述發(fā)現(xiàn)確定體液免疫在其發(fā)病中的作用。有研究表明,他汀類藥物可通過抑制腫瘤壞死因子-α(TNF-α)分泌抑制B細(xì)胞分化、特異性抗體形成及抗原提呈細(xì)胞成熟來調(diào)節(jié)體液免疫[3,19]。表明他汀類藥物可能調(diào)節(jié)白癜風(fēng)患者異常體液免疫,從而起到治療效果。
在細(xì)胞免疫方面,Laddha等發(fā)現(xiàn)白癜風(fēng)患者皮損有大量細(xì)胞毒性T細(xì)胞、輔助T細(xì)胞(Th細(xì)胞)及巨噬細(xì)胞的浸潤,其中黑素細(xì)胞特異性的皮膚歸巢CD8+T細(xì)胞可誘導(dǎo)黑素細(xì)胞死亡[5]。Mohamed等在多發(fā)性硬化動物模型中發(fā)現(xiàn)他汀類藥物可以通過抑制單核細(xì)胞浸潤而減輕臨床癥狀[20]。此后有研究明確,他汀類藥物可通過抑制T細(xì)胞而達(dá)到免疫調(diào)控的效果[21,22]。此外,還有研究報(bào)道稱他汀類藥物可通過抑制Th1細(xì)胞分化來抑制TNF-α和干擾素-γ(IFN-γ)等細(xì)胞因子分泌發(fā)揮免疫調(diào)控的效果[23]。提示他汀類藥物可通過抑制在白癜風(fēng)起主要病理作用的CD8+T細(xì)胞及其分泌細(xì)胞因子(TNFα、IFN-γ)達(dá)到治療效果。2015年1月,Agarwal等首次在白癜風(fēng)動物模型中應(yīng)用辛伐他汀后發(fā)現(xiàn)其能通過抑制黑素細(xì)胞特異性CD8+T細(xì)胞的增殖和降低IFN-γ的分泌而逆轉(zhuǎn)皮膚黑色素脫失[24],該研究首次在白癜風(fēng)動物模型中應(yīng)用他汀類藥物治療并且取得較好療效。有研究進(jìn)一步發(fā)現(xiàn),IFN-γ通過誘導(dǎo)分泌趨化因子CXCL10介導(dǎo)黑素細(xì)胞特異性CD8+T細(xì)胞遷移至皮膚并殺傷黑素細(xì)胞,進(jìn)一步確定細(xì)胞免疫在白癜風(fēng)發(fā)生發(fā)展方面起關(guān)鍵作用[25-27]。Rashighi等在小鼠模型和白癜風(fēng)患者中發(fā)現(xiàn)IFN-γ可誘導(dǎo)Th1細(xì)胞因子通路分泌CXCL10因子,這進(jìn)一步提示我們白癜風(fēng)發(fā)病機(jī)制與細(xì)胞免疫(CD8+T和Th1細(xì)胞)及細(xì)胞因子(IFN-γ和CXCL10)密切相關(guān)[27]。而體外研究發(fā)現(xiàn),辛伐他汀可通過抑制CXCL10來調(diào)節(jié)細(xì)胞免疫應(yīng)答[28],這也提示我們他汀類藥物可在細(xì)胞免疫機(jī)制方面治療白癜風(fēng)。結(jié)合以上研究,筆者認(rèn)為有關(guān)干預(yù)白癜風(fēng)免疫相關(guān)環(huán)節(jié)的治療方案可達(dá)到控制甚至治愈白癜風(fēng)的目的。而他汀類藥物恰可通過阻斷上述發(fā)病環(huán)節(jié)有望改善甚至治愈該疾病。
結(jié)合以上研究進(jìn)展,筆者認(rèn)為他汀類藥物在治療白癜風(fēng)方面有較大的應(yīng)用前景,因此有必要將上述成果向臨床應(yīng)用轉(zhuǎn)化。Noel等報(bào)道一例白癜風(fēng)合并高脂血癥的患者使用高劑量辛伐他汀治療時(shí),該患者皮損處表現(xiàn)快速的色素再生[29]。該發(fā)現(xiàn)標(biāo)志著他汀類藥物在治療白癜風(fēng)的臨床研究中邁出了第一步。但圍繞他汀類藥物治療具體機(jī)制、對機(jī)體的副作用及藥物用量尚不能完全明確。此外,除辛伐他汀以外,其他他汀類藥物在療效方面是否有效或優(yōu)于前者尚不清楚[30]。因此,更多圍繞他汀類治療白癜風(fēng)的前瞻性臨床研究值得去嘗試。筆者相信,隨著研究的進(jìn)展,他汀類藥物在治療白癜風(fēng)的應(yīng)用會得到進(jìn)一步的明確。
[1] Mohamadin AM, Elberry AA, Abdel Gawad HS, et al.Protective effects of simvastatin, a lipid lowering agent, against oxidative damage in experimental diabetic rats[J].J Lipids,2011,2011:167958.
[2] Vaughan CJ, Murphy MB, Buckley BM.Statins do more than just lower cholesterol[J].Lancet,1996,348(9034):1079-1082.
[3] Greenwood J, Steinman L, Zamvil SS.Statin therapy and autoimmune disease: from protein prenylation to immunomodulation[J].Nat Rev Immunol,2006,6(5):358-370.
[4] Denat L, Kadekaro AL, Marrot L, et al.Melanocytes as instigators and victims of oxidative stress[J].J Invest Dermatol,2014,134(6):1512-1518.
[5] Laddha NC, Dwivedi M, Mansuri MS, et al.Vitiligo: interplay between oxidative stress and immune system[J].Exp Dermatol,2013,22(4):245-250.
[6] Di Dalmazi G, Hirshberg J, Lyle D, et al.Reactive oxygen species in organ-specific autoimmunity[J].Auto Immun Highlights,2016,7(1):11.
[7] Huang W, Shang WL, Li DH, et al.Simvastatin protects osteoblast against H2O2-induced oxidative damage via inhibiting the upregulation of Nox4[J].Mol Cell Biochem,2012,360(1-2):71-77.
[8] Kuzelova M, Adameova A, Sumbalova Z, et al.The effect of simvastatin on coenzyme Q and antioxidant/oxidant balance in diabetic-hypercholesterolaemic rats[J].Gen Physiol Biophys,2008,27(4):291-298.
[9] Feily A, Namazi MR.Silymarin as a potential novel addition to the limited anti-vitiligo weaponry: an untested hypothesis[J].Int J Clin Pharmacol Ther,2011,49(7):467-468.
[10] Maeda T, Horiuchi N.Simvastatin suppresses leptin expression in 3T3-L1 adipocytes via activation of the cyclic AMP-PKA pathway induced by inhibition of protein prenylation[J].J Biochem,2009,145(6):771-781.
[11] Jian Z, Li K, Song P, et al.Impaired activation of the Nrf2-ARE signaling pathway undermines H2O2-induced oxidative stress response: a possible mechanism for melanocyte degeneration in vitiligo[J].J Invest Dermatol,2014,134(8):2221-2230.
[12] Jian Z, Li K, Liu L, et al.Heme oxygenase-1 protects human melanocytes from H2O2-induced oxidative stress via the Nrf2-ARE pathway[J].J Invest Dermatol,2011,131(7):1420-1427.
[13] Zhu H, Itoh K, Yamamoto M, et al.Role of Nrf2 signaling in regulation of antioxidants and phase 2 enzymes in cardiac fibroblasts: protection against reactive oxygen and nitrogen species-induced cell injury[J].FEBS Lett,2005,579(14):3029-3036.
[14] Jang HJ, Hong EM, Kim M, et al.Simvastatin induces heme oxygenase-1 via NF-E2-related factor 2 (Nrf2) activation through ERK and PI3K/Akt pathway in colon cancer[J].Oncotarget,2016,7(29):46219-46229.
[15] Becatti M, Fiorillo C, Barygina V, et al.SIRT1 regulates MAPK pathways in vitiligo skin: insight into the molecular pathways of cell survival[J].J Cell Mol Med,2014,18(3):514-529.
[16] Tabuchi T, Satoh M, Itoh T, et al.MicroRNA-34a regulates the longevity-associated protein SIRT1 in coronary artery disease: effect of statins on SIRT1 and microRNA-34a expression[J].Clin Sci (Lond),2012,123(3):161-171.
[17] Michelsen D.The double strike hypothesis of the vitiligo pathomechanism: new approaches to vitiligo and melanoma[J].Med Hypotheses,2010,74(1):67-70.
[18] Ongenae K, Van Geel N, Naeyaert JM.Evidence for an autoimmune pathogenesis of vitiligo[J].Pigment Cell Res,2003,16(2):90-100.
[19] Pichler R, Sfetsos K, Badics B, et al.Lymphocyte imbalance in vitiligo patients indicated by elevated CD4+/CD8+ T-cell ratio[J].Wien Med Wochenschr,2009,159(13-14):337-341.
[20] Mohamed A, Reid PF, Raymond L, et al.Amelioration of acute and relapsing stages of the experimental allergic encephalomyelitis by cobra toxins[J].Biomed Sci Instrum,2006,42:399-404.
[21] Kok SH, Lin LD, Hou KL, et al.Simvastatin inhibits cysteine-rich protein 61 expression in rheumatoid arthritis synovial fibroblasts through the regulation of sirtuin-1/FoxO3a signaling[J].Arthritis Rheum,2013,65(3):639-649.
[22] Giovannoni G, Baker D, Schmierer K.Simvastatin in patients with progressive multiple sclerosis[J].Lancet,2014,384(9947):952.
[23] Youssef S, Stuve O, Patarroyo JC, et al.The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease[J].Nature,2002,420(6911):78-84.
[24] Agarwal P, Rashighi M, Essien KI, et al.Simvastatin prevents and reverses depigmentation in a mouse model of vitiligo[J].J Invest Dermatol,2015,135(4):1080-1088.
[25] Harris JE, Harris TH, Weninger W, et al.A mouse model of vitiligo with focused epidermal depigmentation requires IFN-gamma for autoreactive CD8(+) T-cell accumulation in the skin[J].J Invest Dermatol,2012,132(7):1869-1876.
[26] Gregg RK, Nichols L, Chen Y, et al.Mechanisms of spatial and temporal development of autoimmune vitiligo in tyrosinase-specific TCR transgenic mice[J].J Immunol,2010,184(4):1909-1917.
[27] Rashighi M, Agarwal P, Richmond JM, et al.CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo[J].Sci Transl Med,2014,6(223):223.
[28] Wickert LE, Karta MR, Audhya A, et al.Simvastatin attenuates rhinovirus-induced interferon and CXCL10 secretion from monocytic cells in vitro[J].J Leukoc Biol,2014,95(6):951-959.
[29] Noel M, Gagne C, Bergeron J, et al.Positive pleiotropic effects of HMG-CoA reductase inhibitor on vitiligo[J].Lipids Health Dis,2004,3:7.
[30] Palmer G, Chobaz V, Talabot-Ayer D, et al.Assessment of the efficacy of different statins in murine collagen-induced arthritis[J].Arthritis Rheum,2004,50(12):4051-4059.