武立偉++張健飛++張倩
摘要: 基于光滑聚集代數(shù)多重網(wǎng)格法實(shí)現(xiàn)一種用于結(jié)構(gòu)有限元并行計(jì)算的預(yù)條件共軛梯度求解方法。對(duì)計(jì)算區(qū)域進(jìn)行均勻劃分,將這些子區(qū)域分配給各個(gè)進(jìn)程同時(shí)進(jìn)行單元?jiǎng)偠染仃嚨挠?jì)算,并組合形成分布式存儲(chǔ)的整體平衡方程。采用光滑聚集代數(shù)多重網(wǎng)格預(yù)條件共軛梯度法對(duì)整體平衡方程進(jìn)行并行求解,在天河二號(hào)超級(jí)計(jì)算機(jī)上進(jìn)行數(shù)值試驗(yàn),分析代數(shù)多重網(wǎng)格的主要參數(shù)對(duì)算法性能的影響,測(cè)試程序的并行計(jì)算性能。試驗(yàn)結(jié)果表明該方法具有較好的并行性能和可擴(kuò)展性,適合于大規(guī)模實(shí)際應(yīng)用。
關(guān)鍵詞: 有限元法; 光滑聚集; 代數(shù)多重網(wǎng)格; 共軛梯度法; 可擴(kuò)展性
中圖分類號(hào): TB121文獻(xiàn)標(biāo)志碼: A
收稿日期: 2017[KG*9〗07[KG*9〗26修回日期: 2017[KG*9〗09[KG*9〗04
基金項(xiàng)目: 中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)(2016B06414);國(guó)家自然科學(xué)基金委員會(huì)廣東聯(lián)合基金超級(jí)計(jì)算科學(xué)應(yīng)用研究專項(xiàng)
作者簡(jiǎn)介: 武立偉(1993—),男,山東淄博人,碩士研究生,研究方向?yàn)楦咝阅苡?jì)算,(Email)liweiwu@hhu.edu.cn;
張健飛(1977—),男,江蘇海門人,副教授,研究方向?yàn)楦咝阅苡?jì)算與計(jì)算力學(xué),(Email)jianfei@hhu.edu.cn
Implementation of parallel finite element computation
based on smoothed aggregation algebraic multigrid
WU Liwei,ZHANG Jianfei,ZHANG Qian
(College of Mechanics and Materials, Hohai University, Nanjing 211100, China)
Abstract: Based on the smoothed aggregation algebraic multigrid, a preconditioned conjugate gradient method for parallel structural finite element computation is proposed. The structure is divided into substructures evenly, the substructures are assigned to processes to calculate the element stiffness matrix simultaneously, and the global equilibrium equations in the distributed storage are assembled. The parallel solution of the global equilibrium equations are improved by the smoothed algebraic multigrid preconditioned conjugate gradient method. The numerical test is carried out on the Tianhe 2 super computer. The influence of the main parameters of algebraic multigrid on the algorithm performance is analyzed, and the parallel computation performance of the process is assessed. The numerical results show that the proposed implementation is of good parallel performance and scalability, and it can be used in largescale applications.
Key words: finite element method; smoothed aggregation; algebraic multigrid; conjugate gradient method; scalability
0引言
有限元法是工程結(jié)構(gòu)分析的一種重要數(shù)值方法。隨著工程規(guī)模不斷擴(kuò)大、工程復(fù)雜性不斷增加和計(jì)算精度要求不斷提高,傳統(tǒng)的串行有限元程序的計(jì)算規(guī)模和計(jì)算速度都已經(jīng)不能滿足需求,迫切需要發(fā)展能夠在超級(jí)計(jì)算機(jī)上高效運(yùn)行的可擴(kuò)展有限元并行算法和程序。目前,傳統(tǒng)有限元并行計(jì)算中常用的并行算法主要有子結(jié)構(gòu)并行算法[1]、多波前法[2]和預(yù)條件共軛梯度法[34]等。這些方法中的直接法計(jì)算量和存儲(chǔ)量大、并行程度不高,預(yù)條件共軛梯度法中的預(yù)條件為提高并行性而降低收斂性,也無法適應(yīng)大規(guī)模應(yīng)用。代數(shù)多重網(wǎng)格法[56]不需要幾何網(wǎng)格信息,僅從方程組代數(shù)結(jié)構(gòu)出發(fā),形成虛擬的粗細(xì)網(wǎng)格,以達(dá)到加速收斂的目的。該方法具有存貯量小、收斂快和可擴(kuò)展性好等優(yōu)點(diǎn),將其用于結(jié)構(gòu)有限元大規(guī)模并行計(jì)算,可以進(jìn)一步增大計(jì)算規(guī)模、提高計(jì)算速度,能滿足現(xiàn)代工程結(jié)構(gòu)分析與設(shè)計(jì)的要求。
本文基于光滑聚集型代數(shù)多重網(wǎng)格法[7],實(shí)現(xiàn)一種用于結(jié)構(gòu)有限元大規(guī)模并行計(jì)算的預(yù)條件共軛梯度方法,并在天河二號(hào)超級(jí)計(jì)算機(jī)上對(duì)不同的聚集策略、光滑迭代算法和粗網(wǎng)格求解方法進(jìn)行影響分析,測(cè)試和分析程序的并行性能。
1有限元計(jì)算
有限元法是通過連續(xù)體的離散與分片插值,將求解物理問題的控制微分方程轉(zhuǎn)變?yōu)榍蠼饩€性代數(shù)方程組的一種近似數(shù)值算法。首先,將問題的求解區(qū)域剖分成有限個(gè)單元的集合,在單元內(nèi)用分片插值表示待定函數(shù)的分布;然后,由變分原理獲得定解問題的線性代數(shù)方程組;最后,求解該方程組即可得到待定函數(shù)的數(shù)值解。endprint