袁茂翼,葉發(fā)銀,雷琳,趙國(guó)華,2*
1(西南大學(xué) 食品科學(xué)學(xué)院,重慶,400715)2(重慶市特色食品工程技術(shù)研究中心, 重慶, 400175)
纖維二糖水解酶的研究進(jìn)展
袁茂翼1,葉發(fā)銀1,雷琳1,趙國(guó)華1,2*
1(西南大學(xué) 食品科學(xué)學(xué)院,重慶,400715)2(重慶市特色食品工程技術(shù)研究中心, 重慶, 400175)
纖維素是世界上最豐富的可再生資源,將其降解為小分子糖并轉(zhuǎn)化為燃料或精細(xì)化學(xué)品一直是研究的難點(diǎn)和熱點(diǎn)。纖維二糖水解酶是生物降解纖維素的關(guān)鍵酶之一,它屬于外切酶,作用于結(jié)晶纖維素的鏈末端依次切開相隔的β-1,4-糖苷鍵,釋放纖維二糖。論文對(duì)纖維二糖水解酶的來(lái)源、分類、結(jié)構(gòu),對(duì)纖維素的作用機(jī)理、酶學(xué)性質(zhì)、分子進(jìn)化、商業(yè)酶制劑生產(chǎn)情況及其應(yīng)用特性進(jìn)行了總結(jié),同時(shí)對(duì)該研究進(jìn)行了展望。
纖維二糖水解酶;酶學(xué)性質(zhì);結(jié)構(gòu);催化機(jī)理;應(yīng)用
纖維素酶是能將纖維素水解的酶的統(tǒng)稱,是一類復(fù)雜的多酶體系,主要包括內(nèi)切葡聚糖酶(EC3.2.1.4)、外切葡聚糖酶(EC3.2.1.91和EC 3.2.1.176)和β-葡萄糖苷酶(EC3.2.1.21),它們協(xié)同作用于纖維素使其徹底降解為葡萄糖。其中,內(nèi)切葡聚糖酶主要作用于纖維素的非結(jié)晶區(qū),將纖維素長(zhǎng)鏈降解為小分子纖維素或寡糖鏈;外切葡聚糖酶又稱作纖維二糖水解酶(cellobiohydrolase,CBH),與內(nèi)切葡聚糖酶協(xié)同作用并負(fù)責(zé)降解纖維素的結(jié)晶區(qū),將纖維素鏈剝離并水解β-1,4-糖苷鍵釋放纖維二糖[1]。β-葡萄糖苷酶不直接作用于纖維素,主要是將內(nèi)切葡聚糖酶和外切葡聚糖酶作用產(chǎn)生的寡糖鏈和纖維二糖水解為葡萄糖。鑒于CBH在食品物料改性以及生物質(zhì)能源生產(chǎn)上巨大的應(yīng)用潛能,本文在主要查閱國(guó)內(nèi)外近10年文獻(xiàn)的基礎(chǔ)上,對(duì)CBH生物來(lái)源、理化特征及潛在應(yīng)用進(jìn)行了綜述,并對(duì)CBH研究中存在的問(wèn)題和今后的研究方向進(jìn)行了探討,以期推動(dòng)CBH的深入研究及產(chǎn)業(yè)化應(yīng)用。
目前,對(duì)CBH的命名法主要包括EC法、CAZy法和mycoCLAP法等。在酶的國(guó)際系統(tǒng)分類編號(hào)(EC)中,纖維二糖水解酶占兩個(gè)編號(hào):EC3.2.1.91(GH5、GH 6、GH 9)和EC 3.2.1.176(GH7、GH 9、GH 48),其中CBHⅠ(EC 3.2.1.176)作用于纖維素鏈的還原端,CBHⅡ(EC 3.2.1.91)作用于纖維素鏈的非還原端[2-3]。真菌是纖維二糖水解酶的主要來(lái)源,主要是木霉、青霉和曲霉,且菌株多為野生型;另外也有產(chǎn)生CBH的細(xì)菌,但其產(chǎn)量比較低,因此相關(guān)研究不多(表1)。
表1 纖維二糖水解酶的來(lái)源Table 1 The source of cellobiohydrolasees
CAZy數(shù)據(jù)庫(kù)(http://www.cazy.org/)是專門針對(duì)碳水化合物活性酶的基因組、結(jié)構(gòu)和生物化學(xué)信息的開放獲取網(wǎng)絡(luò)。CAZy數(shù)據(jù)庫(kù)根據(jù)酶催化結(jié)構(gòu)域氨基酸序列的相似性[4-5],將已報(bào)道的糖苷水解酶劃歸為144個(gè)家族,其中真菌CBH歸屬到GH6和GH7兩個(gè)糖苷水解酶家族,對(duì)于細(xì)菌來(lái)源的CBH屬于GH48、GH9、GH6、GH5。此外,mycoCLAP數(shù)據(jù)庫(kù)(http://mycoclap.fungalgenomics.ca)提供木質(zhì)纖維素相關(guān)酶和活性蛋白質(zhì)的信息,該數(shù)據(jù)庫(kù)提供的命名法能直接反映出酶的功能、所屬糖苷水解酶家族以及來(lái)源微生物的種屬信息。如名稱為CBH6A_COPCI的酶指來(lái)自Coprinopsiscinerea,屬于GH6家族的纖維二糖水解酶。
里氏木霉(Trichodermareesei)CBH是真菌CBH的典型代表,對(duì)其結(jié)構(gòu)的研究也最為完善。研究CBH結(jié)構(gòu)發(fā)現(xiàn)包含了具有降解活性的催化結(jié)構(gòu)域(catalytic domain,CD)和吸附纖維素的纖維素結(jié)合結(jié)構(gòu)域(cellulose binding domain,CBD),這兩個(gè)結(jié)構(gòu)域由一段O-糖肽鏈的連接橋(linker)相連接。里氏木霉CBH的CBD為“楔型”結(jié)構(gòu),一面親水,另一面疏水,且親水面上的3個(gè)酪氨酸殘基組成纖維素的吸附位點(diǎn)[6]。這些結(jié)構(gòu)域位于肽鏈的羧基端(C-端)或氨基端(N-端)。在此基礎(chǔ)上也有人研究其他菌,比如來(lái)自NeocallimastixpatriciarumJ11的CBH的CBD位于N-端,包含Asn、Ala、Gly和Gla等殘基,而CD位于C-端,其連接橋包含Asn(28.8%)、Ala(13%)、Gly(13.7%)和Gla(10.1%)[7]。CBH的糖基化包括CD的N-糖基化和連接橋的O-糖基化,前者發(fā)生在天冬酰胺殘基上,后者發(fā)生在絲氨酸和蘇氨酸殘基上[8]。有報(bào)道認(rèn)為高度糖基化會(huì)降低重組里氏木霉CBHⅠ對(duì)結(jié)晶纖維素的水解活性[9]。
里氏木霉CBHⅠ的CD的結(jié)構(gòu)在1994年被解析,為反平行β-折疊形成的三明治主體結(jié)構(gòu),包含有4個(gè)短α-螺旋和β-束形成的線圈結(jié)構(gòu),并有10個(gè)二硫鍵[10],CBHⅠ通道至少有10個(gè)結(jié)合位點(diǎn)(-7到+3)[11],4個(gè)色氨酸殘基(Trp)促進(jìn)纖維素糖單元的疏水堆積相互作用,這4個(gè)Trp分別是進(jìn)口處的Trp-40,中心處的Trp-38,圍繞催化位點(diǎn)的Trp-367和Trp-376[12]。催化活性位點(diǎn)的3個(gè)氨基酸在催化機(jī)制中起著關(guān)鍵作用,Glu-217是催化酸和催化基礎(chǔ),Glu-212是形成酶-糖基中間產(chǎn)物的親核試劑,Asp-214通過(guò)側(cè)鏈氫鍵與親核試劑形成穩(wěn)態(tài)相互作用[11]。研究Phanerochaetechrysosporium的Cel7A發(fā)現(xiàn),N端氨基酸谷氨酰胺循環(huán)產(chǎn)生焦谷氨酸殘基,有Asn188和Asn286兩個(gè)潛在的糖基化位點(diǎn)。Asn 286結(jié)合N-乙酰氨基葡萄糖[4]。
目前已確定約有130個(gè)不同的CBD的結(jié)構(gòu)。根據(jù)其氨基酸序列的相似性劃分為13個(gè)不同的CBD家族。同一家族中的CBD的結(jié)構(gòu)相似,而不同家族的CBD結(jié)構(gòu)具有拓?fù)湫?。真菌CBH的CBD大約由35個(gè)氨基酸殘基構(gòu)成[13]。脫離了母體CBH的CBD沒(méi)有催化活性,不能水解纖維素。王祿山等[14]提出CBD在CBHⅠ降解纖維素過(guò)程中擔(dān)負(fù)兩個(gè)角色:1)通過(guò)其吸附于纖維素表面而增加底物與酶的接觸;2)裂解纖維素晶體表面的纖維素分子間的氫鍵。敲除CBD編碼序列后獲得的CBH對(duì)不溶性纖維素的水解活性明顯下降,而對(duì)可溶性纖維素的降解作用沒(méi)有明顯影響。Cel1和CelD是來(lái)自Aspergillusniveus的屬于GH7家族的兩種CBH,它們有相似的CD,但前者有CBD后者沒(méi)有,發(fā)現(xiàn)Cel1對(duì)結(jié)晶纖維素降解活性明顯大于CelD[15]。
連接橋是一段高度糖基化的多肽,它的長(zhǎng)短控制著CBH的CBD和CD間的距離,并對(duì)酶的構(gòu)象和活性有顯著影響。連接橋的有效長(zhǎng)度及柔性是CBH發(fā)揮催化活性所必需的。絲狀真菌CBH的連接橋一般包含30~40個(gè)氨基酸殘基,而細(xì)菌CBH則由約100個(gè)氨基酸殘基組成[6]。
CBH對(duì)游離纖維素鏈的水解機(jī)理首先是纖維素鏈結(jié)合到CBD上,并推動(dòng)其進(jìn)入CD的催化通道,CD沿著纖維素鏈滑動(dòng),進(jìn)而從還原端或非還原端以纖維二糖為切割單元被降解(圖1)。CBD與酶底物結(jié)合包括氫鍵結(jié)合和疏水作用[16]。但截至目前,CBH對(duì)結(jié)晶纖維素的降解機(jī)理仍然不清楚,其過(guò)程推測(cè)如下[14-15]: 1)CBH通過(guò)其CBD的介導(dǎo)吸附到結(jié)晶纖維素表面(錨定)[4];2)錨定的CBH鏈在結(jié)晶纖維素表面擴(kuò)散移動(dòng)的過(guò)程中,CD可識(shí)別到裸露于結(jié)晶纖維素表面的纖維素鏈末端(還原端或非還原端)并與之結(jié)合,使糖苷鍵水解并釋放纖維二糖。
圖1 纖維二糖水解酶的作用機(jī)理[46]Fig.1 The action mechanism of cellobiohydroalses[46]
表2給出了常見CBH的來(lái)源菌、分類及酶學(xué)特性。由表2可知,不同CBH的最適pH范圍為3.0~9.0,大多數(shù)位于4.5~6.0的范圍內(nèi);最適催化溫度為35~70 ℃,分子質(zhì)量約40~70 kDa,CBH的活性主要受pH、溫度、金屬離子、產(chǎn)物反饋抑制以及其他成分的影響。COLUSSI等[17]對(duì)來(lái)自Trichodermaharzianum的CBH(ThCel7A)研究發(fā)現(xiàn),在pH3~5范圍內(nèi),酶活性隨著pH值增大而提升;在pH5~7范圍內(nèi),酶活性隨著pH值增大而降低。pH=5時(shí),在20~50 ℃范圍內(nèi)酶活性隨溫度上升而增加;當(dāng)溫度超過(guò)50 ℃,酶分子發(fā)生變性其活性顯著降低。WANG等[7]發(fā)現(xiàn),Hg2+和Ag+對(duì)來(lái)自NeocallimastixpatriciarumJ11的CBH有強(qiáng)烈抑制作用,該菌的酶在大腸桿菌表達(dá)后,加入10 mmol Hg2+可使酶完全失活,而10 mmol的Ag+使酶僅保留9%的活性。而對(duì)來(lái)自產(chǎn)紫青霉(Penicilliumpurperogenum)HBZ003的CBH,F(xiàn)e2+與Mn2+表現(xiàn)出較強(qiáng)的激活作用,Ca2+、Co2+、Cu2+有弱的激活作用,而Mg2+、Zn2+及Al3+則呈現(xiàn)抑制作用[18]。
表2 常見纖維二糖水解酶的來(lái)源菌、分類及酶學(xué)特性Table 2 The origin, classification and enzymatic properties of common cellobiohydroalses
酶解產(chǎn)物纖維二糖對(duì)CBH有反饋抑制作用,尤其對(duì)CBHⅠ的影響更明顯[8,19-20]。KARI等[21]發(fā)現(xiàn),β-型纖維二糖比α-型的抑制作用更強(qiáng),抑制常數(shù)可達(dá)12.5 μmol/L。BARAMEE等[22]發(fā)現(xiàn),低于100 mmol/L的纖維二糖對(duì)來(lái)自Cellulomonasfimi的CBH無(wú)抑制作用,而在255 mmol/L時(shí)其抑制作用可達(dá)50%。向反應(yīng)液中添加β-葡萄糖苷酶、纖維二糖磷酸化酶[23]、纖維二糖脫氫酶[24]可有效消除反饋抑制。半胱氨酸可通過(guò)與CBH酶蛋白分子發(fā)生巰基-二硫鍵交換反應(yīng)而引起酶失活[25]。可溶性木聚糖能與CBH的CBD結(jié)合,從而競(jìng)爭(zhēng)性地影響酶與纖維素鏈的結(jié)合而降低催化效率[26]。多酚類物質(zhì)以及漆酶氧化形成的酚低聚物對(duì)CBH也有明顯的抑制作用[27]。
來(lái)自于天然真菌的CBH雖然種類多,但往往其酶產(chǎn)量不高,適宜pH范圍窄,易發(fā)生熱變性以及底物反饋抑制明顯,這些缺陷嚴(yán)重限制了CBH的工業(yè)化應(yīng)用。人們?cè)噲D通過(guò)構(gòu)建基因工程菌株來(lái)克服這些缺點(diǎn)。表3給出目前CBH基因工程菌株構(gòu)建情況及對(duì)酶特性的改善情況。
表3 CBH基因工程菌株構(gòu)建宿主及酶特性改善情況Table 3 Construction of CBH gene engineering strains and improvement of enzyme characteristics
由表3可以看出,目前構(gòu)建CBH基因工程菌株選擇的表達(dá)宿主主要有大腸桿菌、酵母(畢赤酵母、釀酒酵母、解脂耶氏酵母等)、絲狀真菌(木霉、曲霉和青霉等)[8]。通過(guò)基因工程可有效提升CBH酶的熱穩(wěn)定性,拓寬其適宜工作pH范圍,降低產(chǎn)物的反饋抑制作用以及提升酶的產(chǎn)量。但總的來(lái)看,對(duì)酶熱穩(wěn)定性的改善效果較好,但在提升酶產(chǎn)量等方面效果還不十分理想。
目前用于商業(yè)纖維二糖水解酶酶制劑生產(chǎn)的菌株主要是里氏木霉(Trichodermareesei)和長(zhǎng)枝木霉(Trichodermalongibrachiatum)。生產(chǎn)商業(yè)里氏木霉CBH的公司主要有Sigma-Aldrich、嘉漢生物科技有限公司和杰能科國(guó)際股份有限公司。如Sigma-Aldrich公司生產(chǎn)的Celluclast 1.5L以Avicel和pNPC為底物的比酶活分別為0.343 U/mg[28]和0.06 U/mg[29]。而愛(ài)爾蘭Megazyme、安必奇(Creative Enzymes)和BIOHJ慧嘉生物等都利用長(zhǎng)枝木霉生產(chǎn)。如Megazyme的CBHI為無(wú)色粉末狀,易溶于水,最適pH為6.0,以底物CMC為底物的比酶活為0.1U/mg[30]。除此之外,也有用其他微生物生產(chǎn)商業(yè)CBH的案例,如嘉漢生物科技有限公司利用PenicilliumoxalicumJU-A10生產(chǎn)的酶以pNPC為底物的比酶活為0.21 U/mg[29]。研究還發(fā)現(xiàn),來(lái)自真菌(釀酒酵母、畢赤酵母和解脂耶氏酵母)的CBH為高糖基化CBH,對(duì)可溶性底物或非結(jié)晶纖維素活性低[31],但來(lái)自釀酒酵母的CBH很適合工業(yè)酒精的生產(chǎn)[32]。李亞玲等[33]研究發(fā)現(xiàn),來(lái)自嗜熱毛殼菌(Chaetomiumthermophilum)CBH的比酶活為1.45 U/mg,回收率為5.25%,半衰期為1h(70 ℃)。目前商業(yè)化CBH產(chǎn)品生產(chǎn)存在的主要問(wèn)題是酶活性、酶熱穩(wěn)定性、pH耐受范圍均不理想。OLIVEIRA等[34]發(fā)現(xiàn)來(lái)自Humicolagriseavar.thermoidea的rCBHI.2有較高的最適溫度(60 ℃)、較寬的pH耐受范圍(pH4.0~9.0,最適pH為8.0)和良好的熱穩(wěn)定性(70 ℃-240 min可保留88%活性)。
在食品工業(yè)中,CBH主要可作為加工助劑提升加工效率或改善產(chǎn)品的品質(zhì)。利用來(lái)自太瑞斯梭孢殼霉(Thielaviaterrestris)的CBH與商業(yè)酶CellicCTec2共同對(duì)棕櫚果進(jìn)行前處理,可大幅度提升其出油率,其出油率與單獨(dú)商業(yè)酶CellicCTec2作用相比提升了39%[35]。VAILLANT等[36]在百香果汁中加入果膠酶(85 U/L)、CBH(100 U/L)和內(nèi)切葡聚糖酶(700 U/L),在30 ℃保溫處理1 h可使其中的果泥完全液化。向蘋果勻漿中添來(lái)自黑曲霉(Aspergillusniger)的CBH(29 U/mL)和果膠酶(50 U/mL),在40 ℃處理24 h后獲得的蘋果混濁汁的穩(wěn)定性顯著改善[5]。在加工脆皮面包和餅干時(shí),向面團(tuán)中添加羧甲基纖維素酶(9 300 U/g)、CBH(3 800 U/g)和木聚糖酶(2 500 U/g),可降低面包的吸水率并提升其加工性能[5]。在面包生產(chǎn)中使用CBH酶制劑可減少乳化劑的用量[37]。
目前CBH的應(yīng)用基本停留在實(shí)驗(yàn)室研究階段,規(guī)?;I(yè)應(yīng)用尚未實(shí)現(xiàn),核心原因是尚不能提供價(jià)廉物美的商業(yè)化酶制劑或高產(chǎn)菌株。但就目前的研究情況來(lái)看,CBH未來(lái)在生物工程領(lǐng)域的潛在應(yīng)用主要包括纖維二糖的生產(chǎn)、生物燃料的生產(chǎn)、纖維性物料的改性等。纖維二糖是CBH作用于纖維素的主要產(chǎn)物,它是重要的化工原料,可作為生產(chǎn)山梨醇[38]、丙酮[39]、丁醇[40]、丁二醇[41]和乳酸[41-42]的原料。以嗜熱芽孢桿菌屬(ThermophilicBacilluscoagulans)WCP10-4為例,利用纖維二糖作為唯一的碳源,不用額外加入β-葡萄糖苷酶就可有效地轉(zhuǎn)化纖維二糖為L(zhǎng)-乳酸,200 g/L的纖維二糖轉(zhuǎn)化為 196.3 g/L 的L-乳酸,產(chǎn)率達(dá)到 97.8%[41]。由于能源的短缺,生物燃料的生產(chǎn)備受關(guān)注。為不與人爭(zhēng)糧,生物燃料生產(chǎn)的最佳原料應(yīng)為自然界豐富的纖維素,目前常用富含木質(zhì)纖維素的農(nóng)業(yè)廢棄物(秸稈等)和固體垃圾(餐飲垃圾等)為原料生產(chǎn)[43]。其關(guān)鍵是將原料中的木質(zhì)纖維素轉(zhuǎn)化為可發(fā)酵的糖,進(jìn)而通過(guò)生物轉(zhuǎn)化形成諸如乙醇的生物燃料。目前常采用含有內(nèi)切葡聚糖酶、纖維二糖水解酶、β-葡萄糖苷酶等在內(nèi)的特定纖維素降解酶組合來(lái)實(shí)現(xiàn)纖維素向可發(fā)酵糖的轉(zhuǎn)化[5,44-45]。如利用可表達(dá)里氏木霉內(nèi)切葡聚糖酶,CBHⅡ和棘孢曲霉β-葡萄糖苷酶釀酒酵母基因工程菌株作用于非結(jié)晶纖維素和離子液體溶脹纖維素,60 h后發(fā)酵液中乙醇含量可達(dá)2.1 g/L[4]。
微生物來(lái)源的纖維二糖水解酶具有良好的工業(yè)應(yīng)用前景。在食品領(lǐng)域,纖維二糖水解酶可與其他食品酶制劑協(xié)同降解水果及油料果實(shí)細(xì)胞壁多糖,以利于提高出汁率或榨油率,在釀造工業(yè)中,可降解啤酒中的多糖,以利于啤酒過(guò)濾澄清,在其他工業(yè)領(lǐng)域,纖維二糖水解酶可用于纖維二糖的生產(chǎn),紡織工業(yè)中天然纖維物料的改性,以及能源工業(yè)中燃料乙醇的生產(chǎn)等等。雖然近年來(lái)對(duì)于纖維二糖水解酶的研究取得了突出成績(jī),但仍存在許多值得深入探討的問(wèn)題:1)纖維二糖水解酶作為纖維素酶大家族的一類關(guān)鍵酶,其催化水解結(jié)晶纖維素的機(jī)制有待進(jìn)一步明確,比如酶與底物相互作用的精確模式、纖維二糖水解酶與其他纖維素酶的協(xié)同機(jī)制等;2)獲得具有商業(yè)價(jià)值的酶制劑是纖維二糖水解酶走向工業(yè)應(yīng)用的重要途徑。一方面,通過(guò)高通量篩選技術(shù)挖掘新的酶種;另一方面,通過(guò)分子進(jìn)化來(lái)改善酶的作用條件和催化性能,對(duì)于食品用途酶的生產(chǎn)菌株,還需重視來(lái)源菌株的安全性評(píng)價(jià);3)要進(jìn)一步探索纖維二糖水解酶在食品領(lǐng)域的潛在利用方面,如對(duì)結(jié)晶纖維素的有限可控降解,使獲得新型食品配料或添加劑成為可能。
[1] GUSAKOV A V. Alternatives toTrichodermareeseiin biofuel production[J]. Trends in Biotechnology,2011, 29(9): 419-425.
[2] HAMID S B A, ISLAM M M, DAS R. Cellulase biocatalysis: key inuencing factors and mode of action[J]. Cellulose. 2015, 22(4): 2 157-2 182.
[3] FANG Hao, XIA Li-ming. Cellulase production by recombinantTrichodermareeseiand its application in enzymatic hydrolysis of agricultural residues[J]. Fuel,2015, 143: 211-216.
[4] CHUKEATIROTE E, MAHARACHCHIKUMBURA S S N, WONGKHAM S, et al. Cloning and sequence analysis of the cellobiohydrolase I genes from some basidiomycetes[J]. Mycobiology,2012, 40 (2): 107-110.
[5] JUTURU V, WU J C. Microbial cellulases: Engineering, production and applications[J]. Renewable and Sustainable Energy Reviews,2014, 33(6): 188-203.
[6] KRAULIS P J, CLORE G M, NILGES M, et al. Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I fromTrichodermareesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing[J]. Biochemistry,1989, 28(18): 7 241-7 257.
[7] WANG Hui-chang, CHEN Yo-chia, HUANG Ching-tsan, et al. Cloning and characterization of a thermostable and pH-stable cellobiohydrolase fromNeocallimastixpatriciarumJ11[J]. Protein Expression and Purication,2013, 90(2): 153-159.
[8] ZOGLOWEK M, LüBECK P S, AHRING B K, et al. Heterologous expression of cellobiohydrolases inlamentous fungi-An update on the current challenges, achievements and perspectives[J]. Process Biochemistry,2015, 50(2): 211-220.
[9] GUSAKOV A V, DOTSENKO A S, ROZHKOVA A M, et al. N-Linked glycans are an important component of the processive machinery of cellobiohydrolases[J]. Biochimie,2017, 132: 102-108.
[10] DIVNE C, STAHLBERG J, RENINIKAINEN T, et al. The three-dimensional crystal structure of the catalysis core of cellobiohydrolases I fromTrichodermareesei[J]. Science,1994, 265 (5171): 524-528.
[11] GHATTYVENKATAKRISHNA P K,ALEKOZAI E M,BECKHAM G T,et al. Initial recognition of a cellodextrin chain in the cellulose-binding tunnel may affect cellobiohydrolase directional specificity[J]. Biophysical Journal,2013, 104(4): 904-912.
[12] NAKAMURA A,TSUKADA T,AUER S, et al. The tryptophan residue at the active site tunnel entrance ofTrichodermareeseicellobiohydrolase Cel7A is important for initiation of degradation of crystalline cellulose[J]. Journal of Biological Chemistry,2013, 288(19): 13 503-13 510.
[13] KUHAD R C, DESWAL D, SHARMA S, et al. Revisiting cellulase production and redening current strategies based on major challenges[J]. Renewable & Sustainable Energy Reviews,2016, 55: 249-272.
[14] 王祿山, 張玉忠, 高培基. 纖維二糖水解酶I吸附結(jié)構(gòu)域的新功能[J]. 中國(guó)科學(xué)C輯:生命科學(xué), 2008,38(7): 678-686.
[15] SEGATO F, DAMASIO A R L, GONCALVES T A, et al. Two structurally discrete GH7-cellobiohydrolases compete for the same cellulosic substrate fiber[J]. Biotechnol Biofuels,2012, 5(1): 21.
[16] 王春卉, 汪天虹, 高培基. 纖維素酶分子的纖維素吸附區(qū)的研究進(jìn)展[J]. 纖維素科學(xué)與技術(shù), 1997, 5 (4): 1-10.
[17] COLUSSI F, GARCIA W, ROEEETO F R, et al. Effect of pH and temperature on the global compactness, structure, and activity of cellobiohydrolase Cel7A fromTrichodermaharzianum[J]. European Biophysics Journal. 2012, 41(1): 89-98.
[18] 王一多. 紅樹林產(chǎn)紫青霉HBZ003纖維二糖水解酶的分離純化及其基因克隆[D]. ??冢汉D洗髮W(xué), 2013.
[19] KUNAMNENI A, PLOU F J, ALCALDE M, et al. Chapter 24-trichoderma enzymes for food industries[J]. Biotechnology and Biology of Trichoderma, 2014: 339-344.
[20] TAKAHASHI M, TAKAHASHI H, NAKANO Y, et al. Characterization of a cellobiohydrolase (MoCel6A) produced byMagnaportheoryzae[J]. Applied & Environmental Microbiology, 2010, 76(19): 6 583-6 590.
[21] KARI J, KONT R, BORCH K, et al. Anomeric selectivity and product profile of a processive cellulase[J]. Biochemistry, 2017, 56(1): 167-178.
[22] BARAMEE S, TEERAVIVATTANAKIT T, PHITSUWAN P, et al. A novel GH6 cellobiohydrolase fromPaenibacilluscurdlanolyticusB-6 and its synergistic action on cellulose degradation[J]. Applied Microbiology and Biotechnology, 2017, 101(3): 1 175-1 188.
[23] WANG Min, LU Xue-feng. Exploring the synergy between cellobiose Dehydrogenase fromPhanerochaetechrysosporiumand cellulase fromTrichodermareesei[J]. Frontiers in Microbiology,2016, 7(113):620.
[24] HILDEBRAND A, BENNETT ADDISON J, KASUGA J, et al. Cellobionic acid inhibition of cellobiohydrolase I and cellobiose dehydrogenase[J]. Biochemical Engineering Journal,2016, 109: 236-242.
[25] WU I, HEEL T, ARNOLD F H. Role of cysteine residues in thermal inactivation of fungal Cel6A cellobiohydrolases[J]. Biochimica et Biophysica Acta. 2013, 1 834(8): 1 539-1 544.
[26] XIN Dong-lin,GE Xiao-yan, SUN Zong-ping,et al. Competitive inhibition of cellobiohydrolase I by manno-oligosaccharides[J]. Enzyme & Microbial Technology,2015, 68: 62-68.
[27] OLIVA-TARAVILLA A, TOMS-PEJE, DEMUEZ M, et al. Phenols and lignin: Key players in reducing enzymatic hydrolysis yields of steam-pretreated biomass in presence of laccase[J].Journal of Biotechnology,2016, 218: 94-101.
[28] PINHEIRO G L, AZEVEDO-MARTINS A C D, ALBANO R M,et al. Comprehensive analysis of the cellulolytic system reveals its potential for deconstruction of lignocellulosic biomass in a novelStreptomycessp.[J]. Applied Microbiology Biotechnology, 2017, 101 (1) : 301-319.
[29] SONG Wen-xia, HAN Xiao-long, QIAN Yuan-chao, et al. Proteomic analysis of the biomass hydrolytic potentials ofPenicilliumoxalicumlignocellulolytic enzyme system[J]. Biotechnology Biofuels, 2016, 9 (1) : 1-15.
[30] http://www.so.com/link?url=http%3A%2F%2Fwww.labbase.net%2FSupply%2FSupplyItems-2826114.html&q=CBHI%E7%94%9F%E4%BA%A7%E5%85%AC%E5%8F%B8&ts=1497834045&t=b2f4a9980057f78e03be8ce7b0bc7bc&src=haosou.
[31] RIBEIRO O,WIEBE M,ILMéN M, et al. Expression ofTrichodermareeseicellulases CBHI and EGI inAshbyagossypii[J]. Applied Microbiology and Biotechnology,2010, 87(4): 1 437-1 446.
[32] HAAN R D, KROUKAMP H, ZYL J H D V, et al. Cellobiohydrolase secretion by yeast: Current state and prospects for improvement[J]. Process Biochemistry, 2013, 48(1): 1-12.
[33] 李亞玲, 李多川, 滕芳超. 嗜熱毛殼菌外切葡聚糖纖維二糖水解酶的純化和部分性質(zhì)研究[J]. 微生物學(xué)報(bào), 2006, 46 (1): 143-146.
[34] SONG Jin-zhu,LIU Bei-dong,LIU Zhi-hua, et al. Cloning of two cellobiohydrolase genes fromTrichodermavirideand heterogenous expression in yeastSaccharomycescerevisiae[J]. Molecular Biology Reports,2010, 37(4): 2 135-2 140.
[35] WOON J S, MACKEEN M M, MAHADI N M, et al. Expression and characterization of a cellobiohydrolase (CBH7B) from the thermophilic fungusThielaviaterrestrisinPichiapastoris[J]. Biotechnology & Applied Biochemistry, 2016, 63(5): 690-698.
[36] VAILLANT F, MILLAN P, JARIEL O, et al. Optimization of enzymatic preparation for passion fruit juice liquefaction by fractionation of fungal enzymes through metal chelate affinity chromatography[J]. Food Biotechnology, 1999, 13(1): 33-50.
[37] SHARMA A, TEWARI R, RANA S S, et al. Cellulases: Classification, methods of determination and industrial applications[J]. Applied Microbiol Biotechnology, 2016, 179(8): 1 346-1 380.
[38] ALMEIDA J M A R, VIL D, CARP D, et al. Screening of mono-and bi-functional catalysts for the one-pot conversion of cellobiose into sorbitol[J]. Catalysis Today, 2017, 279: 187-193.
[39] 熊蓮, 潘微, 陳新德, 等. 纖維二糖發(fā)酵生產(chǎn)丙酮丁醇[J]. 生物加工過(guò)程, 2012, 10(2):1-5.
[40] TANIMURA K, TAKASHIMA S, MATSUMOTO T, et al. 2,3-Butanediol production from cellobiose using exogenous beta-glucosidase-expressingBacillussubtilis[J]. Applied Microbiology and Biotechnology, 2016, 100(13): 1-9.
[41] ONG S A, NG Z J, WU J C. Production of high concentration of l-lactic acid from cellobiose by thermophilicBacilluscoagulansWCP10-4 [J]. Applied Microbiol Biotechnology,2016, 100(14): 6 501-6 508 .
[42] TURNER T L,ZHANGGuo-chang,OH E J, et al. Lactic acid production from cellobiose and xylose by engineeredSaccharomycescerevisiae[J].Biotechnology & Bioengineering, 2015, 113(5): 1 075-1 083.
[43] MOMENI M H, UBHAYASEKERA W, SANDGREN M, et al. Structural insights into the inhibition of cellobiohydrolase Cel7A by xylo-oligosaccharides[J].Febs Journal, 2015, 282(11): 2 167-2 177.
[44] CABEZAS L, CALDERON C, MEDINA L M, et al. Characterization of cellulases of fungal endophytes isolated fromEspeletiaspp.[J]. Journal of Microbiology, 2012, 50(6): 1 009-1 013.
[45] KASHYAP D R, VOHRA P K, CHOPRA S, et al. Applications of pectinases in the commercial sector: A review[J]. Bioresource Technology, 2001, 77(3): 215-227 .
[46] THOMPSON A J, HEU T,SHAGHASI T, et al. Structure of the catalytic core module of theChaetomiumthermophilumfamily GH6 cellobiohydrolase Cel6A[J]. Acta Crystallogr D Biol Crystallogr, 2012, 68(8): 875-882.
[47] ZHAO Jun-qi, SHI Peng-jun J, LI Zhong-yuan, et al. Two neutral thermostable cellulases fromPhialophorasp. G5 act synergistically in the hydrolysis of filter paper[J]. Bioresource Technology, 2012, 121(2): 404-410.
[48] WANG Xiu-juan J, PENG Yan-jie J, ZHANG Li-qing, et al. Directed evolution and structural prediction of cellobiohydrolase II from the thermophilic fungusChaetomiumthermophilum[J]. Applied Microbiol Biotechnology, 2012, 95(6): 1 469-1 478 .
[49] OLIVEIRA G S, ULHOA C J, OLIVEIRA M H L, et al. An alkaline thermostable recombinantHumicolagriseavar.thermoideacellobiohydrolase presents bifunctional (endo/exoglucanase) activity on cellulosic substrates[J]. World Journal of Microbiology and Biotechnology,2013, 29(1): 19-26.
[50] GREGOR T, CHRISTOPH O, ROBERT V, et al. Cellobiohydrolases produce different oligosaccharides from chitosan[J]. Biomacromolecules, 2016, 17(6): 2 284-2 292.
[51] http://www.so.com/link?url=http%3A%2F%2Fmycoclap.fungalgenomics.ca%2F&q=mycoCLAP&ts=1492792039&t=2c39cdd3e881e6bc517-e48136-f5-bc-db-&src=haosou.
[52] TEXIER H, DUMON C. Redefining XynA fromPenicilliumfuniculosumIMI 378536 as a GH7 cellobiohydrolase[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(11): 1 569-1 576.
[53] 閻伯旭,高培基. 外切葡聚糖纖維二糖水解酶的分離純化和部分性質(zhì)研究[J]. 生物化學(xué)雜志, 1997, 13 (3): 362-364.
[54] HOBDEY S E, KNOTT B C, MOMENI M H, et al. Biochemical and structural characterizations of twoDictyosteliumcellobiohydrolases from the Amoebozoa kingdom reveal a high level of conservation between distant phylogenetic trees of life[J]. Applied and Environmental Microbiology, 2016, 82(11): 3 395-3 409.
[55] HERRERA-HERRERA A J, PéREZ-AVALOS O, SALGADO L M, et al. Cyclic AMP regulates the biosynthesis of cellobiohydrolase inCellulomonasflavigenagrowing in sugar cane bagasse[J]. Archives of Microbiology, 2009, 191 (10): 745-750.
[56] GAVLIGHI H A, MEYER A S, DALGAARD M J. Enhanced enzymatic cellulose degradation by cellobiohydrolases via product removal[J]. Biotechnology Letters, 2013, 35(2): 205-212.
[57] TODA H, NAGAHATA N, AMANO Y, et al. Gene cloning of cellobiohydrolase II from the white rot fungusIrpexlacteusMC-2 and its expression inPichiapastoris[J]. Bioscience, Biotechnology, and Biochemistry, 2008, 72(12): 3 142-3 147.
[58] VOUTILAINEN S P, PURANEN T, SIIKA-AHO M, et al. Cloning, expression, and characterization of novel thermostable family 7 cellobiohydrolases[J]. Biotechnology & Bioengineering, 2008, 101(3): 515-528.
[59] TAMURA M, MIYAZAKI T, TANAKA Y, et al. Comparison of the structural changes in two cellobiohydrolases, CcCel6A and CcCel6C, fromCoprinopsiscinerea-A tweezer-like motion in the structure of CcCel6C[J]. FEBS Journal,2012, 279(10): 1 871-1 882.
[60] WU I, ARNOLD F H. Engineered thermostable fungal Cel6A and Cel7A cellobiohydrolases hydrolyze cellulose efficiently at elevated temperatures [J]. Biotechnology Bioengineering, 2013, 110(7): 1 874-1 883.
[61] LAHJOUJI K, STORMS R, XIAOZhi-zhuang, et al. Biochemical and molecular characterization of a cellobiohydrolase fromTrametesversicolor[J]. Applied Microbiol Biotechnology, 2007, 75(2): 337-346.
[62] DEVENDRAN S, ABDEL-HAMID A M, EVANS A F, et al. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacteriumRuminococcusalbus8 to degrade cellooligosaccharides[J]. Scientific Reports,2016, 6: 35 342.
[63] BOONVITTHYA N,BOZONNET S,BURAPATANA V, et al. Comparison of the heterologous expression ofTrichodermareeseiendoglucanase II and cellobiohydrolase II in the yeastsPichiapastorisandYarrowialipolytica[J]. Molecular Biotechnology, 2013, 54(2): 158-169.
[64] DANA C M, DOTSONFAGERSTROM A, ROCHE C M, et al. The importance of pyroglutamate in cellulase Cel7A[J]. Biotechnology & Bioengineering, 2014, 111(4): 842-847.
Researchprogressofcellobiohydrolases
YUAN Mao-yi1,YE Fa-yin1, LEI Lin1,ZHAO Guo-hua1,2*
1(College of Food Science, Southwest University, Chongqing 400715, China)2(Chongqing Special Food Programme and Technology Research Center, Chongqing 400715,China)
Cellulose is the richest renewable resource in the world, and it has been a difficult and hot spot for research to break down into small molecular sugars and turn them into fuel or fine chemicals.Cellobiohydrolase is one of the key enzymes of cellulose biodegradation, which belongs to excision enzyme. It acts on the end of the chain of crystalline cellulose and cuts the separated beta-1,4-glycosidic bond, finally releasing cellobiose.In this article, the source, classification, structure, the action mechanism, enzymatic properties of cellobiohydrolases,molecular evolution, production situation of commercial enzymes and their application characteristics are summarized. In addition, the research perspective on cellobiohydrolasesis proposed.
cellobiohydrolase; enzymatic properties; structure; catalytic mechanism; application
10.13995/j.cnki.11-1802/ts.014791
碩士研究生(趙國(guó)華教授為通訊作者,E-mail: zhaoguohua1971@163.com。)。
果蔬典型加工過(guò)程中品質(zhì)功能劣變與保質(zhì)減損及其調(diào)控機(jī)理(2016YFD0400204-2);重慶市特色食品工程技術(shù)研究中心能力提升項(xiàng)目(cstc2014pt-gc8001)
2017-05-17, 改回日期:2017-06-20