李 超 張鳳榮? 張?zhí)熘?王秀麗 靳東升
(1 中國農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,北京 100193)
(2 河南農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,鄭州 450002)
(3 山西省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與資源研究所,太原 030006)
土壤的石灰反應(yīng)強(qiáng)度估測CaCO3含量和pH研究*
——以山西省黃土性母質(zhì)土壤為例
李 超1張鳳榮1?張?zhí)熘?王秀麗2靳東升3
(1 中國農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,北京 100193)
(2 河南農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,鄭州 450002)
(3 山西省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與資源研究所,太原 030006)
pH和CaCO3含量是土壤常規(guī)分析的兩個(gè)測定指標(biāo),但其室內(nèi)測定均需借助相應(yīng)的儀器設(shè)備完成,耗時(shí)費(fèi)力。以山西省土系調(diào)查采集的110個(gè)典型土壤剖面的426個(gè)發(fā)生層土樣的野外測定的石灰反應(yīng)強(qiáng)度和實(shí)驗(yàn)室測定的土壤pH、CaCO3含量、交換性鈉飽和度(Exchangeable Sodium Percentage,ESP)數(shù)據(jù)為基礎(chǔ),嘗試建立石灰反應(yīng)強(qiáng)度與pH、CaCO3含量之間的定量關(guān)系模型。結(jié)果表明:北方黃土性母質(zhì)土壤,當(dāng)pH<9.0時(shí),CaCO3含量是影響土壤pH的重要因素,二者的回歸擬合最優(yōu)關(guān)系符合冪函數(shù)曲線;當(dāng)pH>9.0時(shí),CaCO3與pH之間無明顯關(guān)系。石灰反應(yīng)強(qiáng)度在一定程度上可以半定量地反映pH或CaCO3含量,但其確定的pH或CaCO3含量尚是一個(gè)范圍,并非精確值。同時(shí),從發(fā)生學(xué)意義角度,土壤中CaCO3含量高低對(duì)形態(tài)學(xué)研究具有重要意義,在這種情況下,如果需要用pH或CaCO3含量來確定準(zhǔn)確的土壤系統(tǒng)分類類型(如確定土體是否為酸性、具有鈣積層/鈣積現(xiàn)象等),為慎重起見建議還是以實(shí)驗(yàn)室的準(zhǔn)確測定數(shù)據(jù)為準(zhǔn);對(duì)于非堿化(pH<9.0)、野外有泡沫反應(yīng)的北方黃土性母質(zhì)土壤,無論泡沫反應(yīng)強(qiáng)弱和CaCO3含量高低,土壤pH基本穩(wěn)定在8.51±0.49,這一pH范圍對(duì)作物生長基本沒有制約,如果僅從pH或CaCO3含量是否影響作物生長角度考慮,無需實(shí)驗(yàn)室測定pH或CaCO3含量。
石灰反應(yīng)強(qiáng)度;pH;CaCO3;黃土;山西省
土壤pH和碳酸鹽相當(dāng)物含量(主要是CaCO3,因此通常稱為CaCO3含量)是土壤常規(guī)分析的兩個(gè)測定指標(biāo),反映了區(qū)域氣候和土壤形成母質(zhì)對(duì)土壤形成和土壤性質(zhì)的影響,也影響著土壤養(yǎng)分的有效性,對(duì)農(nóng)業(yè)生產(chǎn)具有重要影響[1-3]。pH和CaCO3含量的測定均有相應(yīng)的野外測定方法,常用的野外估測方法分別為比色法和鹽酸滴定法,但兩種方法估測的pH和CaCO3含量結(jié)果均不夠準(zhǔn)確,因此,往往還需在室內(nèi)借助相應(yīng)實(shí)驗(yàn)儀器完成準(zhǔn)確測定[4-9]。相關(guān)研究表明,目前實(shí)驗(yàn)室測定pH和CaCO3含量所采用的各種方法均存在一定誤差[4,10-13]。在特定區(qū)域、特定類型土壤上是否有必要進(jìn)行pH和CaCO3含量的實(shí)驗(yàn)室準(zhǔn)確測定,是一個(gè)值得探討的問題。
CaCO3含量在一定程度上決定了pH和石灰反應(yīng)強(qiáng)度,總體上表現(xiàn)為CaCO3含量越高,石灰反應(yīng)越強(qiáng),pH越高(一般在pH<8.2~8.5)。雖然一些研究建立了CaCO3與pH之間的定量模型[14-15],但有研究指出在不同地區(qū)、不同成土因素和不同土壤類型下,兩者之間的定量模型可能是不同的[16]。此外,至今尚未見到有關(guān)CaCO3含量與石灰反應(yīng)強(qiáng)度之間定量關(guān)系的研究報(bào)道。
石灰反應(yīng)、pH、碳酸鹽相當(dāng)物含量是中國土壤系統(tǒng)分類檢索中的三個(gè)指標(biāo)[17],石灰反應(yīng)強(qiáng)度是在野外采用1∶3稀鹽酸滴定細(xì)土后觀察產(chǎn)生的氣泡多少和聽到的聲音強(qiáng)弱來確定(1)張甘霖,李德成. 野外土壤描述與采樣手冊. 北京:科學(xué)出版社,2017(待版),[18],而pH和CaCO3含量則需要在實(shí)驗(yàn)室分別采用電位計(jì)法和氣量法測定獲取[19]。對(duì)于特定區(qū)域,如果能夠建立石灰反應(yīng)強(qiáng)度與pH、CaCO3含量之間的定量關(guān)系模型,無疑可節(jié)省實(shí)驗(yàn)室測定pH和CaCO3含量的時(shí)間和成本,也有益于野外初步確定某些石灰性土壤的系統(tǒng)分類類型。
為此,本研究以2015—2016年間在山西省調(diào)查采集的110個(gè)代表性土壤剖面的426個(gè)發(fā)生層土樣野外測定的石灰反應(yīng)強(qiáng)度和實(shí)驗(yàn)室測定的pH、CaCO3含量數(shù)據(jù)為基礎(chǔ),嘗試建立三者之間的定量關(guān)系模型。
山西省地處中緯度地帶的內(nèi)陸,地理位置34°36′~40°44′ N,110°15′~l14°32′ E,南北長約682 km,東西寬約385 km,總面積15.67萬km2。地勢東北高西南低,總的地勢輪廓是“兩山夾一川”,地貌類型可劃分為山地、丘陵和盆地,其中,山地和丘陵合計(jì)占全省總面積的80.1%。年均氣溫介于4.2~14.2℃,降水量介于358~621 mm,夏季6—8月降水量約占全年的60%[20]。山西省是黃土高原的一部分,黃土覆蓋比例高達(dá)66.6%。山區(qū)巖石主要有酸性巖類、碳酸鹽類、硅質(zhì)巖類、中性和基性巖類等[21],但即使山區(qū)也普遍受黃土降塵影響[22]。山西省發(fā)生學(xué)土壤類型主要有棕壤、褐土、栗鈣土、栗褐土、鹽堿土、潮土等,合計(jì)共有土種351個(gè)[23]。
在對(duì)山西省相關(guān)氣候、水文、地質(zhì)、地形地貌、土地利用、成土母質(zhì)、土壤發(fā)生學(xué)類型等因素及其空間分布特征進(jìn)行充分分析的基礎(chǔ)上,考慮樣點(diǎn)布設(shè)的均勻性和可靠性、交通可達(dá)性,基于目標(biāo)采樣方法對(duì)調(diào)查樣點(diǎn)進(jìn)行布設(shè)。2015年5月—2016年9月,對(duì)布設(shè)的調(diào)查樣點(diǎn)開展了實(shí)地調(diào)查,共調(diào)查土壤剖面110個(gè)(圖1),大致覆蓋了102個(gè)土種,合計(jì)采集了發(fā)生層樣品426個(gè)。
石灰反應(yīng)強(qiáng)度(1),[18]的野外測定方法為,在野外用手捏碎土壤,用少量水濕潤后,滴加10%稀鹽酸觀察氣泡產(chǎn)生多少和聲音強(qiáng)弱。分級(jí)為:1)無,沒有細(xì)氣泡產(chǎn)生;2)弱,有微氣泡產(chǎn)生,但聽不到聲音;3)中,有氣泡產(chǎn)生,泡沫聲微弱;4)強(qiáng),有明顯氣泡產(chǎn)生,聽到泡沫聲,泡沫聲微弱;5)極強(qiáng),反應(yīng)劇烈,泡沫溢出,聲音明顯,肉眼往往可見碳酸鹽顆粒。
土樣經(jīng)風(fēng)干、去雜、比色、研磨、過不同孔徑篩后,分別測定機(jī)械組成、pH、CaCO3含量、陽離子交換量(Cation Exchange Capacity,CEC)、鹽基飽和度(Base Saturation,BS)、全鹽量和交換性鈉飽和度(Exchangeable Sodium Percentage,ESP)。其中,土壤pH采用電位法(水土比為2.5∶1)測定,CaCO3含量采用氣量法測定,具體的測定方法詳見文獻(xiàn)[19]。
按照“平均值±3倍標(biāo)準(zhǔn)差”方法剔除異常值,借助Microsoft EXCEL 2013、IBM Statistics SPSS23.0軟件進(jìn)行數(shù)據(jù)處理、回歸分析,統(tǒng)計(jì)CaCO3含量、pH、石灰反應(yīng)強(qiáng)度之間的數(shù)量與函數(shù)關(guān)系[14-16,24]。
依據(jù)石灰反應(yīng)強(qiáng)度野外觀察結(jié)果,426個(gè)發(fā)生層土樣中,102個(gè)無石灰反應(yīng),52個(gè)為弱石灰反應(yīng),25個(gè)為中石灰反應(yīng),121個(gè)為強(qiáng)石灰反應(yīng),126個(gè)為極強(qiáng)石灰反應(yīng)。
依據(jù)實(shí)驗(yàn)室測定結(jié)果,426個(gè)發(fā)生層土樣的CaCO3含量范圍為0.1~251.3 g kg-1,平均含量為56.1 g kg-1,標(biāo)準(zhǔn)差為43.17 g kg-1,變異系數(shù)為76.93% 。pH范圍為6.00~10.28,平均值為8.36,標(biāo)準(zhǔn)差為0.68,變異系數(shù)為8.06%。兩者總體上屬中等變異程度,具有良好的分異性,能夠反應(yīng)統(tǒng)計(jì)樣本在區(qū)域尺度上的變異性。
圖1 土壤剖面點(diǎn)位置示意圖Fig. 1 Distribution map of the studied soil profiles
從空間分布來看,pH較低(pH<8)、CaCO3含量較低的剖面多分布于中山(海拔800 m以上)及以上山地,這主要是因?yàn)樵摰貐^(qū)海拔高,降雨量較大,土壤中CaCO3淋溶較徹底,主要土壤類型包括棕壤、暗棕壤、山地草甸土等。pH介于8.0~9.0的剖面多分布于低山丘陵地區(qū),由于該地區(qū)海拔相對(duì)較低,降雨量也較低,土壤中CaCO3淋溶不徹底,主要土壤類型為褐土、潮土等。pH>9.0的剖面多分布于地勢低洼、土體受地下水影響明顯的地區(qū),地表多見板結(jié)特征和堿蓬等指示植被,主要為堿化土壤。
由pH與CaCO3含量測定數(shù)據(jù)的散點(diǎn)圖(圖2)可以看出,二者之間并非簡單的線性關(guān)系:1)pH<9時(shí),pH隨著CaCO3含量的增加而增加,但CaCO3含量變化引起的pH升幅逐漸平緩乃至消失,表明當(dāng)pH<9時(shí),CaCO3含量變化對(duì)pH的影響明顯,二者之間具有顯著的相關(guān)性(p<0.01),回歸擬合最優(yōu)關(guān)系符合冪函數(shù)曲線(表1);2)pH>9時(shí),二者之間不存在顯著相關(guān)關(guān)系,這是由于pH>9的土壤多是堿化土壤,此時(shí)pH主要受交換性鈉含量影響[26]。
圖2 土壤pH與CaCO3含量關(guān)系散點(diǎn)圖Fig. 2 Scatter plot of soil pH and CaCO3 content
運(yùn)用自然斷點(diǎn)法將426個(gè)發(fā)生層土樣按照pH分為<7.40、7.40~8.59、8.59~9.00和>9.00四級(jí),分析pH與CaCO3含量之間的定量關(guān)系。pH<9的三個(gè)級(jí)別下,pH與CaCO3含量之間具有極顯著的相關(guān)性(p<0.01),且不同級(jí)別的pH與CaCO3含量之間呈現(xiàn)出的數(shù)學(xué)關(guān)系不盡相同,其中pH<7.40、pH介于8.59~9.00時(shí)的最優(yōu)回歸關(guān)系符合一元三次方程模型;pH介于7.40~8.59的回歸擬合最優(yōu)關(guān)系符合冪函數(shù)曲線(表1)。
表1 基于pH自然斷點(diǎn)的pH與CaCO3含量之間最優(yōu)回歸模型Table 1 Optimal regression models for relationship between pH and CaCO3 content relative to pH
供試的372個(gè)非堿化的發(fā)生層土樣(ESP<5%,pH<9)不同石灰反應(yīng)強(qiáng)度級(jí)別的pH和CaCO3含量的描述性統(tǒng)計(jì)和分析結(jié)果見表2,可以看出,隨著石灰反應(yīng)強(qiáng)度的增加,pH、CaCO3含量均值逐漸升高,且各石灰反應(yīng)強(qiáng)度級(jí)別之間,土樣的pH、CaCO3含量均表現(xiàn)出顯著差異水平,表明用石灰反應(yīng)強(qiáng)度來反映土壤pH和CaCO3含量是可信的(表2)。
需要指出的是,并非只要土體中含有CaCO3,就一定具有石灰反應(yīng)?!吨袊寥老到y(tǒng)分類檢索》(第三版)中石灰性定義中CaCO3相當(dāng)物含量要≥10 g kg-1,用1∶3稀鹽酸處理有泡沫反應(yīng)。這也意味著只有土體中CaCO3含量超過一定量,才能觀察到石灰反應(yīng),本次野外測定無石灰反應(yīng)的表層土樣,在實(shí)驗(yàn)室中仍可檢測出微量CaCO3,這主要是由于山西地處黃土高原地區(qū),表土不斷接受由黃土降塵帶來的碳酸鹽,加上山西省降雨量不高,總體上屬于半干旱半濕潤地區(qū),土體中CaCO3淋洗不及時(shí)或不徹底,因此表土可能會(huì)殘留微量或少量的CaCO3。
表2 不同石灰反應(yīng)強(qiáng)度的pH與CaCO3含量的描述性統(tǒng)計(jì)特征Table 2 Descriptive statistics of soil pH and CaCO3 content relative to lime reaction intensity
綜合上述石灰反應(yīng)強(qiáng)度與pH、CaCO3含量的統(tǒng)計(jì)結(jié)果可知,對(duì)于非堿化(ESP<5%)的黃土性母質(zhì)石灰性土壤(即野外有石灰反應(yīng)),無論石灰反應(yīng)強(qiáng)弱或CaCO3含量高低,pH大致穩(wěn)定在8.51±0.49。
本研究試圖通過野外快速便捷的石灰反應(yīng)強(qiáng)度來推測pH和CaCO3含量,省去測定pH和CaCO3含量的時(shí)間和成本,同時(shí)在野外初步確定石灰性土壤的系統(tǒng)分類類型。但需要指出的是:第一,由于野外石灰反應(yīng)強(qiáng)度的分級(jí)以定性-半定量為主,其強(qiáng)度的確定具有一定的主觀性,準(zhǔn)確性高低受操作者的野外實(shí)踐經(jīng)驗(yàn)影響,因此在野外進(jìn)行石灰反應(yīng)強(qiáng)度測定操作時(shí),務(wù)必認(rèn)真細(xì)心,必要時(shí)可以由多人分別操作,然后匯總討論分析確定最后的強(qiáng)度。第二,由表1也可以看出,依據(jù)石灰反應(yīng)強(qiáng)度尚僅能確定pH或CaCO3含量的一個(gè)對(duì)應(yīng)范圍,并非是精確值。同時(shí),從發(fā)生學(xué)意義角度,土壤中CaCO3含量高低對(duì)形態(tài)學(xué)研究具有重要意義,在這種情況下,如果需要用pH或CaCO3含量來確定準(zhǔn)確的土壤系統(tǒng)分類類型(如確定土體是否為酸性、是否具有鈣積層/鈣積現(xiàn)象等),為慎重起見建議還是以實(shí)驗(yàn)室的準(zhǔn)確測定數(shù)據(jù)為準(zhǔn)。
對(duì)于非堿化(pH<9)的北方黃土性母質(zhì)土壤,只要10%稀鹽酸滴定時(shí)有泡沫反應(yīng),無論CaCO3含量多少,對(duì)應(yīng)土壤pH基本穩(wěn)定在8.51±0.49,在該范圍的pH對(duì)作物生長基本沒有制約[25],因此,如果僅從影響作物生長的酸堿度考慮,在野外只要測定石灰反應(yīng)強(qiáng)度即可,無需實(shí)驗(yàn)室再測定pH或CaCO3含量;對(duì)于野外10%稀鹽酸滴定無泡沫反應(yīng)的北方黃土性母質(zhì)土壤,考慮到酸化土壤可能對(duì)作物正常生長產(chǎn)生影響,仍需根據(jù)需要對(duì)pH或CaCO3含量進(jìn)行實(shí)驗(yàn)室準(zhǔn)確測定;堿化(pH>9)的北方黃土性母質(zhì)土壤多分布于地勢低洼、受地下水影響較為嚴(yán)重的地區(qū),地表多可見堿蓬等指示植被和地表板結(jié)等地表指示特征,堿化(pH>9)土壤可通過上述地形分布特征和地表指示植被特征進(jìn)行野外判別,考慮到堿化(pH>9)土壤對(duì)作物的制約,堿化(pH>9)土壤還是需要實(shí)驗(yàn)室準(zhǔn)確測定pH或CaCO3含量,以便為科學(xué)指導(dǎo)土壤改堿、施肥等提供更為精確的數(shù)據(jù)支撐。
需要強(qiáng)調(diào)的是:本研究選用的供試土樣均來自山西省,所得的石灰反應(yīng)強(qiáng)度與CaCO3含量、pH之間的對(duì)應(yīng)關(guān)系是否能夠代表整個(gè)黃土高原或黃土高原其他地區(qū),還有待于進(jìn)一步的研究驗(yàn)證。
北方黃土性母質(zhì)土壤,當(dāng)pH<9.0時(shí),CaCO3含量是影響土壤pH的重要因素,二者的回歸擬合最優(yōu)關(guān)系符合冪函數(shù)曲線;當(dāng)pH>9.0時(shí),CaCO3與pH之間沒有明顯關(guān)系。石灰反應(yīng)強(qiáng)度在一定程度上可以半定量地反映pH或CaCO3含量,其確定的pH或CaCO3含量尚是一個(gè)范圍,并非精確值。對(duì)于非堿化(pH<9.0)、野外有泡沫反應(yīng)的北方黃土性母質(zhì)土壤,無論泡沫反應(yīng)強(qiáng)弱和CaCO3含量高低,土壤pH基本穩(wěn)定在8.51±0.49,這一pH范圍對(duì)作物生長基本沒有制約,如果僅從pH或CaCO3含量是否影響作物生長角度考慮,無需實(shí)驗(yàn)室測定pH或CaCO3含量。
[1] 喬捷娟,李強(qiáng),趙燁,等. 京津冀接壤區(qū)土壤表土層中CaCO3的分布規(guī)律. 地理與地理信息科學(xué),2009,25(6):56—59 Qiao J J,Li Q,Zhao Y,et al. Study on the CaCO3content characteristics in conterminous region of Beijing,Tianjin and Hebei(In Chinese). Geography and Geo-Information Science,2009,25(6):56—59
[2] 郭玉文,加藤誠,宋菲,等. 黃土高原黃土團(tuán)粒組成及其與CaCO3關(guān)系的研究. 土壤學(xué)報(bào),2004,41(3):362—368 Guo Y W,Kato M,Song F,et al. Composition of loess aggregate and its relationship with CaCO3on the Loess Plateau(In Chinese). Acta Pedologica Sinica,2004,41(3):362—368
[3] 朱禮學(xué). 土壤pH及CaCO3在多目標(biāo)地球化學(xué)調(diào)查中的研究意義. 四川地質(zhì)學(xué)報(bào),2001,21(4):140—143 Zhu L X. Significance of pH value and CaCO3of soil to multipurpose geochemical survey(In Chinese). Acta Geologica Sichuan,2001,21(4):140—143
[4] 鄧強(qiáng),楊定清,雷紹榮,等. 野外土壤pH快速測定方法研究. 四川農(nóng)業(yè)科技,2016(4):35—38 Deng Q,Yang D Q,Lei S R,et al. The research on rapid measurement of pH in field soil(In Chinese).Sichuan Agricultural Science and Technology,2016(4):35—38
[5] 鮑士旦. 土壤農(nóng)化分析. 第3版. 北京:中國農(nóng)業(yè)出版社,2000:12 Bao S D. Soil agro-chemical analysis(In Chinese). 3rd ed. Beijing:China Agriculture Press,2000:12
[6] Zougagh M,Ríos A,Valcárcel M. Direct determination of total carbonate salts in soil samples by continuous-flow piezoelectric detection. Talanta,2005,65(1):29
[7] Sherrod L A,Dunn G,Peterson G A,et al. Inorganic carbon analysis by modified pressure-calcimeter method.Soil Science Society of America Journal,2002,66(1):299—305
[8] 鄭志霞,張丹,馮勇建. 碳酸根和碳酸氫根測定方法和自動(dòng)測定儀. 現(xiàn)代儀器與醫(yī)療,2004,10(4):44—46 Zheng Z X,Zhang D,F(xiàn)eng Y J. Method of determination of carbonate and bicarbonate and its automatic test instrument(In Chinese). Modern Instruments amp; Medical Treatment,2004,10(4):44—46
[9] Mecozzi M,Pietrantonio E,Amici M,et al.Determination of carbonate in marine solid samples by FTIR-ATR spectroscopy. Analyst,2001,126(2):144—146
[10] 李強(qiáng),文喚成,胡彩榮. 土壤pH的測定國際國內(nèi)方法差異研究. 土壤,2007,39(3):488—491 Li Q,Wen H C,Hu C R. Difference between international and domestic methods in determining soil pH(In Chinese). Soils,2007,39(3):488—491
[11] 郁慧福. 碳酸鹽測定方法現(xiàn)狀及方法比較. 海洋地質(zhì)前沿,2007,23(1):35—39 Yu H F. The status and comparisons on methods for determination of carbonate(In Chinese). Marine Geology Letters,2007,23(1):35—39
[12] 彭洪翠,肖和艾,吳金水,等. 土壤碳酸鹽間接測定方法研究及其應(yīng)用. 土壤,2006,38(4):477—482 Peng H C,Xiao H A,Wu J S,et al. An indirect method for determination of soil total carbonate(In Chinese). Soils,2006,38(4):477—482
[13] 洪長橋,鄭光輝,陳昌春. 蘇北濱海土壤碳酸鈣含量反射光譜估算研究. 土壤學(xué)報(bào),2016,53(5):1120—1129 Hong C Q,Zheng G H,Chen C C. Estimation of CaCO3content in coastal soil of north Jiangsu with reflectance spectroscopy(In Chinese). Acta Pedologica Sinica,2016,53(5):1120—1129
[14] 劉世全,張世熔,伍均,等. 土壤pH與CaCO3含量的關(guān)系. 土壤,2002,34(5):279—283 Liu S Q,Zhang S R,Wu J,et al. Relation between pH and CaCO3in soil(In Chinese). Soils,2002,34(5):279:283
[15] 賀婧,趙亞平,關(guān)連珠. 土壤中游離CaCO3對(duì)土壤pH及酶活性的影響. 沈陽農(nóng)業(yè)大學(xué)學(xué)報(bào),2011,42(5):614—617 He J,Zhao Y P,Guan L Z. Effect of free calcium carbonate on soil pH and enzyme activities(In Chinese). Journal of Shenyang Agricultural University,2011,42(5):614—617
[16] 林卡,李德成,張甘霖. 西北黑河流域土壤pH與CaCO3相當(dāng)物含量關(guān)系研究. 土壤學(xué)報(bào),2017,54(2):344—353 Lin K,Li D C,Zhang G L. Relationships between pH and content of calcium carbonate and equivalents in soil of the Heihe River valley,Northwest China(In Chinese). Acta Pedologica Sinica,2017,54(2):344-353
[17] 中國科學(xué)院南京土壤研究所土壤系統(tǒng)分類課題組,中國土壤系統(tǒng)分類課題研究協(xié)作組. 中國土壤系統(tǒng)分類檢索.第3版. 合肥:中國科學(xué)技術(shù)大學(xué)出版社,2001 Chinese Soil Taxonomy Research Group,Institute of Soil Science,Chinese Academy of Sciences,Cooperative Research Group on Chinese Soil Taxonomy.Keys to Chinese Soil Taxonomy(In Chinese). 3rd ed.Hefei:University of Science and Technology of China Press,200l
[18] 劉光崧. 土壤理化分析與剖面描述. 北京:中國標(biāo)準(zhǔn)出版社,1996 Liu G S. Soil physical and chemical analysis amp;description of soil profiles(In Chinese). Beijing:Standards Press of China,1996
[19] 張甘霖. 土壤調(diào)查實(shí)驗(yàn)室分析方法. 北京:科學(xué)出版社,2012 Zhang G L. Soil survey laboratory methods(In Chinese). Beijing:Science Press,2012
[20] 李超,張鳳榮,王秀麗,等. 土壤系統(tǒng)分類中土壤水熱狀況的確定方法及應(yīng)用研究——以山西省為例. 土壤,2017,49(1):177—183 Li C,Zhang F R,Wang X L,et al. Determination method and application of soil temperature regime and soil moisture regime in Chinese Soil Taxonomy—A case study of Shanxi Province(In Chinese). Soils,2017,49(1):177—183
[21] 劉耀宗. 山西土壤. 北京:科學(xué)出版社,1992 Liu Y Z. Shanxi Province Soil(In Chinese).Beijing:Science Press,1992
[22] 胡良軍,邵明安. 從沙塵暴看黃土的沉積及黃土高原的形成. 安徽師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2001,24(2):148—152 Hu L J,Shao M A. Relationship between dust-storm and loess accumulation amp; formation of the Loess Plateau(In Chinese). Journal of Anhui Normal University(Natural Science),2001,24(2):148—152
[23] 山西省土壤普查辦公室. 山西土種志. 太原:山西科學(xué)技術(shù)出版社,1992 Soil Survey Office of Shanxi Province. Soil species records of Shanxi Province(In Chinese). Taiyuan:Shanxi Science and Technology Press,1992
[24] 劉樹慶. 保定市污灌區(qū)土壤的Pb、Cd污染與土壤酶活性關(guān)系研究. 土壤學(xué)報(bào),1996,33(2):175—182 Liu S Q. Relationship between soil Pb and Cd pollution and enzyme activities in waste water irrigated area of Baoding City(In Chinese). Acta Pedologica Sinica,1996,33(2):175—182
[25] 俞仁培,楊道平,石萬普,等. 土壤堿化及其防治. 北京:農(nóng)業(yè)出版社,1984 Yu R P,Yang D P,Shi W P,et al. Soil alkalization and prevention(In Chinese). Beijing:Agriculture Press,1984
[26] 唐琨,朱偉文,周文新,等. 土壤pH對(duì)植物生長發(fā)育影響的研究進(jìn)展. 作物研究,2013,27(2):207—212 Tang K,Zhu W W,Zhou W X,et al. Research progress on effects of soil pH on plant growth and development(In Chinese). Crop Research,2013,27(2):207—212
(責(zé)任編輯:檀滿枝)
The Study of Lime Soil Reaction Intensity Estimates Based on CaCO3Content and pH—A Case Study of Soil Developed from Loess Parent Material in Shanxi Province
LI Chao1ZHANG Fengrong1?ZHANG Tianzhu1WANG Xiuli2JIN Dongsheng3
(1 College of Resources and Environmental Sciences,China Agricultural University,Beijing 100193,China)
(2 College of Resources and Environmental Sciences,Henan Agricultural University,Zhengzhou 450002,China)
(3 Institute of Agriculture Environment and Resources,Shanxi Academy of Agricultural Sciences,Taiyuan 030006,China)
【Objective】Soil CaCO3content and pH are two common indices in routine soil analysis,while lime reaction,pH and content of carbonate equivalents are the three important diagnostic indices in the Chinese Soil Taxonomy. However,generally,the determination of soil pH and CaCO3content needs to be done with the help of experimental instruments in lab,which is rather costly and time consuming;Actually,intensity of lime reaction can be measured in field with titration of 1∶3 dilute hydrochloric acid,which is simple,quick and cheap. Moreover,content of CaCO3,pH and intensity of lime reaction are somewhat interrelated. Therefore,if a model of quantitative relationships between soil CaCO3content,pH and lime reaction intensity can be built up for a specific area,it will no doubt save or spare the time and money needed for determination of soil pH and CaCO3content in lab,and it will help make tentative determination in the field of what type of calcareous soil in the Chinese Soil Taxonomy. The purpose of this paper is to try to establish such a model.【Method】Correlation analysis and regression analysis were performed of the data of the 110 typical soil profiles investigated during the provincial soil survey of Shanxi Province,including lime reaction intensities determined in the field,and soil pHs,calcium carbonate contents and ESPs(Exchangeable Sodium Percentage)measured in lab of the soil samples from their 426 genetic horizons,for relationship between calcium carbonate content and soil pH,and statistical analysis was for relationships of lime reaction intensity with soil pH and calcium carbonate content.【Result】Results show that in the soil developed from loess parent material in North China with pH <9,content of calcium carbonate is an important factor affecting soil pH,and the optimal relationship between the two fitted with regression accords with an exponential curve,while pH >9,no significant relationship was observed between the two,but lime reaction intensity could be used as indicator,reflecting to a certain extent or semi-quantitatively a range of pH or content of CaCO3,rather than a precise value. Moreover,from the viewpoint of soil genesis,the content of CaCO3is of great significance to the study of soil morphology. So if soil pH or CaCO3is required to define accurately the position of a soil in the Chinese soil Taxonomy(for instance to define whether or not the soil solum is acidic,or has a calcic horizon / calcification,etc.),it is advisable to recommend the use of the more accurate data obtained in lab. In non-alkaline(pH<9.0)soils derived from loess parent material in North China that have foam reaction in the field,soil pH lingers basically in the ranger 8.51±0.49,no matter whether foam reaction intensity or CaCO3content is high or low. Soil acidity in such a range has little restraint on crop growth. Therefore,if it is considered whether crop growth would be affected from the angle of soil pH or CaCO3content only,there is no need to have any lab tests to determine accurate pH or CaCO3content.【Conclusion】It is feasible to realize semi-quantitative estimation of soil CaCO3content and pH in soils derived from loess parent material in North China by field testing of lime reaction intensity.
Lime reaction intensity;Soil pH;CaCO3;Loess;Shanxi Province
S159
A
10.11766/trxb201705110109
* 國家自然科學(xué)基金項(xiàng)目(41671216)和國家科技基礎(chǔ)性工作專項(xiàng)(2014FY110200)資助 Supported by the National Natural Science Foundation of China(No.41671216)and the National Science and Technology Basic Work(No.2014FY110200)
? 通訊作者 Corresponding author,E-mail:frzhang@cau.edu.cn
李 超(1991—),男,河北邢臺(tái)人,博士研究生,研究方向?yàn)橥寥赖乩?、土地可持續(xù)利用。E-mail:lichaonongda@163.com
2017-05-11;
2017-06-29;優(yōu)先數(shù)字出版日期(www.cnki.net):2017-07-10