楊 波 王文龍,2,? 郭明明 康宏亮 白 蕓 李建明
(1 西北農林科技大學水土保持研究所黃土高原土壤侵蝕與旱地農業(yè)國家重點實驗室,陜西楊凌 712100)
(2 中國科學院水利部水土保持研究所,陜西楊凌 712100)
(3 榆林學院陜西省陜北礦區(qū)生態(tài)修復重點實驗室,陜西榆林 719000)
(4 長江科學院水土保持研究所,武漢 430010)
模擬降雨條件下棄渣體邊坡不同防護措施的減水減沙效益*
楊 波1王文龍1,2,3?郭明明1康宏亮1白 蕓3李建明4
(1 西北農林科技大學水土保持研究所黃土高原土壤侵蝕與旱地農業(yè)國家重點實驗室,陜西楊凌 712100)
(2 中國科學院水利部水土保持研究所,陜西楊凌 712100)
(3 榆林學院陜西省陜北礦區(qū)生態(tài)修復重點實驗室,陜西榆林 719000)
(4 長江科學院水土保持研究所,武漢 430010)
采用野外人工模擬降雨方法,以未防護棄渣體邊坡為對照,研究了1.0、1.5 mm min-1降雨強度條件下神府礦區(qū)種草和魚鱗坑措施對偏土質、偏石質和煤矸石棄渣體產流產沙的調控作用。結果表明:(1)不同措施下3種棄渣體邊坡徑流率均在產流6~9 min后趨于穩(wěn)定,產流過程中棄渣體邊坡侵蝕速率均呈波動減小趨勢,且未防護坡面減小趨勢較防護更明顯。(2)植草對偏土質、偏石質、煤矸石棄渣體減水和減沙效益分別為42.91%~51.21%、26.28%~55.20%、10.33%和97.54%~97.95%、41.87%~42.26%、7.80%;魚鱗坑的減水和減沙效益則分別為:51.89%~72.72%、22.37%~42.92%、21.32%和98.41% ~99.30%、94.90%~91.84%、39.50%。(3)魚鱗坑措施對偏土質棄渣體的減水和減沙效益較種草分別提高8.98%~21.51%和0.46%~1.76%;種草措施對偏石質和煤矸石棄渣體的減水和減沙效益較魚鱗坑措施分別提高3.91%~12.28%和0.28%~3.06%及10.99%和31.70%。(4)3種未防護棄渣體的侵蝕速率和徑流率呈顯著線性關系,種草和魚鱗坑措施改變了坡面水沙關系,侵蝕速率和徑流率相關性減弱或無顯著關系。研究結果可為礦區(qū)棄渣體邊坡生態(tài)恢復措施布設提供科學指導。
神府煤田;棄渣體;魚鱗坑;植被措施;徑流率;侵蝕速率
神府礦區(qū)煤炭資源富集,露天開采是該區(qū)主要的煤礦開采方式。資料顯示[1],露天煤礦每采萬噸煤約破壞土地面積0.l hm2,約排放剝離物20 000~61 000 m3。大面積的開采和排廢不僅破壞和擾動原始地面,還產生大量的棄土棄渣體,引發(fā)了劇烈的新增水土流失,導致礦區(qū)生態(tài)環(huán)境遭到嚴重破壞。
當前礦區(qū)生態(tài)環(huán)境問題已經得到了社會的廣泛關注和重視[2-4],礦區(qū)水土流失控制已成為解決當?shù)厣鷳B(tài)環(huán)境問題的重點內容之一。棄土棄渣等工程堆積體類型繁多、形態(tài)各異[5-6],且具有物質組成復雜,堆積坡度大,結構疏松,穩(wěn)定性差等特點,堆積體邊坡坡面可蝕性是破壞前土壤的10倍~100倍[7],Zhou等[8]研究表明露天煤礦復墾土地有機碳、氮含量需要20a時間才可恢復至開采前的水平。因此諸多學者針對礦區(qū)棄土棄渣體土壤侵蝕問題做了大量研究。多通過人工模擬降雨[9-14]、放水沖刷[6,15-17]以及小區(qū)定位觀測[18]的方法,集中研究了棄土棄渣堆積體產流產沙特性、水動力學參數(shù)變化以及侵蝕速率預測。郭明明等[10]認為棄渣體坡面徑流率隨產流歷時呈現(xiàn)“增長-下降-穩(wěn)定”的過程。王貞等[13]研究了神東煤田擾動地面徑流特性,發(fā)現(xiàn)擾動地面坡面徑流雷諾數(shù)和阻力系數(shù)均較原始坡面高。張樂濤等[17]認為水流功率是預測公路棄土堆積體坡面侵蝕的最佳水動力學參數(shù)。郭明明等[14]采用了中值粒徑、分形維數(shù)、降雨強度、坡度及徑流參數(shù)建立了棄土棄渣體土壤侵蝕預測模型。而在針對礦區(qū)棄土棄渣體水土流失治理措施防護方面,田野[12]研究了棄渣體邊坡措施的水土保持效益,認為水平階護坡改變坡面物理特性,減流效果可達15.84%。劉瑞順等[18]在年限為1a的排土場邊坡通過野外徑流小區(qū)定位觀測得出,稻草簾子和沙打旺措施的減水減沙效益分別達60%和90%以上。以往的研究大都集中在礦區(qū)棄土棄渣堆積體水土流失規(guī)律及機制層面上,而在針對礦區(qū)棄渣體生態(tài)修復方面研究不夠深入,尤其是在棄土棄渣堆積初期短歷時強降雨條件下工程措施與植被措施對坡面水沙關系的研究還少有報道。
鑒于此,本文通過模擬降雨的方法研究植被措施(種草)和工程措施(魚鱗坑)對偏土質和偏石質棄渣體以及煤矸石棄渣體這3種礦區(qū)典型堆積體邊坡減水減沙效益及水沙關系調控作用,探索礦區(qū)不同棄渣場最佳治理方式,為神府礦區(qū)初期的棄土棄渣堆積體能夠快速有效地進行生態(tài)恢復提供一定的參考和指導,也為該區(qū)建立開發(fā)建設項目水土流失模型提供基礎數(shù)據(jù)。
神府東勝煤田地處晉陜蒙三省交界處(37°20'~40°16' N,108°36'~110°3' E),包括陜西的榆林市、內蒙古的鄂爾多斯市和山西省忻州市的部分地區(qū);目前是我國已探明的最大煤田,占全國探明儲量的15%;該區(qū)位于黃土高原地區(qū)的風蝕水蝕交錯地帶,屬于干旱半干旱氣候,年均氣溫為6.1~9.1 ℃,多年平均降雨量為325~460 mm,且多集中于7—9 月,常以暴雨形式發(fā)生,降雨量占到全年的65%~70%,年蒸發(fā)量為1636~2535 mm,自然條件惡劣,生態(tài)環(huán)境十分脆弱,該區(qū)土壤多以風沙土和黃土為主,結構復雜,易風化,抗侵蝕能力差,神府東勝礦區(qū)內的植被主要是冰草(Agropyroncristatum(Linn.)Gaertn)、沙蒿(Artemisia desertorum Spreng. Syst. Veg.)、沙柳(Salix cheilophila)、檸條(CaraganaKorshinskii Kom.)等耐旱的沙生植物,區(qū)內植被覆蓋度很低,加之人類活動影響,使該地區(qū)生態(tài)環(huán)境十分脆弱,是我國水土流失最為嚴重的地區(qū),也是黃河泥沙的主要來源地。
調查發(fā)現(xiàn),礦區(qū)最常見的堆積體是由煤礦開采過程中形成的大量棄土、棄渣、棄石及其他廢棄物的混合堆砌而成,顆粒成分以礫石、碎石、風沙土和黃綿土為主,組成成分種類復雜,顆粒粒徑差異大,含礫石較多,疏松多孔,易發(fā)生侵蝕。試驗選取該礦區(qū)中具有代表性的偏土質棄渣體(土石比約2∶1)、偏石質棄渣體(土石比約1∶2)、及經過3~5a風化后形成的細碎石渣和土?;旌系拿喉肥逊e體。前2種棄渣體顆粒組成見表1;實地調查發(fā)現(xiàn),3種堆積體坡度多集中在33°~39°,所占比例在90%以上,因此試驗小區(qū)坡度選擇為35°;根據(jù)當?shù)囟嗄昵治g性短歷時典型暴雨特性,雨強設計為1.0 mm min-1和1.5 mm min-1,降雨歷時為24 min。
本次試驗在中國科學院水利部水土保持研究所神木侵蝕與環(huán)境試驗站進行,徑流小區(qū)為在棄渣體上安置3m×1m×1m的鋼槽,內置棄土棄渣體后小區(qū)表面需人工平整處理,小區(qū)下端設鋼制集流槽,并在距離頂部1m和2m處設置測流斷面;棄渣體坡面防護措施為人工移植種草和布設魚鱗坑2種,移植的草為礦區(qū)周圍農地上人工種植的兩年生冰草,挑選長勢良好的株高相近的冰草,將其植入棄渣體約20~30 cm深,從小區(qū)頂端開始每隔50 cm水平布設草帶,草帶長寬為0.9 m×0.2 m,采取移植的主要原因是為了保證在試驗時3種棄渣體坡面的植被條件一致。魚鱗坑處理是在坡面上臨時開挖魚鱗坑,坑的直徑為50 cm,深30 cm。魚鱗坑呈三角形排列,沿小區(qū)坡面等距布設,坑與坑之間的縱向距離為0.5 m。移植種草小區(qū)布設完畢后,周圍設立警示標志,以防止人為干擾破壞,每天用噴壺進行澆水養(yǎng)護并觀察長勢,2周左右,待冰草扎根較好能正常生長且每株草周圍土壤固結良好時進行試驗。開始實驗前,在小區(qū)周圍用3.0 m高的鋼管搭建降雨棚,在正上方布設下噴式模擬降雨器,降雨機型號為槽式人工模擬降雨機,噴頭高度為3.0 m,噴頭間距1.0 m,降雨雨滴終速接近天然降雨,降雨均勻系數(shù)在80%以上,并在小區(qū)上方放置2 m3儲水桶,采用60 m揚程水泵抽取儲水桶中的水,通過閥門和壓力表來控制雨強(如圖1),小區(qū)周圍用帆布圍住以減少風對試驗的影響。本研究共設計3×1×2×3=18場降雨試驗。
表1 土壤顆粒組成Table 1 Particle size composition of the soil
圖1 試驗模型示意圖Fig. 1 Sketch of experimental model
試驗前用遮雨布遮蓋小區(qū),降雨器開啟后先率定雨強,率定雨強與設計值誤差控制在5%以內,均勻度在80%以上即滿足要求[19],雨強達到要求后,快速掀起小區(qū)上方的遮雨布,待坡面開始產流后使用秒表計時,并在集流槽出口處用徑流桶收集徑流泥沙樣,同時記錄接樣時間,前3 min內每1 min接1次泥沙樣,3 min后每3 min接1次泥沙樣,產流歷時24 min,接樣同時用高錳酸鉀溶液和秒表測流速,取2個斷面的平均值作為坡面流速,將所測流速乘以0.75得到較為理想的徑流流速[20],使用精度1 mm的鋼尺測量徑流寬度和深度,同一個斷面多次測量取平均值,用普通溫度計測量水溫,采用烘干法確定泥沙重量。
采用Excel 2010和SPSS17.0進行數(shù)據(jù)統(tǒng)計分析,用Origin 2016 進行繪圖。
2.1.1 徑流率隨時間的變化 圖2~圖4分別為1.0、1.5 mm min-1雨強下偏土質、偏石質和煤矸石棄渣體在未防護、種草、布設魚鱗坑措施下邊坡的徑流率隨降雨歷時的變化。由圖可知,3種棄渣體的徑流率在產流6~9 min后逐漸趨于穩(wěn)定。對于偏土質棄渣體(圖2),1.0、1.5 mm min-1雨強情況下,未防護坡面徑流率隨降雨歷時呈“下降—穩(wěn)定”的變化趨勢,這與坡面結皮的產生和破壞過程密切相關,當一定含量的礫石鑲嵌于地表土壤時,結皮強度將大大增加,坡面入滲速率較?。?1],而當徑流對坡面經過一定時間的沖刷后,使得結皮破壞,入滲速率增大,并隨著土壤水分的增加逐漸趨于穩(wěn)定;種草和魚鱗坑2種防護措施下坡面徑流率隨降雨歷時則呈“增大—穩(wěn)定”的變化趨勢。2種雨強條件下,種草和魚鱗坑2種措施下坡面起始徑流率(產流前1 min的徑流率)較未防護坡面分別減小80.40%、90.71%和83.65%、89.65%。對于偏石質棄渣體(圖3),2種雨強下不同措施徑流率均呈先增大后穩(wěn)定的變化趨勢。對于煤矸石堆積體(圖4),1.0 mm min-1雨強下,與防護坡面不同,在未防護坡面未觀測到產流現(xiàn)象,可能是由于煤矸石堆積體大孔隙較多,Wang等[22]研究表明粉煤灰和煤矸石的混合物具有與土壤相似的水力特性,尤其是具有較高的含水能力和滲透性能,加上相對雨強較小時,會導致降雨全部就地入滲,而在種草和布設魚鱗坑時對煤矸石棄渣體坡面表層物質結構進行了重塑,使得棄渣體邊坡表面大孔隙數(shù)量大大降低,從而促進了產流。在2種降雨強度條件下坡面徑流率隨降雨歷時均呈現(xiàn)先增加后穩(wěn)定的變化趨勢。
雖然煤矸石在1.0 mm min-1表面未觀測到產流現(xiàn)象,說明徑流全部下滲形成壤中流,有可能進一步入滲至堆積體和原始地面界面容易形成滑動面,長時間的降雨也使堆積體內部摩擦力減小,從而容易誘發(fā)大面積的滑坡和坍塌事故,尤其在長歷時強降雨條件下更易發(fā)生此類重力侵蝕事件;其次,該區(qū)露天煤礦排矸量較大,不僅壓占大量土地而且影響該區(qū)的景觀格局和生態(tài)環(huán)境質量[23],因此,煤矸石堆積體不僅需要重點防護滑坡等重力侵蝕事件,還需對煤矸石堆積體進行必要的生態(tài)恢復。
圖2 偏土質棄渣體徑流率隨時間的變化Fig. 2 Temporal variation of soil runoff rate on the earthy slope
圖3 偏石質棄渣體徑流率隨時間的變化Fig. 3 Temporal variation of soil runoff rate on the rocky slope
圖4 煤矸石棄渣體坡面徑流率隨時間的變化Fig. 4 Temporal variation of soil runoff rate on the slope of gangue
2.1.2 不同防護措施的減水效益 圖5為1.0、1.5 mm min-1雨強下不同類型棄渣體在不同防護措施下的平均徑流率變化特征。偏土質棄渣體在未防護、種草、魚鱗坑措施下的平均徑流率分別為3.39、1.94、1.63 L min-1和4.64、2.27、1.27 L min-1,2種措施的減水效益分別為42.91%、51.89%和51.21%、72.72%,可見,2種措施的減水效益十分明顯,且魚鱗坑的減水效益較種草高8.98%~21.51%,這是因為魚鱗坑具有通過改變坡面局部地形,增加地面粗糙度以削弱徑流的能力[11];1.5 mm min-1雨強時,2種措施的減水效益較1.0 mm min-1雨強增加8.3%和20.83%,這表明雨強越大,魚鱗坑的蓄水潛力較草被更大。偏石質棄渣體在未防護、種草、魚鱗坑措施下的平均徑流率分別為1.71、1.26、1.33 L min-1和3.97、1.78、2.26 L min-1,種草和魚鱗坑的減水效率分別為26.28%、22.37%和55.20%、42.92%,種草對于偏石質棄渣體坡面徑流的消減效果較魚鱗坑好,其減水效益較魚鱗坑措施高3.91%~12.28%。對于煤矸石棄渣體而言,1.0 mm min-1雨強下種草坡面徑流率較魚鱗坑措施降低17.88%;雨強1.5 mm min-1時,未防護和2種措施防護的坡面平均徑流率為2.31、1.82、2.07 L min-1,2種措施減水效益分別為21.32%和10.33%,草被的減水效益也優(yōu)于魚鱗坑,其減水效益較魚鱗坑措施高10.99%。與偏土質相反,偏石質、石質(煤矸石)棄渣體種草措施減水效益均較魚鱗坑措施好,一方面可能是由于植被上部葉片攔截降雨,枝干又攔截了一定的徑流,使流速降低,徑流能量減少,從而降低其挾沙能力。另一方面可能是由于土粒在沿坡面根莖連接處沉積構成微型慮水土體,對徑流產生攔截和過濾作用[24];而礫石也具有改變徑流路徑削弱徑流的能力[25-26],二者的共同作用使得下滲作用更強;而魚鱗坑措施僅僅是改變了小地形,短時間內攔截了降雨,效果略低于種草。
圖5 不同防護措施棄渣體邊坡的平均徑流率Fig. 5 Variation of average runoff ratio on the slopes of slag
2.2.1 侵蝕速率隨時間的變化 圖6~圖8分別為1.0、1.5 mm min-1雨強下偏土質、偏石質和煤矸石棄渣體在未防護、種草、布設魚鱗坑措施下邊坡的侵蝕速率隨產流歷時的變化。
由圖可知,3種棄渣體在不同雨強條件下邊坡侵蝕速率均呈波動減小趨勢,且未防護減小趨勢較防護的明顯。對于偏土質堆積體(圖6),未防護坡面侵蝕速率在0~6 min波動劇烈,而兩種防護措施下的侵蝕速率則波動較小,1.0 mm min-1和1.5 mm min-1雨強下侵蝕速率峰值分別達到9521 g min-1和15531 g min-1,遠大于2種防護措施的侵蝕速率,這是因為棄渣體結構性、穩(wěn)定性差,不具有良好土壤的各項物理化學性質[27],在產流初期表層粘結性較好的細顆粒容易被侵蝕,而留下穩(wěn)定性較差的大顆粒物質,因此導致降雨前期侵蝕速率波動較大。對于偏石質堆積體(圖7),在1.0 mm min-1和1.5 mm min-1雨強條件下未防護坡面侵蝕速率隨時間的變化差異較大,種草和魚鱗坑措施防護坡面侵蝕速率差異較小,總體上呈現(xiàn)下降的趨勢;在1.5 mm min-1雨強時,偏石質棄渣體同樣是在產流前期起伏較大,后期較小,原因可能是因為隨著坡面細顆粒逐漸被搬運,棄渣體中未被侵蝕的大顆粒之間相互支撐形成了穩(wěn)定渣床面[10],侵蝕速率逐漸穩(wěn)定下來,但相比偏土質棄渣體則波動大,說明礫石的存在影響了降雨的侵蝕作用[24],使堆積體侵蝕差異性增大;對于煤矸石棄渣體(圖8),其侵蝕速率隨時間的變化呈多峰多谷型,這與煤矸石棄渣體的物質結構的復雜性關系密切。
圖6 偏土質棄渣體侵蝕速率隨時間的變化Fig. 6 Temporal variation of soil erosion rate on the earthy slope
圖7 偏石質棄渣體侵蝕速率隨時間的變化Fig. 7 Temporal variation of soil erosion rate on the rocky slope
圖8 煤矸石棄渣體坡面侵蝕速率隨時間的變化Fig. 8 Temporal variation of soil erosion rate on the slope of gangue
2.2.2 不同防護措施的減沙效益 圖9為1.0和1.5 mm min-1雨強下不同類型棄渣體在不同防護措施下平均侵蝕速率變化。由圖可知,偏土質棄渣體邊坡平均侵蝕速率均遠大于偏石質和煤矸石棄渣體。對于偏土質,2種防護措施的減沙效益十分明顯,1.0和1.5 mm min-1雨強時未防護坡面、種草和魚鱗坑坡面平均侵蝕速率分別為2411、49.31、37.75 g min-1和4355、107、27.43 g min-1,2種措施在2種雨強條件下減沙效益分別高達97.95%、98.41%和97.54%、99.30%,這表明魚鱗坑措施減沙效益較種草高出0.46%~1.76%,具有更高的防護效益[12]。雨強由1.0 mm min-1增大至1.5 mm min-1時,未防護坡面侵蝕速率增加81.64%,因此,對于礦區(qū)裸露偏土質棄渣體的防護顯得尤為重要。與偏土質棄渣體相比,偏石質棄渣堆積體邊坡平均侵蝕速率要小很多,其未防護坡面在2種雨強下的平均侵蝕速率較偏土質堆積體降低99.6%、96.2%,說明礫石的存在明顯減小了土壤可蝕性;2種雨強條件下2種措施的減沙效益分別為42.26%、41.98%和94.90%、91.84%,種草措施的減沙效益較魚鱗坑措施高0.28%~3.06%。煤矸石棄渣體由于所含成份復雜、含細小煤灰較多,黏性較大,故在1.0 mm min-1雨強下2種措施的侵蝕速率較小,分別為0.88、3.79 g min-1,雨強為1.5 mm min-1時,未防護坡面侵蝕速率為5.12 g min-1,相比其他2類棄渣體其侵蝕速率降低了很多,2種措施的減沙效益分別為39.50%和7.80%,種草措施的減沙效益較魚鱗坑措施高31.70%。
圖9 不同防護措施棄渣體邊坡的平均侵蝕速率Fig. 9 Variation of average erosion rate on the slopes of slag
表2 不同措施條件下3類棄渣體侵蝕速率與徑流率相關性Table 2 Correlation between erosion rate and runoff rate on slopes of slag relative to type of the slope and protection measure taken
表2為3種棄渣體在未防護、種草、魚鱗坑措施下,侵蝕速率與徑流率的擬合方程。由表2可知,3種棄渣體坡面在未采取防護措施的情況下,侵蝕速率與徑流率均呈極顯著線性關系。其中,偏土質和偏石質棄渣體侵蝕速率隨徑流率的增大而增大,而煤矸石棄渣體坡面上侵蝕速率隨徑流率增大而減小,原因是因為粉煤灰和煤矸石的混合物具有與土壤相似的水力學特性[22],在降雨初期,水分下滲較多,導致坡面徑流量小,而坡面易蝕細顆粒大量存在,故侵蝕量較大;隨著降雨歷時的延長,土層含水量逐漸達到飽和,水分入滲減弱,坡面細顆粒減少,致使徑流率大而侵蝕量小。
在種草措施下,偏土質棄渣體侵蝕速率和徑流率呈顯著對數(shù)關系,而在偏石質和煤矸石棄渣體坡面上二者相關性不顯著;魚鱗坑措施下,除偏石質棄渣體的侵蝕速率和徑流率具有極顯著線性關系外,在偏土質和煤矸石棄渣體坡面上,二者相關性未達到顯著性水平。這表明,這2種防護措施對棄土棄渣體邊坡土壤侵蝕速率與徑流率的關系產生了重要影響[12,18]。對于植被措施而言,(1)冰草是一種良好的水土保持和防風固沙植物,其根為須狀,密生且具有入土較深的特點[28],因而可深入土壤深層,提高土壤透水性和保水能力,降低地表徑流和沖刷。(2)植被根系能夠改變土壤疏松程度,增加土壤孔隙度,根系對土體具有拉伸和固持作用,有利于增加降雨入滲能力[29]和土壤持水能力,同時使土壤表層出現(xiàn)結皮[30],植被促進入滲能力主要是因為地表覆蓋層和根系土壤層對水分的截留和吸收,進一步延緩徑流流速,從而減弱了降雨徑流對表層土壤的沖刷作用;(3)植被冠層對降雨的攔截作用較強,可降低雨滴的動能[31],減輕雨滴對地面的直接打擊作用,降低擊濺侵蝕,致使侵蝕速率隨之降低,最終導致侵蝕速率和徑流率的相關性較小。就魚鱗坑措施而言,其作為水保工程措施能夠改變局部小地形,在降雨期間能夠有效蓄積儲存降雨,攔蓄坡面降雨徑流,增強降雨的疊加入滲能力,降低土壤侵蝕[32-33]。因此,種草和魚鱗坑措施處理坡面可以打破侵蝕速率與徑流率的一般關系,改變坡面水沙關系。
采用野外模擬降雨的方法,以神府礦區(qū)不同類型棄土棄渣體為研究對象,研究1.0和1.5 mm min-1雨強條件下種草和魚鱗坑措施對棄土棄渣堆積體坡面徑流率、侵蝕速率及水沙關系的影響。不同措施下3種棄渣體邊坡徑流率均在產流6~9 min后趨于穩(wěn)定,產流過程中棄渣體邊坡侵蝕速率均呈波動減小趨勢,且未防護坡面減小趨勢較防護更明顯;種草對3種棄渣體的減水和減沙效益分別為10.33%~55.20%和7.80%~97.95%;魚鱗坑分別為21.32%~72.72%和39.50%~99.30%。魚鱗坑措施對偏土質棄渣體的防護效益優(yōu)于種草措施,而種草措施對偏石質棄渣體和煤矸石的防護效益優(yōu)于魚鱗坑措施。未防護條件下3種棄渣體坡面的侵蝕速率與徑流率呈現(xiàn)顯著的線性關系(p<0.05),而種草和魚鱗坑措施改變了坡面水沙關系;盡管煤矸石堆積體在1.0 mm min-1雨強下坡面無徑流產生,但考慮到生態(tài)安全,進行相關的生態(tài)修復是十分必要的。本試驗未進行更多坡度、更大雨強及更長歷時的試驗,且措施種類也比較單一,研究中也未考慮到壤中流的變化對土壤侵蝕的影響,今后應加強這幾個方面的研究。
[1] 楊選民,丁長印. 神府東勝礦區(qū)生態(tài)環(huán)境問題及對策.能源環(huán)境保護,2000,14(1):69-72 Yang X M,Ding C Y. Ecological environmental problems and countermeasures in ShenfuDongsheng mining area(In Chinese). Energy Environmental Protection,2000,14(1):69—72
[2] 徐占軍,侯湖平,張紹良,等. 采礦活動和氣候變化對煤礦區(qū)生態(tài)環(huán)境損失的影響. 農業(yè)工程學報,2012,28(5):232—240 Xu Z J,Hou H P,Zhang S L,et al. Effects of mining activity and climatic change on ecological losses in coal mining areas(In Chinese). Transactions of the Chinese Society of Agricultural Engineering,2012,28(5):232—240
[3] Ahirwal J,Maiti S K,Singh A K.Changes in ecosystem carbon pool and soil CO2flux following post-mine reclamation in dry tropical environment,India. Science of the Total Environment,2017,583(1):153—162
[4] Chalupnik S,Wysocka M,Janson E,et al. Long term changes in the concentration of radium in discharge waters of coal mines and Upper Silesian rivers. Journal of Environmental Radioactivity,2017,171(2):117—123
[5] 趙暄,謝永生,王允怡,等. 模擬降雨條件下棄土堆置體侵蝕產沙試驗研究. 水土保持學報,2013,27(3):1—8,76 Zhao X,Xie Y S,Wang Y Y,et al. Experimental study on soil erosion and sediment yield of spoil bank under simulated rainfall condition(In Chinese).Journal of Soil and Water Conservation,2013,27(3):1—8,76
[6] 馬春艷,王占禮,寇曉梅,等. 工程建設棄土棄渣水土流失過程試驗研究. 水土保持通報,2009,23(3):78—82 Ma C Y,Wang Z L,Kou X M,et al. Experimental study of soil and water loss processes on waste soil and residue in project construction(In Chinese). Bulletin of Soil and Water Conservation,2009,23(3):78—82
[7] Riley S J.Aspects of the differences in the erodibility of the waste rock dump and natural surfaces,Ranger Uranium Mine,Northern Territory,Australia. Applied Geography,1995,15(4):309—323
[8] Zhou W,Yang K,Bai Z,et al. The development of topsoil properties under different reclaimed land uses in the Pingshuo opencast coalmine of Loess Plateau of China. Ecological Engineering,2017,100:237—245
[9] 康宏亮,王文龍,薛智德,等. 陜北風沙區(qū)含礫石工程堆積體坡面產流產沙試驗. 水科學進展,2016,27(2):256—265 Kang H L,Wang W L,Xue Z D,et al. Experimental study on runoff and sediment yield from engineering deposition with gravel in the northern windy-sandy region,Shaanxi(In Chinese). Advances in Water Science,2016,27(2):256-265
[10] 郭明明,王文龍,李建明,等. 神府礦區(qū)棄土棄渣體侵蝕特征及預測. 土壤學報,2015,52(5):1044—1057 Guo M M,Wang W L,Li J M,et al.Erosion on dunes of overburden and waste slag in Shenfu coal field and prediction(In Chinese). Acta Pedologica Sinica,2015,52(5):1044—1057
[11] 王貞. 神東煤田不同下墊面侵蝕產沙規(guī)律及水動力參數(shù)特征. 陜西:西北農林科技大學,2011 Wang Z. The feature of sediment yield and hydrodynamics of different underlying surfaces in the construction of the Shenfu-Dongsheng coalfield(In Chinese).Shaanxi:Northwest Aamp;F Universtiy,2011
[12] 田野. 堆渣邊坡兩種護坡措施的水土保持效益研究. 北京:北京林業(yè)大學,2015 Tian Y. Study on benefits of soil and water conservation slag heap slope revetment two measures(In Chinese).Beijing:Beijing Forestry University,2015
[13] 王貞,王文龍,金劍,等. 神東煤田擾動地面與原地面產流產沙及水動力學參數(shù)對比. 中國水土保持科學,2010,8(6):69—74 Wang Z,Wang W L,Jin J,et al. Comparison of runoff generation,sediment yield and hydrodynamic parameters on the undisturbed and the disturbed land surface in the Shenfu-Dongsheng coalfield(In Chinese). Science of Soil and Water Conservation,2010,8(6):69—74
[14] 郭明明,王文龍,李建明,等. 神府煤田土壤顆粒分形及降雨對徑流產沙的影響. 土壤學報,2014,51(5):983—992 Guo M M,Wang W L,Li J M,et al. The influence of soil particles fractal and rainfall on runoff and sediment yield in Shenfu coalfield(In Chinese). Acta Pedologica Sinica,2014,51(5):983—992
[15] 丁文斌,史東梅,何文健,等. 放水沖刷條件下工程堆積體邊坡徑流侵蝕水動力學特性. 農業(yè)工程學報,2016,32(18):153—161 Ding W B,Shi D M,He W J,et al. Hydrodynamic characteristics of engineering accumulation erosion under side slope runoff erosion process in field scouring experiment(In Chinese). Transactions of the Chinese Society of Agricultural Engineering,2016,32(18):153—161
[16] 丁文斌,李葉鑫,史東梅,等. 兩種工程堆積體邊坡模擬徑流侵蝕對比研究. 土壤學報,2017,54(3):558—569 Ding W B,Li Y X,Shi D M,et al. Contrast study on simulated runoff erosion of two engineering accumulation slopes(In Chinese). Acta Pedologica Sinica,2017,54(3):558—569
[17] 張樂濤,高照良,田紅衛(wèi). 工程堆積體陡坡坡面土壤侵蝕水動力學過程. 農業(yè)工程學報,2013,29(24):94—102 Zhang L T,Gao Z L,Tian H W. Hydrodynamic process of soil erosion in steep slope of engineering accumulation(In Chinese). Transactions of the Chinese Society of Agricultural Engineering,2013,29(24):94—102
[18] 劉瑞順,王文龍,廖超英,等. 露天煤礦排土場邊坡防護措施減水減沙效益分析. 西北林學院學報,2014(4):59—64 Liu R S,Wang W L,Liao C Y,et al. Benefits in runfall and sediment reductions of the protection methods for the dump slope of opencast coal mine(In Chinese). Journal of Northwest Forestry University,2014(4):59—64
[19] 倪含斌,張麗萍,張登榮. 模擬降雨試驗研究神東礦區(qū)不同階段堆積棄土的水土流失. 環(huán)境科學學報,2006,26(12):2065—2071 Ni H B,Zhang L P,Zhang D R. Simulated rainfall experiments on soil and water erosion in different phases of resources exploitation in Shendong mine region(In Chinese). Acta Scientiae Circumstantiae,2006,26(12):2065—2071
[20] 雷廷武,張晴雯,趙軍,等. 確定侵蝕細溝集中水流剝離速率的解析方法. 土壤學報,2002,39(6):788—793 Lei T W,Zhang Q W,Zhao J,et al. Analytic method for determination of detachment rate of concentrated flow in erosion rills(InChinese). Acta Pedologica Sinica,2002,39(6):788—793
[21] 符素華. 土壤中礫石存在對入滲影響研究進展. 水土保持學報,2005,19(1):171—175 Fu S H. Effect of soil containing rock fragment on infiltration(In Chinese). Journal of Soil and Water Conservation,2005,19(1):171—175
[22] Wang J,Li X,Bai Z,et al. The effects of coal gangue and fly ash on the hydraulic properties and water content distribution in reconstructed soil profiles of coalmined land with a high groundwater table. Hydrological Processes,2017,31:687—697
[23] 勾立新. 煤矸石的環(huán)境問題及對策初探. 鐵法科技,2015,B12:208—211 Gou L X. Environment problem and discussion on the countermeasures of coal gangue(InChinese). Science and Technology of Iron Processes. 2015,B12:208—211
[24] 楊亞川,莫永京,王芝芳,等. 土壤-草本植被根系復合體抗水蝕強度與抗剪強度的試驗研究. 中國農業(yè)大學學報,1996,1(2):31—38 Yang Y C,Mo Y J,Wang Z F,et al. Experimental study on anti-water erosion and shear strength of soil-root composite(In Chinese). Journal of China Agricultural University,1996,1(2):31—38
[25] 史東梅,蔣光毅,彭旭東,等. 不同土石比的工程堆積體邊坡徑流侵蝕過程. 農業(yè)工程學報,2015,31(17):152—161 Shi D M,Jiang G Y,Peng X D,et al. Runoff erosion process on slope of engineering accumulation-with different soil-rock ratio(In Chinese). Transactions of the Chinese Society of Agricultural Engineering,2015,31(17):152—161
[26] Wilcox B P,Wood M K. Factors influencing interrill erosion from semiarid slopes in New Mexico Journal of Range Management,1989,42(1):66—70
[27] 李建明,王文龍,王貞,等. 神府東勝煤田棄土棄渣體徑流產沙過程的野外試驗. 應用生態(tài)學報,2013,24(12):3537—3545 Li J M,Wang W L,Wang Z,et al. A field experiment of runoff and sediment yielding processes from residues in Shenfu-Dongsheng coalfield(In Chinese). Chinese Journal of Applied Ecology,2013,24(12):3537—3545
[28] 曾亮,袁慶華,王方,等. 冰草屬植物種質資源遺傳多樣性的ISSR分析. 草業(yè)學報,2013,22(1):260—267 Zeng L,Yuan Q H,Wang F,et al. Gentic diversity analysis of Agropyron germplasm resource by ISSR(In Chinese). Acta Prataculturae Sinica,2013,22(1):260—267
[29] Rpc M,Mcintyre K,Vickers AW,et al. A rainfall simulation study of soil erosion rangeland in Swaziland.Soil Technology,1997,11(3):291—299
[30] 吳發(fā)啟,范文波. 土壤結皮對降雨入滲和產流產沙的影響. 中國水土保持科學,2005,3(2):97—101 Wu F Q,F(xiàn)an W B. Effects of soil encrustation on rainfall infiltration,runoff and sediment generation(In Chinese). Science of Soil and Water Conservation,2005,3(2):97—101
[31] 楊勝利,王云鵬. 排土場穩(wěn)定性影響因素分析. 露天采礦技術,2009(3):4—7 Yang S L,Wang Y P. Analysis of factors affecting dump stability(In Chinese). Opencast Mining Technology,2009(3):4—7
[32] 李虹辰,趙西寧,高曉東,等. 魚鱗坑與覆蓋組合措施對陜北旱作棗園土壤水分的影響. 應用生態(tài)學報,2014,25(8):2297—2303 Li H C,Zhao X N,Gao X D,et al. Effects of scalelike pit and mulching measures on soil moisture of dryland jujube orchard in North Shaanxi Province,China(In Chinese). Chinese Journal of Applied Ecology,2014,25(8):2297—2303
[33] 張北贏,徐學選,劉文兆. 黃土丘陵溝壑區(qū)不同水保措施條件下土壤水分狀況. 農業(yè)工程學報,2009,25(4):54—58 Zhang B Y,Xu X X,Liu W Z. Soil water condition under different measures of soil and waterconservation in loess hilly and gully region(In Chinese). Transactions of the Chinese Society of Agricultural Engineering,2009,25(4):54—58
(責任編輯:檀滿枝)
Study on Runoff and Sediment Reducing Effects of Erosion Control Measures on Slopes of Slag Dumps with Simulated Rainfall
YANG Bo1WANG Wenlong1,2,3?GUO Mingming1KANG Hongliang1BAI Yun3LI Jianming4
(1 State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau,Institute of Soil and Water Conservation,Northwest Aamp;F Universtiy,Yangling,Shaanxi 712100,China)
(2 Institute of Soil and Water Conservation,Chinese Academy of Sciences and Ministry of Water Resources,Yangling,Shaanxi 712100,China.)
(3 Key Laboratory of Ecological Restoration of Mining Area in Northern Shaanxi Province;Yulin University;Yulin,Shaanxi 719000,China)
(4 Department of Soil and Water Conservation,Yangtze River Scientific Research Institute,Wuhan 430010,China)
【Objective】The ecological and environmental problems caused by mining,especially coal mining,have aroused worldwide concerns and attention. It is,therefore,essential to explore rapid and effective ways to rehabilitate the ecological systems in the mining areas.【Method】Outdoor simulation of rainfall events was conducted with rainfall intensity controlled at 1.0 mm min-1or 1.5 mm min-1on slopes,different in texture,1)earthy slope(more soil than rock);2)rocky slope(more rock than soil):and 3)slope of gangue,to evaluate effects of the erosion control measures,planting grass and digging fishscale pit. The two years old grass of Agropyron was formerly planted in the farmlands around the mining and transplanted on the slopes and the fish-scale pits dug temporarily. The rainfall simulator was a troughtype artificial simulator. When the nozzle is 3 m above the ground,the raindrops may reach the end point speed. Plots of the artificial slopes were 3 m×1 each in area and 35° in slope gradient. Before the start of the experiment,rainfall was calibrated in intensity until it reached 85% or higher in uniformity coefficient. During the rainfall events,runoff flow velocity was measured with the dye tracing method. During the first 3 minutes of rainfall,samples of runoff and sediment were gathered every minute,and after that once every 3 minutes.Sediment samples were oven-dried for weighing.【Result】(1)Runoff leveled off in rate in 6minutes after the initiation of runoff on all the three types of slopes,regardless of type of control measure. The erosion rate on the slope of gangue tended to fluctuate,while declining and the trend was more obvious than those on the protected slopes.(2)Planting grass reduced runoff by 42.91%~51.21%,26.28%~55.20% and 10.33% and sediment by 97.54%~97.95%,41.87%~42.26% and7.80%,respectively,on earthy slopes,rocky slopes and slopes of gangue,while digging fish-scale pits did by 51.89%~72.72%,22.37%~42.92% and 21.32%and by 98.41%~99.30%,94.90%~91.84% and 39.50%,respectively.(3)On earthy slopes,digging fishscale pits was 8.98%~21.51% and 0.46%~1.76%,respectively,higher in runoff and sediment reduction rate than planting grass,while on rocky slopesand slopes of gangue,planting grass was 3.91%~12.28% and 0.28%~3.06% higher and 10.99% and 31.70% higher,respectively.(4)On all the three types of slopes without protection measures taken,linear relationships(R2= 0.775,p<0.01;R2= 0.649,p<0.01;R2=0.450,p<0.05)were found between erosion rate and runoff rate,but they were weakened or fading out altered when the protection measures were taken.【Conclusion】All findings in this study may serve as scientific basis in guiding ecological restoration of slopes of gangue in the mining area.
Shenfu coalfield;Mining slags;Fish-scale pit;Grass planting;Runoff rate;Erosion rate
S157.1
A
10.11766/trxb201705270151
* 國家重點研發(fā)計劃重點專項項目(YS2016YFSF030019)和國家自然科學基金項目(40771127)資助 Supported by the National Key Research and Development Program of China(No.YS2016YFSF030019)and the National Natural Science Foundation of China(No.40771127)
? 通訊作者 Corresponding author:wlwang@nwsuaf.edu.cn
楊 波(1993—),男,陜西商南人,碩士研究生。主要從事開發(fā)建設項目水土保持。E-mail:584431911@qq.com
2017-05-27;
2017-07-10;優(yōu)先數(shù)字出版日期(www.cnki.net):2017-07-25