国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

生物質炭對有機污染物的吸附及機理研究進展*

2017-12-11 05:32李曉娜賈明云卞永榮
土壤學報 2017年6期
關鍵詞:官能團極性機理

李曉娜 宋 洋 賈明云 王 芳 卞永榮 蔣 新?

(1 土壤環(huán)境與污染修復重點實驗室(中國科學院南京土壤研究所),南京 210008)

(2 中國科學院大學,北京 100049)

生物質炭對有機污染物的吸附及機理研究進展*

李曉娜1,2宋 洋1賈明云1王 芳1卞永榮1蔣 新1?

(1 土壤環(huán)境與污染修復重點實驗室(中國科學院南京土壤研究所),南京 210008)

(2 中國科學院大學,北京 100049)

生物質炭是一種利用廢棄生物質材料在缺氧或厭氧環(huán)境中熱化學轉換制備的多孔級富碳固體材料。因其吸附能力強,制備原料來源廣泛,生產成本低且環(huán)境友好等優(yōu)點受到學術界越來越多的關注。探究生物質炭對有機污染物的吸附機理和規(guī)律,對于評估其環(huán)境行為和應用價值至關重要。著重綜述了目前研究報道的生物質炭吸附有機污染物的吸附機理,包括分配作用、表面吸附作用和孔隙截留等。一般低溫生物質炭對非極性有機物的吸附機制以分配作用為主,這種非競爭性吸附機理可以解釋高濃度有機污染物在生物質炭上的吸附過程。表面吸附是一種非線性競爭性吸附作用,是有機污染物在生物質炭表面有效吸附位點上形成靜電作用或通過氫鍵、離子建、π-π相互作用等結合的過程??紫督亓羰橇硪环N生物質炭固定有機污染物的微觀機制,有機污染物在孔隙內部的分配和吸附也是生物質炭吸附能力的重要體現(xiàn)。而在實際復雜的污染環(huán)境中,各類生物質炭對有機污染物的吸附過程需要多種機制共同解釋。此外,本文對吸附機制的影響因素進行了分析和總結,生物質炭自身理化特性決定了其應用價值,生物質炭的性質與有機污染物的極性、芳香性和分子大小等相匹配才能更好地實現(xiàn)吸附固定,不同的吸附環(huán)境如吸附介質、pH和共存離子等也會對吸附機制和吸附效果產生影響。最后,文章進一步探討了生物質炭吸附有機污染相關研究未來應著重解決的問題,以及生物質炭在有機污染土壤修復中的應用前景。

生物質炭;有機污染物;吸附特性;吸附機理

隨著工農業(yè)的快速發(fā)展,工業(yè)廢物、農藥、化肥及激素類物質的環(huán)境輸入不斷增加,具有高毒性、高累積、難降解、可遠距離遷移的有機污染物,一旦進入食物鏈會對人類健康造成明顯的“三致”效應。對此類有機物污染土壤的治理與修復,已成為社會關注的熱點問題。土壤中污染物的生物有效性及遷移轉化是影響其環(huán)境風險的重要因素,同時由于我國人多地少的特點,開展污染土壤的原位修復與治理至關重要。因此,原位吸附阻控污染物,降低其生物有效性,控制其向食物鏈中遷移是一種環(huán)境友好、安全高效的污染土壤修復措施。

生物質炭作為熱解、炭化合成的主要不完全燃燒產物,是一種穩(wěn)定的富碳物質,被稱為超級吸附劑[1]。不完全燃燒決定了生物質炭碳質組成的異質性,與土壤中本土有機質共同吸附有機污染物,對包括多環(huán)芳烴、多氯聯(lián)苯、芳香硝基化合物等各種有機污染物具有強烈吸附能力。研究表明,生物質炭具有高比表面、強電子交換性、多孔隙和豐富碳質組分等獨特結構,相比天然存在碳形式,生物質炭對有機污染物的吸附能力極高[2-3]。此外,生物質炭制備原料來源廣,成本低,制備工藝操作簡便,在改善土壤質量、提高作物品質、高效利用廢棄資源等方面具有很好的效益,受到科學家們的重視,在有機污染土壤修復中有巨大應用潛力。

生物質炭獨特理化性質是其強吸附性能的關鍵,制備工藝和原料類型是影響生物質炭理化特性的重要因素[4]。研究不同原料和制備工藝下生物質炭的吸附特性,揭示生物質炭吸附有機污染物的機理,為生物質炭在有機污染土壤修復中的合理應用提供理論指導。本文在闡述生物質炭吸附效能和吸附特性的基礎之上,著重綜述了生物質炭-有機污染物相互作用機理及影響因素,并對目前生物質炭在有機污染土壤修復中的應用所存在的問題進行了分析,進一步展望了未來相關研究的發(fā)展。

1 生物質炭吸附效果與特性

生物質炭是具有比表面積大,孔隙結構發(fā)達、表面官能團豐富和芳香度高等特性的富碳材料,可以穩(wěn)定吸附固持污染物,降低其生物有效性,緩解環(huán)境風險,同時其所含的豐富養(yǎng)分成分可以起到保肥固氮、提高土壤肥力的作用,這是生物質炭實現(xiàn)污染土壤邊治理邊生產的關鍵[5-9]。研究表明,燃燒農業(yè)殘渣制備生物質炭對敵草隆的吸附是土壤的400倍~2500倍,可有效控制這類有機農藥的遷移和環(huán)境污染[10]。較大的比表面積為有機污染物的吸附提供可能,一般木質材料生物質炭具有更豐富的微孔結構,比表面積高于500 m2g-1,而以秸稈或固體廢物為原料制備的生物質炭以中孔結構為主,相對比表面積也較低,在130~310 m2g-1之間[11-12]。研究表明,不同生物質原料對有機污染物吸附能力(Qe)與比表面積變化一致,孔隙形態(tài)以微孔為主的生物質炭,相對比表面積也較大,相比以大、中孔隙為主的生物質炭具有更強的表面吸附和微孔填充能力,更高的飽和吸附量[13-14]。此外,生物質炭表面豐富的含氧官能團在一定程度上影響其表面的電子得失、陽離子交換量(CEC)、極性和穩(wěn)定性,且伴隨著老化過程有脂肪族官能團減少而羰基官能團顯著增多的趨勢,因此生物質炭極性增強,極性官能團是其與極性有機污染物相互作用的關鍵[15-17]。吳晴雯等[18]利用傅里葉紅外光譜(Fourier Transform Infrared Spectroscopy,F(xiàn)TIR)對比蘆葦生物質炭吸附1,1-二氯乙烯(1,1-DCE)前后表面官能團變化,表明有機物與-OH、C=C、C=O和C-H等官能團成鍵和π-π相互作用是主要吸附機制,生物質炭對水溶液中1,1-DCE的去除率高達90%。Wu等[19]利用FTIR和核磁共振(Nuclear Magnetic Resonance,NMR)檢測500℃熱解水稻秸稈生物質炭官能團,發(fā)現(xiàn)C=C、C=H等芳香化官能團含量高達98.5%,其中C-O芳香化結構含量為24.7%。高度芳香性是生物質炭與難降解有機污染物π-π相互作用的內在原因[20-21]。

生物質炭不僅吸附容量大,而且對有機污染物的固持具有穩(wěn)定性。芳香結構和無定形亂層微晶結構共同決定了生物質炭可以長期存在于土壤中,并隨著生物質炭吸附態(tài)污染物的“老化”,長效阻控其生態(tài)風險[22]。Kuzyakov等[23]通過14C同位素標記來追蹤碳的遷移轉化,發(fā)現(xiàn)生物質炭在土壤中半衰期大約為1400年。余向陽等[24-25]研究發(fā)現(xiàn),向敵草隆污染農田土壤中添加生物質炭可提高土壤農藥吸附量5倍~125倍,且吸附56 d后農藥解吸率降低96%。Jones等[26]研究表明,隨生物質炭添加量的增加,西瑪津半衰期顯著增長,1%添加比可延長其半衰期高達66%,且生物質炭吸附能力并不隨老化過程而減弱。將生物質炭添加至莠去津污染農田土壤中,隨著生物質炭的添加比增大和培養(yǎng)時間的延長,0.01 mol L-1CaCl2可提取態(tài)莠去津濃度顯著降低,蚯蚓對其吸收也降低了73%,這表明生物質炭外源添加到土壤中可顯著降低污染物生物有效性[27]。另有研究表明,添加1%小麥秸稈生物質炭顯著抑制了土壤中氯苯的消解,這與生物質炭降低氯苯的生物有效性有關[28]。土壤中外源添加生物質炭可顯著減少污染物向植物體內遷移,從而降低其生態(tài)風險[29]。生物質炭對土壤中污染物的吸附-解吸行為,對污染物生物有效性的影響一直是其環(huán)境行為研究的熱點,由于生物質炭性質差異其對有機污染物的吸附效果和機理也具有區(qū)別,總結已有研究的生物質炭吸附特征和機理很有必要。

2 生物質炭對有機污染物的吸附機理

研究生物質炭對有機污染物的吸附機制和規(guī)律,對評估其環(huán)境行為和應用價值具有重要指導意義。目前,已有的研究表明吸附機理主要包括分配作用、表面吸附和孔隙截留三種,而在復雜的污染環(huán)境及多樣的生物質炭類型條件下,多種吸附機理共同作用才能完全解釋有機污染物的吸附過程,表1總結了一些生物質炭對常見有機污染物的吸附作用及機理。

表1 生物質炭對有機污染物吸附作用及機理Table 1 Summary of functions and mechanisms of biochar adsorbing organic contaminants

2.1 分配作用

分配作用是Chiou等[46]研究非離子有機化合物在土壤中的吸附過程時首次提出的簡單線性吸附過程,是分子間弱的相互作用,是有機物可以分配到土壤有機質中,而不是在表面吸附位點上的吸附。污染物在有機質中的分配系數(shù)(Kom)與其辛醇-水分配系數(shù)(Kow)之間呈現(xiàn)明顯的線性關系,因此,研究者認為分配作用是有機污染物根據(jù)“相似相溶”原理在親水相和疏水相之間的分配,該過程主要取決于土壤中有機質含量,與土壤顆粒表面積無關[47-50]。Huang等[51]認為,分配作用主要是由生物質炭與有機污染物的“匹配性”和“有效性”決定的,兩者極性相符,具有高匹配性,則主要發(fā)生分配作用過程;而有效性一方面是指無定形有機碳對有機污染物的有效“溶解”,另一方面指高濃度有機物質在生物質炭表面吸附有效性降低,此時主要發(fā)生非競爭性分配作用。

有機污染物在生物質炭有機碳中的分配作用與其極性和芳香性緊密相關,一般用H/C和(N+O)/C原子比分別表示生物質炭芳香性和極性,H/C值越小,生物質炭芳香性越強,而(N+O)/C值越大,極性越強[17]。隨著熱解溫度升高,生物質炭比表面積增大,極性減弱而芳香性增強。不同熱解溫度生物質炭對4-硝基甲苯的吸附研究結果表明,低溫(<300℃)生物質炭比表面積小,吸附等溫線呈現(xiàn)線性,以分配作用為主,且Kom與(N+O)/C負相關,說明生物質炭極性越小對弱極性有機污染物的分配作用越強,兩者之間極性的匹配更有利于有機污染物的吸附;而Kom與H/C正相關,說明芳香碳不利于有機污染物的有效“溶解”,高度芳香性的生物質炭對有機污染物分配作用較弱[14,52]。此外,低溫熱解炭中灰分含量高,無機礦物占據(jù)了表面有效吸附位點,有機污染物的吸附機理以非競爭性分配作用為主;高濃度有機物的吸附等溫線呈線性,也正是由于生物質炭表面達到吸附位點飽和,此時非競爭性表面分配作用為主要吸附機制[14,38,53]。生物質炭表面極性官能團的親水性在其表面形成水膜包裹,阻礙了污染物與吸附位點的有效接觸,為分配作用提供了可能[54]。近年來,Chiou等[36]通過向吸附質中添加對硝基酚(PNP)置換液,對比添加前后生物質炭對鄰二甲苯(XYL)和1,2,3-三氯苯(TCB)這類非極性和弱極性有機物質的吸附等溫線變化,用實驗方法直接得出分配作用在吸附過程中所占比例,結果表明泥炭對XYL和TCB的吸附完全為分配作用,低溫熱解(100℃和250℃)制備的松針生物質炭和柴油煙灰生物質炭(SRM-2975和SRM-1650)對XYL和TCB的吸附也以分配作用過程為主,此類生物質炭共性在于均具有低比表面積,弱芳香性和豐富的表面極性官能團。

綜上所述,低溫制備生物質炭對非極性或弱極性有機物質的吸附,尤其當污染物濃度高于生物質炭表面最大承載量時,吸附機理以非競爭性分配作用為主。

2.2 表面吸附

表面吸附是有機污染物與生物質炭表面分子結構相互作用的又一種重要吸附機理,是吸附質在生物質炭這種具有豐富表面極性官能團和巨大相對比表面積的特殊材料表面吸附位點上富集的現(xiàn)象,是生物質炭超強吸附能力的主要貢獻部分。根據(jù)吸附劑與吸附質之間相互作用力差異可將其分為物理吸附和化學吸附,吸附熱力學表面自由能變化小于40 kJ mol-1以物理吸附為主,反之則以化學吸附為主[55]。

靜電吸附是最常見的物理吸附,是有機污染物與生物質炭表面含氧官能團的弱相互作用。Zheng等[44]研究發(fā)現(xiàn),酸性環(huán)境下生物質炭對莠去津吸附作用更強,推測是由于污染物的質子化作用,導致與生物質炭表面負電荷靜電相互作用增強所致。臭氧氧化活性炭表面官能團使得其零電荷點(pHpzc)減小,當吸附環(huán)境pH高于pHpzc時吸附劑表面帶負電荷,與帶正電荷吸附質主要發(fā)生靜電相互作用,吸附能力增強[56]。

化學吸附會伴隨化學鍵(包括氫鍵、離子偶極鍵、配位鍵或π-π鍵等)的形成或強烈的分子間相互作用。堿性條件下磺胺甲嘧啶(SMT)發(fā)生去質子化,與生物質炭表面羧酸鹽官能團形成氫鍵是其吸附的主要機制[57]。生物質炭酸化處理有利于增強其對有機污染物的表面吸附作用。一方面是由于表面酸性含氧官能團(-OH、-COOH)增加,促進與極性有機物之間形成離子鍵,增強吸附能力;另一方面,酸化增強了對礦物的溶解,暴露更多生物質炭的有效吸附位點,促進表面吸附作用[58-59]。Zhu等[54]對木質生物質炭加氫和再氧化處理,結果表明前后過程萘、菲、芘等有機污染物的吸附并沒有發(fā)生變化,否定了形成氫鍵的吸附過程,推測高度芳香性生物質炭與苯環(huán)有機化合物之間通過π-π電子供受體(π-π EDA)作用力實現(xiàn)化學吸附過程。早在1968年,Coughlin等[60]發(fā)現(xiàn)生物質炭表面的化學吸附氧可以減弱其吸附性能,正是因為強氧化性化學吸附氧對生物質炭本身含有的含氧官能團進行氧化,使其具有更強吸電子能力,與吸附質之間的π-π EDA作用減弱。生物質炭在π-π EDA作用力間既可以作為電子給體,又可以作為電子受體[61]。高溫熱解生物質炭對五氯苯酚(PCP)的吸附過程中,吸附系數(shù)(Kd)與H/C原子比顯著負相關,推測芳香碳組分與PCP的苯環(huán)結構通過π-π共軛結合,且生物質炭含氧結構少,吸電子能力減弱,更傾向于作π-供體,PCP作為π-受體[21]。

因此,生物質炭表面電負性、酸堿性、芳香性以及污染物性質差異均會影響表面吸附過程。通常,高溫熱解(>500℃)生物質炭具有高比表面積、低極性和豐富芳香結構,與有機污染物相互作用以表面吸附為主,具體表現(xiàn)為吸附等溫線非線性增強[14]。但關于表面吸附過程中具體作用力的研究還不足,實驗直接表征方法鮮有報道,推測一般酸性生物質炭因表面H+存在,與有機化合物以靜電力作用結合,生物質炭表面極性官能團有利于離子鍵的形成,而酯類官能團則會促進π-π作用力相互作用[59]。

2.3 孔隙截留

生物質炭是一類以微孔結構為主,多孔級同時存在的非勻質特殊多孔固體材料[62]。微孔的存在是影響有機污染物慢吸附的重要因素,只有通過慢過程擴散進入微孔內部,或者分配進入生物質炭剛性結構內部的污染物才能不可逆被吸附固定,被稱為殘留態(tài)有機污染物[63-65]。鎖定作用是有機污染物通過微孔填充作用被生物質炭束縛,降低其生物有效性的關鍵。被鎖定的污染物與土壤中降解生物有效隔離,使其可穩(wěn)定長期存留于土壤中[64,66]。生物質炭孔隙大小限制其對部分有機污染物的截留作用,孔隙太小會增大對大分子有機污染物的空間位阻,使其很難進入生物質炭內部;孔隙太大,不能有效截留小分子有機污染物。研究表明,木質生物炭(ENC1和NC1)對幾種有機污染物的最大吸附量與污染物分子體積呈反比,且凝聚狀態(tài)為固態(tài)的有機污染物(1,4-二氯苯或PAHs)在ENC1上的吸附強于NC1,正是由于ENC1具有更大的比表面積和微孔含量,而凝聚狀態(tài)為液態(tài)的有機污染物(1,2-二氯苯和1,2,4-三氯苯)在兩種生物質炭上吸附作用無顯著差異[67]。張默等[68]利用顆粒內擴散模型表征玉米生物質炭對萘的吸附均為多重線性,表明孔隙填充對萘的吸附發(fā)揮重要作用??紫督亓舨⒎呛唵蔚奈锢聿东@,微孔內表面的親疏水性也起著重要作用[69-70]。生物質炭孔隙內表面電荷和羥基官能團決定了其具有很強極性,水膜包被生物質炭有利于親水性有機物的吸附固定。然而,水分子同時也降低了孔隙內親水基團密度,更有利于疏水性有機物質的孔內分配作用過程[71]。Zhang等[72]研究表明生物質炭對雌二醇的吸附與孔隙結構有關,推測雌二醇主要與孔內基團形成氫鍵、π-π EDA等相互作用。此外,Braida等[39]采用非定域密度函數(shù)理論計算生物質炭孔徑、孔隙分布和表面積,表明楓木生物質炭吸附苯會使孔隙發(fā)生膨脹,且孔變形是不可逆的。吸附質分子熱運動導致孔洞膨脹或生成新的孔洞,使剛性結構微孔難以恢復基態(tài),被吸附的有機污染物也難以擺脫微孔壁的相互作用力,發(fā)生不可逆變化,出現(xiàn)吸附質解吸滯后的現(xiàn)象[73-74]。

綜上所述,孔隙截留是一種重要的生物質炭吸附固定有機污染物的微觀機制,孔徑大小、孔隙內官能團組成以及有機污染物的形態(tài)與性質均會影響孔隙截留吸附過程,但目前關于多種物質共存環(huán)境下生物質炭對有機污染物的孔隙截留少有報道,且生物質炭多孔級結構增大了孔內相互作用力測定的難度,因此很難探討孔隙截留的具體機制。

2.4 共同作用

顯然,單獨的分配作用、表面吸附或孔隙截留作用解釋生物質炭對有機污染物的吸附過程均存在局限性。因生物質炭特性、有機污染物性質和吸附環(huán)境等不同,生物質炭吸附有機污染物的過程存在差異,通常以某種吸附機理為主,多種吸附機理共存。Weber等[75]在1992年提出雙吸附-雙遷移模型,用分配作用貢獻Qp和吸附作用貢獻Qad兩個參數(shù)區(qū)分分配作用和吸附作用在有機污染物吸附過程中的貢獻。陳寶梁等[14]引用上述模型解釋高濃度4-硝基酚在生物質炭上吸附過程,結果表明100℃低溫熱解生物質炭對其吸附完全為分配作用,隨著生物質炭熱解溫度升高,吸附機理從以分配作用為主轉變?yōu)橐员砻嫖阶饔脼橹鳎?00℃高溫熱解生物質炭對有機污染物吸附能力極高,因其比表面積極大,微孔結構居多,孔隙填充機理可以解釋Kd劇增的現(xiàn)象,因此,4-硝基酚的復雜吸附過程需要分配作用、表面吸附和孔隙填充機理共同解釋。Zhu等[76]定量分析對硝基酚在有機膨潤土上的吸附,分配作用和表面吸附共同作用才能完整解釋該吸附過程。近年來,Chiou等[36]直接通過實驗對比添加PNP前后生物質炭對有機污染物的吸附等溫線,區(qū)分分配作用和表面吸附在各類生物質炭吸附有機污染物中的占比,有機污染物的吸附過程需分配作用與表面吸附機理共同解釋。

3 影響生物質炭吸附有機污染物的因素

生物質炭吸附有機污染物的強度和機制受多種因素影響,生物質炭自身理化特性決定了其應用價值,此外有機污染物的極性、分子大小及吸附環(huán)境如環(huán)境pH、環(huán)境介質、共存物質等也會影響整個吸附過程。

3.1 生物質炭的理化性質

與有機污染物的吸附過程相關的生物質炭理化性質包括比表面積、孔隙結構、元素組成、芳香性、酸堿度和穩(wěn)定性等,不同的原料種類和制備熱解條件是生成性質各異生物質炭的主要原因。一般常見的生物質炭制備原料有木材、松木[77]、花生殼、秸稈、煙桿[78]、蘆葦、椰殼[79]、竹子或其他植物類廢棄物,動物糞便及污泥等[80]。Lei和Zhang[81]對比木屑和干牛糞原料制備生物質炭的性質,表明前者具有更高的比表面積、芳香性、pH和C/N比,更少的灰分組成,有利于增大土壤持水性,提高生物質炭表面吸附量。原料中木質素含量也會影響生物質炭理化性質,玉米秸稈生物質炭相比小麥秸稈生物質炭具有更高的芳香性、穩(wěn)定性和碳含量,而其極性和灰分含量相對較低[82]。Crombie等[83]用元素分析法和加速老化法分別對比不同生物質炭的碳素組成,結果表明生物質炭的穩(wěn)定性與O/C原子比顯著正相關,但原料中碳素組成并非主要決定因素,而與制備過程中碳轉化效率有關。生物質炭的制備要求嚴格的厭氧甚至絕氧條件,熱解是目前較為常見的制備工藝,熱解條件包括停留時間、熱解溫度和熱轉化率等對生物質炭的產量、性能和吸附效率均具有重要影響。一般慢速熱解條件生物質炭產量最高,芳香性和穩(wěn)定性更強[84-88]。此外,隨著熱解溫度的升高,生物質炭有機質含量減少,極性減弱,芳香性增強,同時伴有微孔結構增多和比表面積增大,這是由于在此過程中碳形態(tài)從無定形態(tài)轉化為過渡態(tài),再到芳香態(tài)最終形成穩(wěn)定的亂層態(tài),且高溫炭化會打開部分阻塞的孔穴,因此,吸附機理也由分配作用為主向表面吸附和微孔截留轉變,生物質炭吸附容量增大[14,21,59,81,89-91]。高溫條件下生物質表面脂肪烷烴或酯基官能團的分解,引起芳香族木質素的暴露也可能是比表面積增大的原因,疏水性有機污染物分配到豐富的孔隙結構內實現(xiàn)吸附固定[43,92]。生物質炭穩(wěn)定性決定了其會長期存在于土壤中,伴隨著生物質炭的老化,理化性質也會發(fā)生變化,對有機污染物的吸附能力會存在差異。研究表明,老化的低溫熱解生物質炭相比新炭芳香碳含量減小,烷基碳含量增加,極性增強,此外隨著表面官能團的解離,有堿性增強,CEC增大的現(xiàn)象,這都會影響菲的吸附過程,而不同熱解溫度和原料的生物質炭老化過程理化性質變化也有所不同[93]。

3.2 有機污染物性質

有機污染物在生物質炭上的吸附受其極性、疏水性、芳香性、分子大小等因素的影響。吳晴雯等[18]對比蘆葦秸稈生物質炭對菲(PHE)和1,1-二氯乙烯(1,1-DCE)的吸附,前者以分配作用為主,后者由于具有更強的極性和較小的分子體積,吸附機理以表面吸附和微孔填充為主,吸附量更大。Cederlund等[94]和Hale[95]等研究表明木質生物質炭對幾種殺蟲劑、除草劑的吸附存在顯著差異,吸附能力為敵草?。径舅莉纾疽宜犷悾∕CPA)>滅草松>草甘膦,這與有機物親酯性、極化率和分子大小有關,敵草隆和毒死蜱具有強親酯性,生物質炭對其吸附能力強,敵草隆以疏水性和范德華力交互作用吸附為主,毒死蜱則以表面吸附固定于生物質炭吸附位點上;MCPA和滅草松吸附強度與生物質炭表面酸度、表面積等有關;草甘膦在被三價鐵鹽包被的生物質炭表面吸附作用增強,吸附機理以強化學吸附為主。此外,生物質炭芳香結構更易與帶苯環(huán)結構的有機物生成π-π相互作用力,強烈吸附于生物質炭表面[54]。不同分子大小的污染物因空間位阻作用,在生物質炭上的有效接觸和截留效力存在差異,因此吸附機制和吸附效果也不同[67]。可見,生物質炭對不同分子體積和極性的有機污染物吸附機理有所差異,對疏水性有機污染物以疏水分配作用為主,而強極性小分子有機物則通過與生物質炭表面極性官能團相互作用吸附固定,不同分子大小的有機污染物因微孔填充效果不同導致吸附量差異懸殊。

3.3 吸附環(huán)境

吸附環(huán)境對生物質炭吸附有機污染物的影響主要包括環(huán)境pH、環(huán)境介質和共存離子等。Teixido等[57]研究不同pH條件下生物質炭對SMT的吸附,pH=1環(huán)境下以SMT+為主要存在形式,與生物質炭表面豐富π電子形成π-π電子給體-受體相互作用,而堿性環(huán)境中SMT-為主,通過釋放OH-形成SMT0,氫鍵作用是其吸附主要機制。環(huán)境介質中的水分子易于表面極性官能團作用形成水膜,阻止有機污染物與生物質炭接觸;水分子極性調節(jié)污染物表面電荷組成,影響其吸附過程;此外,環(huán)境水分波動還會影響生物質炭理化性質,影響其吸附性能。相比恒濕培養(yǎng),干濕交替老化過程顯著降低了生物質炭對鄰苯二甲酸二乙酯的吸附作用,這可能與表面基團結構變化有關[96-97]。一般實際污染土壤多為復合污染,Bornemann等[98]研究表明,幾種有機物共存會導致生物質炭對各有機污染物的吸附強度均有所下降,這說明有機污染物之間存在競爭吸附效應,共存離子對有機污染物的吸附過程產生影響。

4 研究展望

生物質炭這種綠色吸附材料是有機污染土壤修復的重要手段,目前研究主要包括對殺蟲劑、除草劑、醫(yī)療廢物、染料、工業(yè)污染等的吸附治理,但生物質炭種類多樣,大部分生物質炭類型目前還只是停留在實驗室研究階段,主要是對溶液或土壤懸液中有機污染物的吸附機理的探究,生物質炭在實際污染土壤修復中的推廣仍需要很長的階段。此外,關于生物質炭的研究在制備原料、制備工藝以及使用方法等方面存在很大差異,生物質炭的真正修復效果很難評價,我國土壤性質分布各有不同,土壤污染種類多樣,使生物質炭在實際應用中的篩選變得更加困難。因此,需要探究不同生物質炭理化性質與其吸附機理的相互關系,全面剖析影響生物質炭吸附效果的因素,為生物質炭的廣泛應用提供指導依據(jù)。生物質炭主要通過降低污染物的生物有效性來阻控其環(huán)境風險的,高濃度殘留態(tài)污染物依然存在于土壤中,具有潛在環(huán)境風險[28-29],另有研究指出生物質炭在制備過程中同樣存在環(huán)境健康影響[99-101],因此,規(guī)范生物質炭制備工藝,長期監(jiān)控生物質炭的環(huán)境行為,徹底消解生物質炭中殘留的有機污染物很有必要。

為了實現(xiàn)生物質炭對有機污染物吸附的最佳效果,必須探究其對有機污染物的吸附機理,目前已有研究中較為認可的機制主要包括表面吸附、分配作用、孔隙截留和多種機理共同作用。但至今關于具體的吸附機理仍以性質分析和過程推測為主,缺少直接的定性和定量手段。一般通過元素分析、表面積測定(BET-N2)、電動電位測定(Zetapotential)、拉曼光譜(Raman spectra)、FTIR、NMR、掃描電鏡分析(Scanning Electron Microscopy,SEM)等手段表征生物質炭理化性質,再與其對有機污染物的吸附效果進行相關性分析,或采用吸附等溫線表征該過程,進而推斷可能存在的吸附機理,直接采用實驗手段準確揭示生物質炭吸附有機污染過程仍少有研究。

綜上,未來相關研究應著重解決以下問題:1)實驗表征生物質炭吸附過程,深入探討其對不同物質的吸附機理,進一步剖析影響生物質炭吸附有機污染物的因素,合理施用生物質炭,使其具有最高吸附效能;2)探究生物質炭的生態(tài)環(huán)境效應,包括對土壤理化性質、土著微生物群落和土壤再利用價值的影響;3)明確生物質炭制備原料和工藝的參數(shù),提高生物質炭性能,可以對生物質炭進行修飾或改性,緩解生物質炭對生態(tài)環(huán)境的不良影響,拓寬應用范圍;4)生物質炭外源添加到土壤中有利于土壤養(yǎng)分循環(huán)和生物擾動[84,102-105],聯(lián)合生物質炭與其他如植物、微生物修復等途徑,實現(xiàn)有機污染土壤的高效治理。

[1] Ahmad M,Rajapaksha A U,Lim J E,et al. Biochar as a sorbent for contaminant management in soil and water:A review. Chemosphere,2014,99:19—33

[2] Khorram M S,Zhang Q,Lin D,et al. Biochar:A review of its impact on pesticide behavior in soil environments and its potential applications. Journal of Environmental Sciences,2016,44:269—279

[3] Zhang G,Zhang Q,Sun K,et al. Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures. Environmental Pollution,2011,159(10):2594—2601

[4] 李力,劉婭,陸宇超,等. 生物炭的環(huán)境效應及其應用的研究進展. 環(huán)境化學,2011,30(8):1411—1421 Li L,Liu Y,Lu Y C,et al. Review on environmental effects and applications of biochar(In Chinese).Environmental Chemistry,2011,30(8):1411—1421

[5] Liang B,Lehmann J,Solomon D,et al. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal,2006,70(5):1719—1730

[6] Petit C,Kante K,Bandosz T J. The role of sulfurcontaining groups in ammonia retention on activated carbons. Carbon,2010,48(3):654—667

[7] Yuan J H,Xu R K,Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology,2011,102(3):3488—3497

[8] 王萌萌,周啟星. 生物炭的土壤環(huán)境效應及其機制研究. 環(huán)境化學,2013,32(5):768—780 Wang M M,Zhou Q X. Environmental effects and their mechanisms of biochar applied to soils(In Chinese).Environmental Chemistry,2013,32(5):768—780

[9] 張晗芝,黃云,劉鋼,等. 生物炭對玉米苗期生長、養(yǎng)分吸收及土壤化學性狀的影響. 生態(tài)環(huán)境學報,2010,19(11):2713—2717 Zhang H Z,Huang Y,Liu G,et al. Effect of biochar on corn growth,nutrient uptake and soil chemical properties in seeding stage(In Chinese). Ecology and Environmental Sciences,2010,19(11):2713—2717

[10] Yang Y N,Sheng G Y. Enhanced pesticide sorption by soils containing particulate matter from crop residue burns. Environmental Science amp; Technology,2003,37(16):3635—3639

[11] 楚穎超. 不同溫度裂解椰子生物炭對重金屬吸附的研究. ??冢汉D洗髮W,2015 Chu Y C. Adsorption of heavy metal on different temperature derived biochar from coconut(In Chinese). Haikou:Hainan University,2015

[12] 楊晶晶. 竹屑生物炭吸附典型芳香性有機物的機制及規(guī)律. 杭州:浙江大學,2016 Yang J J. Correlation and mechanisms of typical aromatic compounds adsorption on bamboo biochars(In Chinese). Hangzhou:Zhejiang University,2016

[13] 張晗,林寧,黃仁龍,等. 不同生物質制備的生物炭對菲的吸附特性研究. 環(huán)境工程,2016,34(10):166—171 Zhang H,Lin N,Huang R L,et al. Sorption of phenanthrene on biochars produced from different biomass materials(In Chinese). Environmental Engineering,2016,34(10):166—171

[14] 陳寶梁,周丹丹,朱利中,等. 生物碳質吸附劑對水中有機污染物的吸附作用及機理. 中國科學,2008,38(6):530—537 Chen B L,Zhou D D,Zhu L Z,et al. The adsorption and mechanisms of biomass carbon adsorbent on organic pollutions in water(In Chinese). China Science,2008,38(6):530—537

[15] 孟冠華,李愛民,張全興. 活性炭的表面含氧官能團及其對吸附影響的研究進展. 離子交換與吸附,2007,23(1):88—94 Meng G H,Li A M,Zhang Q X. The research on the surface oxygen functional groups of active carbon and its influence on the adsorption(In Chinese). Ion Exchange and Adsorption,2007,23(1):88—94

[16] Cheng C H,Lehmann J,Thies J E,et al. Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry,2006,37(11):1477—1488

[17] Chen B L,Johnson E J,Chefetz B,et al. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials:Role of polarity and accessibility. Environmental Science amp; Technology,2005,39(16):6138—6146

[18] 吳晴雯,孟梁,張志豪,等. 蘆葦秸稈生物炭對水中菲和1,1-二氯乙烯的吸附特性. 環(huán)境科學,2016,37(2):680—688 Wu Q W,Meng L,Zhang Z H,et al. Sorption characteristics of phenanthrene and 1,1-dichloroethene onto reed straw biochar in aquatic solutions(In Chinese). Environmental Science,2016,37(2):680—688

[19] Wu W,Yang M,F(xiàn)eng Q,et al. Chemical characterization of rice straw-derived biochar for soil amendment.Biomass amp; Bioenergy,2012,47:268—276

[20] Xie M X,Chen W,Xu Z Y,et al. Adsorption of sulfonamides to demineralized pine wood biochars prepared under different thermochemical conditions.Environmental Pollution,2014,186:187—194

[21] Peng P,Lang Y H,Wang X M. Adsorption behavior and mechanism of pentachlorophenol on reed biochars:Ph effect,pyrolysis temperature,hydrochloric acid treatment and isotherms. Ecological Engineering,2016,90:225—233

[22] Sohi S P. Carbon storage with benefits. Science,2012,338(6110):1034—1035

[23] Kuzyakov Y,Subbotina I,Chen H Q,et al. Black carbon decomposition and incorporation into soil microbial biomass estimated by14C labeling. Soil Biologyamp; Biochemistry,2009,41(2):210—219

[24] 余向陽,王冬蘭,母昌立,等. 生物質炭對敵草隆在土壤中的慢吸附及其對解吸行為的影響. 江蘇農業(yè)學報,2011,27(5):1011—1015 Yu X Y,Wang D L,Mu C L,et al. Role of biochar in slow sorption and desorption of diuron in soil(In Chinese). Jiangsu Journal of Agricultural Sciences,2011,27(5):1011—1015

[25] 余向陽,應光國,劉賢進,等. 土壤中黑碳對農藥敵草隆的吸附-解吸遲滯行為研究. 土壤學報,2007,44(4):650—655 Yu X Y,Ying G G,Liu X J,et al. Hysteresis effect of charcoal on sorption and desorption of diuron by soil(In Chinese). Acta Pedologic Sinica,2007,44(4):650—655

[26] Jones D L,Edwards-Jones G,Murphy D V. Biochar mediated alterations in herbicide breakdown and leaching in soil. Soil Biology amp; Biochemistry,2011,43(4):804—813

[27] Cao X,Ma L,Liang Y,et al. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environmental Science amp;Technology,2011,45(11):4884—4889

[28] 宋洋,王芳,楊興倫,等. 生物質炭對土壤中氯苯類物質生物有效性的影響及評價方法. 環(huán)境科學,2012,33(1):169—174 Song Y,Wang F,Yang X L,et al. Inluence and assessment of biochar on the bioavailability of chlorobenzenes in soil(In Chinese). Environmental Science,2012,33(1):169—174

[29] Yu X Y,Ying G G,Kookana R S. Reduced plant uptake of pesticides with biochar additions to soil.Chemosphere,2009,76(5):665—671

[30] Hale S E,Hanley K,Lehmann J,et al. Effects of chemical,biological,and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar. Environmental Science amp; Technology,2011,45(24):10445—10453

[31] Liu P,Liu W J,Jiang H,et al. Modification of biochar derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresource Technology,2012,121:235—240

[32] Taha S M,Amer M E,Elmarsafy A E,et al.Adsorption of 15 different pesticides on untreated and phosphoric acid treated biochar and charcoal from water.Journal of Environmental Chemical Engineering,2014,2(4):2013—2025

[33] Cao X,Ma L,Gao B,et al. Dairy-manure derived biochar effectively sorbs lead and atrazine.Environmental Science amp; Technology,2009,43(9):3285—3291

[34] Kong H,He J,Gao Y,et al. Cosorption of phenanthrene and mercury(ii)from aqueous solution by soybean stalk-based biochar. Journal of Agricultural and Food Chemistry,2011,59(22):12116—12123

[35] Khan S,Wang N,Reid B J,et al. Reduced bioaccumulation of PAHs by Lactuca satuva L. grown in contaminated soil amended with sewage sludge and sewage sludge derived biochar. Environmental Pollution,2013,175:64—68

[36] Chiou C T,Cheng J,Hung W N,et al. Resolution of adsorption and partition components of organic compounds on black carbons. Environmental Science amp;Technology,2015,49(15):9116—9123

[37] 李洋,宋洋,王芳,等. 小麥秸稈生物炭對高氯代苯的吸附過程與機制研究. 土壤學報,2015,52(5):1096—1105 Li Y,Song Y,Wang F,et al. Effect of wheat straw biochar on high chlorinated benzene sorption process and mechanism(In Chinese). Acta Pedologica Sinica,2015,52(5):1096—1105

[38] 王菲,孫紅文. 生物炭對極性與非極性有機污染物的吸附機理. 環(huán)境化學,2016,35(06):1134—1141 Wang F,Sun H W. Sorption mechanisms of polar and apolar organic contaminants onto biochars(In Chinese). Environmental Chemistry,2016,35(6):1134—1141

[39] Braida W J,Pignatello J J,Lu Y F,et al. Sorption hysteresis of benzene in charcoal particles. Environmental Science amp; Technology,2003,37(2):409—417

[40] Chen B L,Zhou D D,Zhu L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science amp;Technology,2008,42(14):5137—5143

[41] Zhang H H,Lin K D,Wang H L,et al. Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene. Environmental Pollution,2010,158(9):2821—2825

[42] Kasozi G N,Zimmerman A R,Nkedikizza P,et al. Catechol and humic acid sorption onto a range of laboratory-produced black carbons(biochars).Environmental Science amp; Technology,2010,44(16):6189—6195

[43] Chen B L,Chen Z M. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere,2009,76(1):127—133

[44] Zheng W,Guo M X,Chow T,et al. Sorption properties of greenwaste biochar for two triazine pesticides. Journal of Hazardous Materials,2010,181(1/3):121—126[45] 陳翠蘋. 水中亞硝胺類污染物的吸附去除與作用機制.杭州:浙江大學,2016 Chen C P. Removal of nitrosamines from aqueous solution by sorption process(In Chinese). Hangzhou:Zhejiang University,2016

[46] Chiou C T,F(xiàn)reed V H,Schmedding D W,et al. Partition-coefficient and bioaccumulation of selected organic chemicals. Environmental Science amp;Technology,1977,11(5):475—478

[47] Chiou C T,Lee J F,Boyd S A. The surface area of soil organic matter. Environmental Science amp; Technology,1990,24(8):1164—1166

[48] Chiou C T,Peters L J,F(xiàn)reed V H. Physical concept of soil-water equilibria for nonionic organic compounds.Science,1979,206(4420):831—832

[49] Chiou C T,Rutherford D W,Manes M. Sorption of N2and EGME vapors on some soils,clays,and mineral oxides and determination of sample surface-areas by use of sorption data. Environmental Science amp; Technology,1993,27(8):1587—1594

[50] Fu Q L,He J Z,Blaney L,et al. Sorption of roxarsone onto soils with different physicochemical properties.Chemosphere,2016,159:103—112

[51] Huang W H,Chen B L. Interaction mechanisms of organic contaminants with burned straw ash charcoal.Journal of Environmental Sciences,2010,22(10):1586—1594

[52] Chun Y,Sheng G Y,Chiou C T,et al. Compositions and sorptive properties of crop residue-derived chars.Environmental Science amp; Technology,2004,38(17):4649—4655

[53] 陳寶梁,陳再明,陳文遠,等. 有機污染物與生物炭的相互作用:吸附模型、機理和熱力學. 第六屆全國環(huán)境化學大會暨環(huán)境科學儀器與分析儀器展覽會摘要集. 上海,2011 Chen B L,Chen Z M,Chen W Y,et al. Interaction of biochar and organic pollutants:Adsorption model,the mechanism and thermodynamics(In Chinese).Proceedings of the sixth national conference on environmental chemistry and environmental science instrument and analysis instrument exhibition.Shanghai,2011

[54] Zhu D Q,Kwon S,Pignatello J J. Adsorption of single-ring organic compounds to wood charcoals prepared under different thermochemical conditions.Environmental Science amp; Technology,2005,39(11):3990—3998

[55] Carter M C,Kilduff J E,Weber W J. Site energy distribution analysis of preloaded adsorbents. Environmental Science amp; Technology,1995,29(7):1773—1780

[56] Rivera-Utrilla J,Bautista-Toledo I,F(xiàn)effo-Garcia M A,et al. Bioadsorption of Pb(II),Cd(II),and Cr(VI)on activated carbon from aqueous solutions.Carbon,2003,41(2):323—330

[57] Teixido M,Pignatello J J,Beltran J L,et al.Speciation of the ionizable antibiotic sulfamethazine on black carbon(biochar). Environmental Science amp;Technology,2011,45(23):10020—10027

[58] Lou L P,Luo L,Wang L N,et al. The influence of acid demineralization on surface characteristics of black carbon and its sorption for pentachlorophenol. Journal of Colloid and Interface Science,2011,361(1):226—231

[59] Zhang P,Sun H,Yu L,et al. Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manurederived biochars:Impact of structural properties of biocharse. Journal of Hazardous Materials,2013,244:217—224

[60] Coughlin R W,Ezra F S,Tan R N. Influence of chemisorbed oxygen in adsorption onto carbon from aqueous solution. Journal of Colloid and Interface Science,1968,28(3/4):386—396

[61] Diaz-Flores P E,Leyva-Ramos R,Guerrero-Coronado R M,et al. Adsorption of pentachlorophenol from aqueous solution onto activated carbon fiber. Industrialamp; Engineering Chemistry Research,2006,45(1):330—336

[62] Storck S,Bretinger H,Maier W F. Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis. Applied Catalysis A:General,1998,174(1/2):137—146

[63] 李俊國,孫紅文. 芘在土壤中的長期吸附和解吸行為.環(huán)境科學,2006,27(1):165—170 Li J G,Sun H W. The long-term adsorption and desorption behaviors of pyrene in soil(In Chinese).Environmental Science,2006,27(1):165—170

[64] 李曉軍,李培軍,藺昕. 土壤中難降解有機污染物鎖定機理研究進展. 應用生態(tài)學報,2007,18(7):1624—1630 Li X J,Li P J,Lin X. Research advances in sequestration mechanisms of hardly biodegradable organic contaminants in soil(In Chinese). Chinese Journal of Applied Ecology,2007,18(7):1624—1630

[65] 王震宇,于曉冬,許穎,等. 土壤微孔對有機物吸附/解吸的影響及其表征. 生態(tài)學報,2009,29(4):2087—2096 Wang Z Y,Yu X D,Xu Y,et al. Characterization of soil/ sediment micropores and their impacts on the sorption/ desorption behavior of organic pollutants(In Chinese). Acta Ecologica Sinica,2009,29(4):2087—2096

[66] 李莉,苗明升,丁俊男,等. 土壤中鎖定殘留芘在體外消化系統(tǒng)中的生物可給性. 生態(tài)毒理學報,2009,4(5):634—640 Li L,Miao M S,Ding J N,et al. Oral bioaccessibility of bound residue of pyrene in contamination soils determined by an in vitro gastrointestinal model(In Chinese). Asian Journal of Ecotoxicology,2009,4(5):634—640

[67] Nguyen T H,Cho H H,Poster D L,et al. Evidence for a pore-filling mechanism in the adsorption of aromatic hydrocarbons to a natural wood char. Environmental Science amp; Technology,2007,41(4):1212—1217

[68] 張默,賈明云,卞永榮,等. 不同溫度玉米秸稈生物炭對萘的吸附動力學特征與機理. 土壤學報,2015,52(5):1106—1115 Zhang M,Jia M Y,Bian Y R,et al. Sorption kinetics and mechanism of naphthalene on corn-stalk-derived biochar with different pyrolysis temperature(In Chinese). Acta Pedologica Sinica,2015,52(5):1106—1115

[69] Cheng H,Hu E,Hu Y. Impact of mineral micropores on transport and fate of organic contaminants:A review.Journal of Contaminant Hydrology,2012,129:80—90

[70] Hu E,Cheng H. Impact of surface chemistry on microwave-induced degradation of atrazine in mineral micropores. Environmental Science amp; Technology,2013,47(1):533—541

[71] Muller E A,Gubbins K E. Molecular simulation study of hydrophilic and hydrophobic behavior of activated carbon surfaces. Carbon,1998,36(10):1433—1438

[72] Zhang F,Li Y,Zhang G,et al. The importance of nano-porosity in the stalk-derived biochar to the sorption of 17β-estradiol and retention of it in the greenhouse soil. Environmental Science and Pollution Research,2017,24(10):9575—9584

[73] Sander M,Lu Y F,Pignatello J J. Conditioningannealing studies of natural organic matter solids linking irreversible sorption to irreversible structural expansion.Environmental Science amp; Technology,2006,40(1):170—178

[74] Sander M,Pignatello J J. An isotope exchange technique to assess mechanisms of sorption hysteresis applied to naphthalene in kerogenous organic matter.Environmental Science amp; Technology,2005,39(19):7476—7484

[75] Weber W J Jr,McClinley P M,Katz L E. A distributed reactivity model for sorption by soils and sediments.1.Conceptual basis and equllibrium assessments.Environmental Science amp; Technology,1992,26(10):1955—1962

[76] Zhu L Z,Chen B L. Sorption behavior of p-nitrophenol on the interface between anion-cation organobentonite and water. Environmental Science amp; Technology,2000,34(14):2997—3002

[77] 顏鈺,王子瑩,金潔,等. 不同生物質來源和熱解溫度條件下制備的生物炭對菲的吸附行為. 農業(yè)環(huán)境科學學報,2014,33(9):1810—1816 Yan Y,Wang Z Y,Jin J,et al. Phenanthrene adsorption on biochars produced from different biomass materials at two temperatures(In Chinese). Journal of Agriculture Environment Science,2014,33(9):1810—1816

[78] 張利波,彭金輝,夏洪應,等. 微波加熱制備煙桿基高比面積活性炭的研究. 武漢理工大學學報,2008,30(12):76—79 Zhang L B,Peng J H,Xia H Y,et al. Research of preparation of high specific surface area activated carbon from tobacco stem by microwave heating(In Chinese). Journal of Wuhan University of Technology,2008,30(12):76—79

[79] Yang K,Peng J,Srinivasakannan C,et al. Preparation of high surface area activated carbon from coconut shells using microwave heating. Bioresource Technology,2010,101(15):6163—6169

[80] 王懷臣,馮雷雨,陳銀廣. 廢物資源化制備生物質炭及其應用的研究進展. 化工進展,2012,31(4):907—914 Wang H C,F(xiàn)eng L Y,Chen Y G. Advances in biochar production from wastes and its applications(In Chinese). Chemical Industry and Engineering Progress,2012,31(4):907—914

[81] Lei O,Zhang R. Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties. Journal of Soils and Sediments,2013,13(9):1561—1572

[82] 陳靜文. 兩類生物炭的熱穩(wěn)定性和化學穩(wěn)定性比較. 昆明:昆明理工大學,2014 Chen J W. Thermal stability and chemical stability of two types of biochar(In Chinese). Kunming:Kunming University of Science and Technology,2014

[83] Crombie K,Masek O,Sohi S P,et al. The effect of pyrolysis conditions on biochar stability as determined by three methods. Global Change Biology Bioenergy,2013,5(2):122—131

[84] Beesley L,Moreno-Jimenez E,Gomez-Eyles J L,et al.A review of biochars' potential role in the remediation,revegetation and restoration of contaminated soils.Environmental Pollution,2011,159(12):3269—3282

[85] Mohan D,Pittman C U.,Steele P H. Pyrolysis of wood/biomass for bio-oil:A critical review. Energy amp; Fuels,2006,20(3):848—889

[86] Mohanty P,Nanda S,Pant K K,et al. Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw,timothy grass and pinewood:Effects of heating rate. Journal of Analytical and Applied Pyrolysis,2013,104:485—493

[87] Zhang M,Gao B,Varnoosfaderani S,et al.Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresource Technology,2013,130:457—462

[88] 李保強,劉鈞,李瑞陽,等. 生物質炭的制備及其在能源與環(huán)境領域中的應用. 生物質化學工程,2012,46(1):34—38 Li B Q,Liu J,Li R Y,et al. The preparation of biomass carbon and the application in the field of energy and the environment(In Chinese). Biomass Chemical Engineering,2012,46(1):34—38

[89] Keiluweit M,Nico P S,Johnson M G,et al.Dynamic molecular structure of plant biomass-derived black carbon(biochar). Environmental Science amp;Technology,2010,44(4):1247—1253

[90] 馮琪波. 稻田土壤水稻秸稈生物質炭穩(wěn)定性研究. 杭州:浙江大學,2013 Feng Q B. Study on the stability of rice straw biochar on paddy soil(In Chinese). Hangzhou:Zhejiang University,2013

[91] 周丹丹. 生物碳質對有機污染物的吸附作用及機理調控. 杭州:浙江大學,2008 Zhou D D. The adsorption and mechanism of biomass carbon on organic pollutions(In Chinese).Hangzhou:Zhejiang University,2008

[92] Uchimiya M,Chang S,Klasson K T. Screening biochars for heavy metal retention in soil:Role of oxygen functional groups. Journal of Hazardous Materials,2011,190(1/3):432—441

[93] 唐偉. 生物質炭老化過程表面性質的變化及其對菲吸附性能的影響機制. 南京:南京農業(yè)大學,2014 Tang W. Changes in biochar surface structure during aging and influences on phenanthrene adsorption(In Chinese). Nanjing:Nanjing Agricultural University,2014

[94] Cederlund H,B?rjesson E,Lundberg D,et al.Adsorption of pesticides with different chemical properties to a wood biochar treated with heat and iron.Water,Air,amp; Soil Pollution,2016,227,DOI:10.1007/s 11270-016-2894-z

[95] Hale S E,Arp H P H,Kupryianchyk D,et al. A synthesis of parameters related to the binding of neutral organic compounds to charcoal. Chemosphere,2016,144:65—74

[96] Hao R,Wang P C,Wu Y P,et al. Impacts of water level fluctuations on the physicochemical properties of black carbon and its phenanthrene adsorptiondesorption behaviors. Ecological Engineering,2017,100:130—137

[97] Zhang X K,He L Z,Mao X L,et al. Effect of different aging processes on the adsorption and desorption of diethyl phthalate to soil amended with biochars. Acta Scientiae Circumstantiae,2015,35(12):4012—4020

[98] Bornemann L C,Kookana R S,Welp G. Differential sorption behaviour of aromatic hydrocarbons on charcoals prepared at different temperatures from grass and wood. Chemosphere,2007,67(5):1033—1042

[99] Quilliam R S,Rangecroft S,Emmett B A,et al.Is biochar a source or sink for polycyclic aromatic hydrocarbon(PAHs)compounds in agricultural soils?Global Change Biology Bioenergy,2013,5(2):96—103

[100] Zhurinsh A,Zandersons J,Dobele G. Slow pyrolysis studies for utilization of impregnated waste timber materials. Journal of Analytical and Applied Pyrolysis,2005,74(1/2):439—444

[101] 李增波,王聰穎,蔣新,等. 生物質炭中多環(huán)芳烴的潛在環(huán)境風險研究進展. 土壤學報,2016,53(6):1357—1370 Li Z B,Wang C Y,Jiang X,et al. Progress of the research on potential environmental risk of polycyclic aromatic hydrocarbons(PAHs)in biochar(In Chinese). Acta Pedologica Sinica,2016,53(6):1357—1370

[102] Beesley L,Moreno-Jimenez E,Gomez-Eyles J L.Effects of biochar and greenwaste compost amendments on mobility,bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental Pollution,2010,158(6):2282—2287

[103] Brussaard L,Behan-Pelletier V M,Bignell D E,et al. Biodiversity and ecosystem functioning in soil.Ambio,1997,26(8):563—570

[104] Song Y,Li Y,Zhang W,et al. Novel biochar-plant tandem approach for remediating hexachlorobenzene contaminated soils:Proof-of-concept and new insight into the rhizosphere. Journal of Agricultural and Food Chemistry,2016,64(27):5464—5471

[105] Van Zwieten L,Kimber S,Morris S,et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil,2010,327(1/2):235—246

(責任編輯:盧 萍)

A Review of Researches on Biochar Adsorbing Organic Contaminants and Its Mechanism

LI Xiaona1,2SONG Yang1JIA Mingyun1WANG Fang1BIAN Yongrong1JIANG Xin1?
(1 Key Laboratory of Soil Environment and Pollution Remediation,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008,China)
(2 University of the Chinese Academy of Sciences,Beijing 100049,China)

Biochar is a kind of porous and carbon-rich material prepared out of waste biomass through pyrolyzation anaerobically or aerobically. Thanks to its high adsorption capacity,handy resources,low preparation cost and environment-friendliness,biochar has aroused more and more attention among the academic circles. Knowledge about mechanism and rules of biochar adsorbing organic contaminants is crucial to proper evaluation of its environmental behaviors and application value. This article reviewed with emphasis reports available on mechanisms of biochar adsorbing organic pollutants,such as partition,surface adsorption,pore interception,etc. Generally speaking,biochar prepared at low temperature adsorbs nonpolar organics mainly via partitioning. This non-competitive adsorption mechanism can be used to explain the process of biochar adsorbing pollutant high in concentration. Surface adsorption is a kind of competitive sorption mechanism. Organic contaminants caught on the effective sites on the surface of biochar are adsorbed via electrostatic interaction or hydrogen bonding,ionic bonding,π-electron donor-acceptor(π-π EDA),etc. Pore interception is another microscopic mechanism of biochar adsorbing organic pollutants. Partitioning and adsorption of organic pollutants inside the pores is also an important portion of the biochar adsorption capacity. Both polar and/or non-polar organic contaminants can be sorbed on biochar via pore interception. In fact,the mechanisms of biochar adsorbing organic compounds are various with one dominated and additional other mechanisms also occurred. In addition,this paper analyzed and summarized influencing factors of mechanisms of biochar adsorbing organic contaminants. Physico-chemical properties of biochar including high specific area,well-developed porosity,rich polar functional groups and stable aromatic structure are essential to determine the application value of this super-sorbent. Only biochar with properties matchable to organic contaminants in polarity,aromaticity,molecular size can be used to bring their adsorption capacity into full play. Sorption environment such as pH,medium and co-existing ions is also an important factor affecting adsorption effect of biochar. All account for the complex process of biochar adsorbing organic compounds. However,the researches reported in the literature are found to have some problems. For example,some of them remained on the stage of laboratory and little is reported in the literature on using experimental methods to probe mechanisms of biochar adsorbing organic compounds. At the end,the article brought forth solutions to the existing problems and described prospects of the application of biochar in remediation of organic polluted soils in future.

Biochar;Organic contaminants;Sorptioncharacteristics;Sorption mechanisms

X53

A

10.11766/trxb201704060004

* 國家重點基礎研究發(fā)展計劃(973計劃)項目(2014CB441105)、國家自然科學基金項目(41671236)和中國科學院“一三五”計劃與領域前沿項目(ISSASIP1614)共同資助 Supported by the National Basic Research Program of China(973 Program)(No.2014CB441105),the National Natural Science Foundation of China(No.41671236)and the“135”Plan and Frontiers Program of Chinese Academy of Sciences(No.ISSASIP1614)

? 通訊作者 Corresponding author,E-mail:jiangxin@issas.ac.cn

李曉娜(1993—),女,博士研究生,主要從事環(huán)境化學與污染控制研究。E-mail:xnli@issas.ac.cn

2017-04-06;

2017-06-27;優(yōu)先數(shù)字出版日期(www.cnki.net):2017-08-21

猜你喜歡
官能團極性機理
有機物官能團的定量關系在解題中的應用
隔熱纖維材料的隔熱機理及其應用
在對比整合中精準把握有機官能團的性質
跟蹤導練(四)
煤層氣吸附-解吸機理再認識
紅蔥不同極性提取物抑菌活性研究
同分異構之官能團位置異構書寫規(guī)律
逆向合成分析法之切斷技巧
雙極性壓縮觀測光譜成像技術研究
球形ADN的吸濕機理
龙泉市| 宾阳县| 台湾省| 望谟县| 永城市| 西丰县| 甘洛县| 伊金霍洛旗| 和田县| 苏尼特右旗| 鄯善县| 苗栗市| 斗六市| 佛学| 灌云县| 朝阳县| 宁武县| 二连浩特市| 江永县| 马鞍山市| 临颍县| 上饶市| 东宁县| 五台县| 尼玛县| 高密市| 青浦区| 宝坻区| 天等县| 镶黄旗| 罗江县| 临沭县| 保亭| 常熟市| 卫辉市| 玉溪市| 长岭县| 荔波县| 两当县| 南华县| 麻江县|