孫 云, 柳 剛, 蔣雅麗, 張 斌, 趙 璇, 李學(xué)剛
(山東大學(xué)第二醫(yī)院腎內(nèi)科, 山東 濟(jì)南 250033)
紅細(xì)胞生成素抑制活性氧誘導(dǎo)的紅細(xì)胞衰亡*
孫 云, 柳 剛△, 蔣雅麗, 張 斌, 趙 璇, 李學(xué)剛
(山東大學(xué)第二醫(yī)院腎內(nèi)科, 山東 濟(jì)南 250033)
目的觀察紅細(xì)胞生成素(erythropoietin, EPO)對(duì)過(guò)氧化氫(H2O2)刺激后紅細(xì)胞衰亡(eryptosis)和紅細(xì)胞中活性氧簇(reactive oxygen species,ROS)生成的影響,并探討其可能機(jī)制。方法將1%健康人紅細(xì)胞懸液在以下3組不同的體外培養(yǎng)液中孵育:對(duì)照組(C組,培養(yǎng)基為PBS液)、H2O2組(H組,培養(yǎng)基為H2O2終濃度100 μmol/L的PBS液)和EPO組(E組,培養(yǎng)基為H2O2終濃度100 μmol/L、EPO終濃度2×104U/L的PBS液)。分別在孵育24 h和60 h時(shí),留取紅細(xì)胞以備檢測(cè)。使用流式細(xì)胞術(shù)檢測(cè)紅細(xì)胞的衰亡率、紅細(xì)胞內(nèi)ROS和紅細(xì)胞內(nèi)鈣離子濃度([Ca2+]i),觀察各檢測(cè)指標(biāo)的變化并分析其相關(guān)性。結(jié)果紅細(xì)胞衰亡率在C組隨孵育時(shí)間延長(zhǎng)而增加,在相同觀察時(shí)點(diǎn),H組較C組明顯增加(P<0.01),E組較H組明顯降低(P<0.01)。H組紅細(xì)胞的ROS 生成較C組明顯增多,[Ca2+]i較C組明顯升高(P<0.01);E組紅細(xì)胞的ROS生成較H組明顯減少,[Ca2+]i較H組明顯降低(P<0.05或P<0.01)。結(jié)論H2O2誘導(dǎo)健康紅細(xì)胞加速衰亡,而EPO可以抑制H2O2誘導(dǎo)的紅細(xì)胞衰亡,其機(jī)制可能與抗氧化及 [Ca2+]i的改變有關(guān)。
過(guò)氧化氫; 紅細(xì)胞衰亡; 紅細(xì)胞生成素; 活性氧簇; 細(xì)胞內(nèi)鈣離子濃度
紅細(xì)胞生成素(erythropoietin,EPO)分泌相對(duì)或絕對(duì)不足是導(dǎo)致慢性腎功衰竭患者發(fā)生貧血的最主要原因[1],故EPO 的定期體內(nèi)補(bǔ)充[2]是迄今以來(lái)治療腎性貧血的最有效和最廣泛的方法。EPO作為紅系祖細(xì)胞生成階段的刺激因子,它治療貧血的主要機(jī)理是在骨髓中血細(xì)胞分化初始階段刺激紅系祖細(xì)胞分化。近年發(fā)現(xiàn),EPO這種內(nèi)分泌激素還具有其它多種特性,包括促進(jìn)血管增生[3]、抗氧化[4-6]和抗凋亡[7-8]等。慢性腎衰階段,尤其在進(jìn)入替代治療之后,體內(nèi)環(huán)境中的氧化應(yīng)激狀態(tài)不僅持續(xù)存在,并且逐漸加劇,導(dǎo)致過(guò)氧化產(chǎn)物生成過(guò)多,抗氧化產(chǎn)物不足。尿毒癥已經(jīng)成為心血管疾病的危險(xiǎn)因素之一[9-10]。同時(shí)這種不平衡的內(nèi)環(huán)境狀態(tài)對(duì)于紅細(xì)胞的生存也產(chǎn)生了負(fù)面影響。我們?cè)谘芯縀PO治療腎性貧血的過(guò)程中發(fā)現(xiàn)其抗氧化和抗凋亡特性能減少尿毒癥狀態(tài)下氧化應(yīng)激對(duì)紅細(xì)胞的損傷。我們將通過(guò)體外實(shí)驗(yàn)觀察EPO對(duì)過(guò)氧化氫(hydrogen peroxide, H2O2)損傷的紅細(xì)胞的保護(hù)作用,并通過(guò)紅細(xì)胞內(nèi)活性氧簇(reactive oxygen species,ROS)和細(xì)胞內(nèi)鈣離子濃度(intracellular calcium ion concentration,[Ca2+]i)的變化探討其可能的機(jī)制,以期為臨床防治腎性貧血提供新的思路和途徑。
1材料
EPO(商品名益比奧;沈陽(yáng)三生,10 000 U/支);Annexin Ⅴ-FITC細(xì)胞凋亡檢測(cè)試劑盒(BD);細(xì)胞ROS試劑盒和鈣離子熒光探針Fluo-3/AM (Abcam);0.22 μm無(wú)菌濾器(Millipore);無(wú)菌12孔板(Greiner)。
2主要方法
2.1外周血紅細(xì)胞的體外培養(yǎng) 抽取健康志愿者空腹靜脈血6 mL,EDTA抗凝, 用PBS調(diào)整細(xì)胞濃度為1×109/L(即1% 的紅細(xì)胞懸液)再分別置于12孔板, 加入如下不同培養(yǎng)基后,置于37 ℃、5% CO2培養(yǎng)箱中培養(yǎng)。
2.2實(shí)驗(yàn)設(shè)計(jì) 將新鮮配置的1% 紅細(xì)胞懸液按照不同的體外培養(yǎng)基分成以下3組: (1)正常對(duì)照(control,C)組:培養(yǎng)基為 PBS溶液;(2) H2O2(H)組:培養(yǎng)基為H2O2終濃度100 μmol/L的PBS溶液; (3) EPO (E)組:培養(yǎng)基為H2O2終濃度100 μmol/L和EPO終濃度2×104U/L的PBS溶液。
設(shè)24 h和60 h 2個(gè)觀察點(diǎn),定點(diǎn)收集孵育中的紅細(xì)胞,離心、洗滌,至少2次。并在1 h內(nèi)使用相應(yīng)儀器檢測(cè)相關(guān)數(shù)據(jù)。其中E組紅細(xì)胞提前加入相應(yīng)濃度的EPO孵育2 h后,以PBS洗滌,再加入EPO與其它2組同時(shí)開(kāi)始孵育。每個(gè)觀察點(diǎn)設(shè)有3個(gè)平行對(duì)照孔,相同試驗(yàn)重復(fù)3次,測(cè)得同一時(shí)點(diǎn)數(shù)據(jù)后,取平均值作為該時(shí)點(diǎn)最終值。
2.3檢測(cè)紅細(xì)胞衰亡率 紅細(xì)胞沒(méi)有細(xì)胞核,故稱其凋亡為衰亡,在早期衰亡時(shí),仍同樣表達(dá)磷脂酰絲氨酸(phosphatidylserine,PS)。Annexin V是一種分子量為35 kD的Ca2+依賴性磷脂結(jié)合蛋白,可在凋亡早期結(jié)合細(xì)胞外膜暴露的PS。Annexin V不僅可作為檢測(cè)細(xì)胞早期凋亡的靈敏指標(biāo)之一,且它測(cè)定的PS表達(dá)率可代表紅細(xì)胞的衰亡率。本實(shí)驗(yàn)將收集到的紅細(xì)胞用PBS洗滌后,加入緩沖液和10 μL Annexin V-FITC,輕輕混勻,避光室溫反應(yīng)15 min。流式細(xì)胞儀選擇激發(fā)波長(zhǎng)488 nm和發(fā)射波長(zhǎng)530 nm,檢測(cè)熒光強(qiáng)度。
2.4檢測(cè)紅細(xì)胞內(nèi)ROS的水平 將收集到的紅細(xì)胞中加入以PBS稀釋終濃度為10 μmol/L的二氯熒光素二乙酸酯(DCFH-DA)。37 ℃搖床孵育20 min,使探針與細(xì)胞充分結(jié)合,DCFH-DA與ROS反應(yīng)后生成帶有熒光特性的二氯熒光素(DCF)。PBS洗滌細(xì)胞3次,徹底去除未進(jìn)入細(xì)胞的DCFH-DA。PBS將紅細(xì)胞重懸后,流式細(xì)胞儀選擇激發(fā)波長(zhǎng)488 nm和發(fā)射波長(zhǎng)530 nm,檢測(cè)熒光強(qiáng)度。
2.5檢測(cè)紅細(xì)胞內(nèi)鈣離子濃度 將紅細(xì)胞和經(jīng)DMSO稀釋的終濃度為5 μmol/L的Fluo-3/AM混合,37 ℃孵育40 min 進(jìn)行熒光探針裝載,隨后適當(dāng)洗滌。洗滌后再孵育25 min以確保Fluo-3/AM在細(xì)胞內(nèi)完全轉(zhuǎn)變成Fluo-3。流式細(xì)胞儀選擇激發(fā)波長(zhǎng)為488 nm,發(fā)射波長(zhǎng)為530 nm,測(cè)定相對(duì)熒光強(qiáng)度(X-mode)。計(jì)算熒光指數(shù)(FI)=lg(X-mode×340),表示紅細(xì)胞內(nèi)鈣離子相對(duì)含量。
3統(tǒng)計(jì)學(xué)處理
所有數(shù)據(jù)均用SPSS 12.0處理,所有計(jì)數(shù)資料均用均數(shù)±標(biāo)準(zhǔn)誤(mean±SEM)表示,多個(gè)組間比較采用單因素方差分析(one-way ANOVA),組間兩兩比較使用Bonferroni校正的t檢驗(yàn),兩指標(biāo)間相關(guān)性分析采用Pearson法。以P<0.05 為差異有統(tǒng)計(jì)學(xué)意義。
1健康人紅細(xì)胞在不同培養(yǎng)基中的衰亡率
隨著體外孵育時(shí)間延長(zhǎng),紅細(xì)胞衰亡率增加。加入H2O2后,即在H組,紅細(xì)胞衰亡率較C組明顯增加(P<0.01),而E組紅細(xì)胞衰亡率較H組明顯降低(P<0.01),見(jiàn)圖1。
2健康人紅細(xì)胞在不同培養(yǎng)基中的ROS和[Ca2+]i的變化
隨著體外孵育時(shí)間延長(zhǎng),紅細(xì)胞ROS生成增加,[Ca2+]i升高;當(dāng)加入H2O2后,二者變化更為明顯,即在H組同樣時(shí)點(diǎn),紅細(xì)胞ROS生成較C組明顯增加,同時(shí)[Ca2+]i明顯升高(P<0.05);當(dāng)加入EPO后,即在E組,紅細(xì)胞ROS生成較H組明顯減少,[Ca2+]i降低(P<0.05或P<0.01),見(jiàn)圖2、3。
Figure 1. The results of eryptosis detected by flow cytometry. Mean±SEM.n=6.**P<0.01vsC group;##P<0.01vsH group.
圖1流式細(xì)胞術(shù)檢測(cè)紅細(xì)胞衰亡率
3各指標(biāo)間相關(guān)性分析
以ROS為自變量,進(jìn)一步分析與紅細(xì)胞衰亡率之間相關(guān)性,呈正相關(guān);以[Ca2+]i為自變量,進(jìn)一步分析與紅細(xì)胞衰亡率之間相關(guān)性,呈正相關(guān);以ROS為自變量,進(jìn)一步分析與[Ca2+]i之間相關(guān)性,呈正相關(guān),見(jiàn)表1。
EPO自可人工合成以來(lái),對(duì)于治療各種貧血發(fā)揮了巨大作用,它主要作用于紅細(xì)胞生成的第一階段,當(dāng)紅系祖細(xì)胞表達(dá)EPO受體后,形成了紅系爆式集落形成單位(burst-forming unit of erythriod,BFU-E),繼續(xù)分化成紅系集落形成單位(colony-forming unit of erythroid,CFU-E),只有在EPO存在情況下CFU-E才可存活,并分化成幼紅細(xì)胞或前體細(xì)胞。在紅細(xì)胞產(chǎn)生的第二階段,前體細(xì)胞繼續(xù)分化成熟,無(wú)需EPO的參與[11]。EPO最初專門用于治療腎性貧血[12],并且起到了有效的治療作用。隨著EPO在臨床廣泛應(yīng)用,逐漸發(fā)現(xiàn)了其相關(guān)的一些其它生物特性,如抗氧化、促進(jìn)血管增生和抗凋亡等。本研究使用H2O2刺激健康紅細(xì)胞,通過(guò)觀察紅細(xì)胞衰亡率變化證實(shí)EPO對(duì)紅細(xì)胞的保護(hù)作用,并同時(shí)觀察了紅細(xì)胞內(nèi)ROS和[Ca2+]i水平的變化。
Figure 2. ROS production in the erythrocytes detected by flow cytometry. Mean±SEM.n=6.**P<0.01vsC group;##P<0.01vsH group.
圖2流式細(xì)胞術(shù)檢測(cè)紅細(xì)胞的ROS水平
本研究通過(guò)向培養(yǎng)基中加入H2O2制造氧化應(yīng)激環(huán)境,是常見(jiàn)的氧化應(yīng)激損傷細(xì)胞的體外實(shí)驗(yàn)?zāi)P?,有利于從?xì)胞水平上探討相應(yīng)的病理生理機(jī)制。氧化應(yīng)激在腎臟疾病的進(jìn)展中發(fā)揮重要作用[13],同時(shí)也是細(xì)胞衰亡的強(qiáng)烈刺激劑[14],因此抗氧化治療具有重要意義[15]。EPO具有抗氧化和抗衰亡作用,對(duì)多種細(xì)胞的保護(hù)作用已經(jīng)得到了證實(shí)。本研究結(jié)果證明100 μmol/L H2O2可有效誘導(dǎo)紅細(xì)胞衰亡,使細(xì)胞衰亡率明顯升高。健康紅細(xì)胞體外孵育時(shí),隨孵育時(shí)間延長(zhǎng)衰亡發(fā)生增加。加入H2O2后,在相同觀察時(shí)點(diǎn)紅細(xì)胞衰亡明顯增加,提示氧化劑誘導(dǎo)了紅細(xì)胞加速衰亡。而EPO干預(yù)后,相同觀察時(shí)點(diǎn)的紅細(xì)胞衰亡率明顯降低。本實(shí)驗(yàn)證實(shí)了EPO對(duì)氧化應(yīng)激環(huán)境中的紅細(xì)胞發(fā)揮了抗衰亡的作用。慢性腎功衰竭終末期,尤其進(jìn)入維持性血液透析治療后,體內(nèi)氧化應(yīng)激狀態(tài)加劇[16],伴隨有過(guò)多的氧化產(chǎn)物生成。氧化產(chǎn)物成為紅細(xì)胞衰亡的危險(xiǎn)因素。紅細(xì)胞衰亡具有重要的生理意義,比如直接縮短紅細(xì)胞壽命[17]、造成細(xì)胞之間黏附還可激活凝血過(guò)程[18-19]。紅細(xì)胞的衰亡同時(shí)是個(gè)可逆的過(guò)程[20],這提示有效抑制紅細(xì)胞衰亡有利于治療腎性貧血或者減弱凝血傾向。另外,EPO在抑制H2O2對(duì)紅細(xì)胞衰亡作用的同時(shí),也明顯阻斷紅細(xì)胞ROS的生成。這一方面提示H2O2通過(guò)活性氧升高損傷紅細(xì)胞,另一方面表明EPO對(duì)抗H2O2損傷紅細(xì)胞的保護(hù)機(jī)制可能與抗氧化作用相關(guān)。同時(shí)也證實(shí)了EPO的抗衰亡作用與其抗氧化作用相關(guān)。
Figure 3. [Ca2+]ilevels in the erythrocytes detected by flow cytometry. Mean±SEM.n=6.**P<0.01vsC group;#P<0.05vsH group.
圖3流式細(xì)胞術(shù)檢測(cè)紅細(xì)胞[Ca2+]i水平
表1 在不同觀察時(shí)點(diǎn)各指標(biāo)間相關(guān)性分析
鈣是參與紅細(xì)胞重要功能調(diào)節(jié)的重要因素之一[21]。紅細(xì)胞內(nèi)鈣離子濃度變化與紅細(xì)胞衰亡具有密切的關(guān)系[22]。生理狀態(tài)下,紅細(xì)胞通過(guò)鈣泵使細(xì)胞內(nèi)鈣離子濃度維持在較低濃度,各種原因?qū)е铝蒜}泵功能障礙,細(xì)胞內(nèi)鈣離子濃度增加,細(xì)胞膜骨架結(jié)構(gòu)和脂質(zhì)雙分子層改變,膜脂流動(dòng)性降低。即紅細(xì)胞內(nèi)鈣離子濃度增加導(dǎo)致紅細(xì)胞膜上PS外翻,自身壽命縮短。我們的研究發(fā)現(xiàn),在紅細(xì)胞衰亡增加的同時(shí),紅細(xì)胞ROS生成增加,同時(shí)紅細(xì)胞 [Ca2+]i增加,且在不同的觀察時(shí)點(diǎn)紅細(xì)胞衰亡率與ROS呈正相關(guān),與紅細(xì)胞 [Ca2+]i呈正相關(guān)。這提示紅細(xì)胞衰亡不僅與氧化應(yīng)激產(chǎn)物之間存在直接相關(guān),而且 [Ca2+]i的變化也是紅細(xì)胞衰亡的直接相關(guān)因素。當(dāng)對(duì)含有H2O2的培養(yǎng)液中紅細(xì)胞進(jìn)行EPO干預(yù)后,紅細(xì)胞衰亡明顯減少,并且伴隨著ROS明顯減少和 [Ca2+]i明顯降低,且各指標(biāo)相互間存在著顯著的相關(guān)性。EPO在本實(shí)驗(yàn)中體現(xiàn)了抗氧化的藥理作用。說(shuō)明在治療貧血的過(guò)程中,EPO可以作為有效的氧自由基清除劑,通過(guò)減少活性氧生成,從而降低 [Ca2+]i,最終發(fā)揮了抑制紅細(xì)胞衰亡,減輕貧血的作用。
綜上所述,本研究證實(shí)了EPO通過(guò)減少紅細(xì)胞內(nèi)活性氧保護(hù)紅細(xì)胞對(duì)抗氧化應(yīng)激誘導(dǎo)的衰亡,其作用機(jī)制與降低 [Ca2+]i有關(guān)。本研究為深入闡明EPO的抗氧化作用和對(duì)紅細(xì)胞的保護(hù)作用提供了實(shí)驗(yàn)依據(jù)。
[1] Paganini EP. Overview of anemia associated with chronic renal disease: primary and secondary mechanisms[J]. Semin Nephrol, 1989, 9(1 Suppl 1):3-8.
[2] Albertazzi A, Di Liberato L, Daniele F, et al. Efficacy and tolerability of recombinant human erythropoietin treatment in pre-dialysis patients: results of a multicenter study[J]. Int J Artif Organs, 1998, 21(1):12-18.
[3] Heeschen C, Aicher A, Lehmann R, et al. Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization[J]. Blood, 2003, 102(4):1340-1346.
[4] Ugurluer G, Cebi A, Mert H, et al. Neuroprotective effects of erythropoietin against oxidant injury following brain irradiation: an experimental study[J]. Arch Med Sci, 2016, 12(6):1348-1353.
[5] Gradinaru D, Margina D, Ilie M, et al. Correlation between erythropoietin serum levels and erythrocyte susceptibility to lipid peroxidation in elderly with type 2 diabetes[J]. Acta Physiol Hung, 2015, 102(4):400-408.
[6] d’Uscio LV, Santhanam AV, Katusic ZS. Erythropoietin prevents endothelial dysfunction in GTP-cyclohydrolase I-deficient hph1 mice[J]. J Cardiovasc Pharmacol, 2014, 64(6):514-521.
[7] Chen S, Li J, Peng H, et al. Administration of erythropoietin exerts protective effects against glucocorticoid-induced osteonecrosis of the femoral head in rats[J]. Int J Mol Med, 2014, 33(4):840-848.
[8] Kong D, Zhuo L, Gao C, et al. Erythropoietin protects against cisplatin-induced nephrotoxicity by attenuating endoplasmic reticulum stress-induced apoptosis[J]. J Nephrol, 2013, 26(1):219-227.
[9] Tosic Dragovic J, Popovic J, Djuric P, et al. Relative risk for cardiovascular morbidity in hemodialysis patients regarding gene polymorphism for IL-10, IL-6, and TNF[J]. Can J Physiol Pharmacol, 2016, 94(10):1106-1109.
[10] Tonelli M, Karumanchi SA, Thadhani R. Epidemiology and mechanisms of uremia-related cardiovascular disease[J]. Circulation, 2016, 133(5):518-536.
[11] Wu H, Liu X, Jaenisch R, et al. Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor[J]. Cell, 1995, 83(1):59-67.
[12] De Marchi S, Pirisi M, Ferraccioli GF. Erythropoietin and the anemia of chronic diseases[J]. Clin Exp Rheumatol, 1993, 11(4):429-444.
[13] Small DM, Coombes JS, Bennett N, et al. Oxidative stress, anti-oxidant therapies and chronic kidney disease[J]. Nephrology (Carlton), 2012, 17(4):311-321.
[14] 任應(yīng)國(guó), 唐石磊, 高園林. 白藜蘆醇對(duì)氧化應(yīng)激誘導(dǎo)的大鼠海馬神經(jīng)元損傷的影響[J]. 中國(guó)病理生理雜志, 2016, 32(6):1057-1061.
[15] Khalil SK, Amer HA, EI Behairy AM, et al. Oxidative stress during erythropoietin hyporesponsiveness anemia at end stage renal disease: molecular and biochemical studies[J]. J Adv Res, 2016, 7(3):348-358.
[16] Eiselt J, Racek J, Opatrny K Jr, et al. Oxidative stress: the effect of erythropoietin and the dialysis membrane[J]. Int J Artif Organs, 2000, 23(1):33-40.
[17] Bissinger R, Artunc F, Qadri SM, et al. Reduced erythrocyte survival in uremic patients under hemodialysis or peritoneal dialysis[J]. Kidney Blood Press Res, 2016, 41(6):966-977.
[18] Qadri SM, Donkor DA, Bhakta V, et al. Phosphatidylserine externalization and procoagulant activation of erythrocytes induced byPseudomonasaeruginosavirulence factor pyocyanin[J]. J Cell Mol Med, 2016, 20(4):710-720.
[19] Gao C, Ji S, Dong W, et al. Indolic uremic solutes enhance procoagulant activity of red blood cells throgh phosphatidylserine exposure and microparticle release[J]. Toxins (Basel), 2015, 7(11):4390-4403.
[20] Bonomini M, Sirolli V, Settefrati N, et al. Increased erythrocyte phosphatidylserine exposure in chronic renal failure[J]. J Am Soc Nephrol, 1999, 10(9):1982-1990.
[21] Downes P, Michell RH. Human erythrocyte membranes exhibit a cooperative calmodulin-dependent Ca2+-ATPase of high calcium sensitivity[J]. Nature, 1981, 290(5803):270-271.
[22] Polak-Jonkisz D, Purzyc L. Ca2+influx versus efflux during eryptosis in uremic erythrocytes[J]. Blood Purif, 2012, 34(3-4):209-210.
(責(zé)任編輯: 林白霜, 羅 森)
Erythropoietin inhibits eryptosis induced by reactive oxygen species
SUN Yun, LIU Gang, JIANG Ya-li, ZHANG Bin, ZHAO Xuan, LI Xue-gang
(DepartmentofNephrology,TheSecondHospitalofShandongUniversity,Jinan250033,China.E-mail:gangliu@sdu.edu.cn)
AIM: To observe the influence of erythropoietin (EPO) on eryptosis and production of reactive oxygen species (ROS) in erythrocytes under stimulation of hydrogen peroxide (H2O2),.and to explore its related mechanism.METHODSThe erythrocyte suspension (1%) was culturedinvitroand divided into 3 groups: control group (C group, the culture medium was PBS), H2O2group (H group, the culture medium was PBS containing H2O2at final concentration of 100 μmol/L) and EPO group (E group, the culture medium was PBS containing H2O2at final concentration of 100 μmol/L and EPO at final concentration of 2×104U/L). The erythrocytes were collected at 24 h and 60 h. The eryptosis was detected by flow cytometry with Annexin V staining. The production of ROS and intracellular calcium ion concentration ([Ca2+]i) were also analyzed by flow cytometry.RESULTSThe eryptosis in C group was increased as the incubating time extended. The eryptosis in H group was higher than that in C group (P<0.01), while that in E group was lower than that in H group (P<0.01). Meanwhile, ROS production and [Ca2+]iwere higher in H group than those in C group (P<0.01), but those were lower in E group than those in H group (P<0.05 orP<0.01).CONCLUSIONEPO inhibits eryptosis induced by H2O2and its mechanism may be related to antioxidant effect and change of [Ca2+]i.
Hydrogen peroxide; Eryptosis; Erythropoietin; Reactive oxygen species; Intracellular calcium ion concentration
1000- 4718(2017)11- 2084- 07
2017- 04- 10
2017- 06- 13
山東大學(xué)第二醫(yī)院種子基金資助項(xiàng)目(No. S2015010001);山東省自然科學(xué)基金資助項(xiàng)目(No. ZR2014HM045)
△通訊作者 Tel: 0531-85875451; E-mail: gangliu@sdu.edu.cn
R363; R692.5
A
10.3969/j.issn.1000- 4718.2017.11.026