耿莉敏,王 城,魏有濤,李 琪
?
生物質(zhì)混合燃料在柴油機(jī)噴嘴內(nèi)流動(dòng)特性模擬
耿莉敏,王 城,魏有濤,李 琪
(長(zhǎng)安大學(xué)陜西省交通新能源開(kāi)發(fā)、應(yīng)用與汽車(chē)節(jié)能重點(diǎn)實(shí)驗(yàn)室,西安 710064)
為了研究燃料物性差異對(duì)噴孔內(nèi)流動(dòng)特性的影響,通過(guò)GAMBIT軟件建立三維噴嘴模型,利用FLUENT軟件采用混合多相流模型,對(duì)柴油、生物柴油、生物柴油/乙醇混合燃料的噴孔內(nèi)壓強(qiáng)分布、速度分布和空化程度進(jìn)行仿真分析。結(jié)果表明:燃油在壓力室與噴孔入口銜接處壓強(qiáng)迅速下降,進(jìn)入噴孔后壓強(qiáng)趨于穩(wěn)定,在噴孔出口處壓強(qiáng)略有上升;生物柴油的壓強(qiáng)降幅最大,在噴孔不同截面處,與柴油相比生物柴油的壓強(qiáng)平均下降了23.91%;生物柴油/乙醇混合燃料與柴油的壓強(qiáng)降幅差別不大。燃油流速在噴孔入口處迅速增加,進(jìn)入噴孔后增速放緩,在噴孔出口處燃油流速略有下降;在噴孔徑向方向,由于壁面黏滯力作用導(dǎo)致速度從中心軸線向外圍呈遞減趨勢(shì);在噴孔不同截面處柴油的流速最快,其在噴嘴出口處的流速為229.8 m/s;生物柴油/乙醇混合燃料在噴嘴出口處的流速為223.1 m/s;生物柴油的流速最小, 其在噴嘴出口處的流速為214.9 m/s??昭ìF(xiàn)象首先發(fā)生在噴孔入口拐角處,隨后向噴孔出口發(fā)展,并逐漸減弱。噴孔不同截面處,柴油的氣相體積分?jǐn)?shù)最大,生物柴油的氣相體積分?jǐn)?shù)最小,其氣相體積分?jǐn)?shù)比柴油平均下降了11.1%,與柴油相比生物柴油的空化程度較弱;生物柴油/乙醇混合燃料的氣相體積分?jǐn)?shù)與柴油差別不大,僅降低了1.8%,在生物柴油中添加乙醇能夠降低燃料的密度、粘度和表面張力,改善燃料在噴孔內(nèi)的流動(dòng)特性,促進(jìn)空化產(chǎn)生,噴孔內(nèi)的空化現(xiàn)象能夠?yàn)閳A射流噴霧提供初始擾動(dòng),促進(jìn)燃油霧化。該研究可為生物柴油/乙醇混合燃料流通特性研究提供理論支持。
生物燃料;乙醇;模擬;混合燃料;噴嘴內(nèi)空穴流動(dòng)
隨著社會(huì)經(jīng)濟(jì)的發(fā)展,能源危機(jī)和環(huán)境污染已經(jīng)成為全球亟待解決的問(wèn)題。各國(guó)紛紛致力于新型替代能源的研究,生物柴油與柴油理化特性相近,不需要對(duì)現(xiàn)有柴油機(jī)進(jìn)行改造便可直接應(yīng)用,受到各國(guó)研究人員的青睞[1-4]。內(nèi)燃機(jī)的動(dòng)力性、經(jīng)濟(jì)性和排放特性與燃油的噴霧特性密切相關(guān),研究表明分析噴嘴內(nèi)部結(jié)構(gòu)[5-7]和燃料性質(zhì)[8]對(duì)噴孔內(nèi)部流動(dòng)特性的影響并對(duì)其進(jìn)行優(yōu)化控制能夠改善燃料的噴霧特性。
目前國(guó)內(nèi)外對(duì)生物柴油噴霧特性的研究相對(duì)較多,主要有利用定容彈模擬發(fā)動(dòng)機(jī)缸內(nèi)環(huán)境,采用CCD(charge coupled device)相機(jī)捕捉噴霧發(fā)展過(guò)程圖像,研究菜籽油甲脂、豆油甲脂與柴油混合燃料的噴霧特性[9];利用高速攝像機(jī)和可視化燃燒室對(duì)多種生物質(zhì)燃油的噴霧特性進(jìn)行試驗(yàn)研究[10];利用單缸光學(xué)發(fā)動(dòng)機(jī)測(cè)試了第一代生物柴油(大豆油甲酯和菜籽油甲酯)和第二代生物柴油(天然氣合成油)的噴霧特性[11];利用激光測(cè)試技術(shù)對(duì)生物柴油與柴油混合燃料的霧化質(zhì)量進(jìn)行試驗(yàn)研究[12];利用高分辨率數(shù)碼相機(jī)、高速攝像機(jī)等設(shè)備從燃料性質(zhì)、噴射壓力、噴孔直徑和溶氣噴射等多角度研究生物柴油的噴霧特性[13-15];利用高速攝像系統(tǒng)和激光粒度分析儀研究生物柴油與醇類,醚類摻混后的噴霧特性[16-17];利用相位多普勒粒子測(cè)試技術(shù)和高速攝影法,對(duì)棕櫚油生物柴油、0#柴油以及混合燃料(生物柴油體積分?jǐn)?shù)為30%)的噴霧特性進(jìn)行研究[18];利用經(jīng)過(guò)驗(yàn)證的數(shù)值模型和基于激光的米氏散射技術(shù)對(duì)柴油和生物柴油的噴嘴內(nèi)流動(dòng)特性和宏觀噴霧特性進(jìn)行對(duì)比研究[19];利用開(kāi)源仿真軟件KIVA-3V研究了燃油溫度以及環(huán)境氣體溫度對(duì)生物柴油噴霧特性的影響[20-21];利用三維CFD(computational fluid dynamics)軟件建立燃油自由噴霧計(jì)算模型對(duì)比分析生物柴油與柴油的噴霧特性[22],同時(shí)研究了噴孔直徑對(duì)生物柴油噴霧特性的影響[23]。受?chē)娮靸?nèi)可視化試驗(yàn)條件的限制,關(guān)于生物柴油噴嘴內(nèi)流動(dòng)特性的研究相對(duì)較少,Som等[24]利用FLUENT v6.3軟件研究了生物柴油和柴油在噴孔內(nèi)部的流動(dòng)特性以及噴霧特性;謝陽(yáng)等[25]利用計(jì)算流體力學(xué)軟件模擬了燃油溫度和背壓對(duì)柴油噴孔內(nèi)部流動(dòng)特性的影響;Battistoni等[26]利用AVL FIRE軟件對(duì)生物柴油與柴油的噴孔內(nèi)流動(dòng)特性和噴霧特性進(jìn)行了對(duì)比研究,并分析了噴孔內(nèi)部結(jié)構(gòu)對(duì)空化的影響;邵壯[27]和姜光軍[28]等利用透明噴嘴對(duì)生物柴油和柴油在噴孔內(nèi)的流動(dòng)特性進(jìn)行試驗(yàn)研究。他們的研究發(fā)現(xiàn),由于生物柴油的粘度和表面張力較大,與柴油相比生物柴油更不容易產(chǎn)生空化,因此,本文擬通過(guò)添加乙醇改善生物柴油噴孔內(nèi)的空化流動(dòng),促進(jìn)燃料霧化。
本文利用GAMBIT軟件建立三維噴嘴模型,通過(guò)FLUENT軟件采用混合多相流模型,對(duì)純柴油BD0、純生物柴油BD100和生物柴油/乙醇混合燃料BD70E30(混合燃料中乙醇的體積摻混比為30%)的噴孔內(nèi)流動(dòng)特性進(jìn)行仿真分析,研究燃料物性差異對(duì)噴孔內(nèi)壓強(qiáng)分布、噴射速度和空化程度的影響。
本文采用STD型標(biāo)準(zhǔn)單孔噴嘴,并對(duì)其進(jìn)行適當(dāng)簡(jiǎn)化,如圖1所示,噴孔直徑為0.366 mm,噴孔長(zhǎng)度為1.464 mm,噴孔入口為銳角過(guò)渡,過(guò)渡圓角半徑為0,針閥最大升程為0.3 mm。
注:D為噴孔直徑,L為噴孔長(zhǎng)度,R為過(guò)渡圓角半徑,h為針閥最大升程。
噴嘴為規(guī)則圓形結(jié)構(gòu),為節(jié)省計(jì)算機(jī)資源,提高仿真效率,在不影響模擬準(zhǔn)確性的前提下,取1/4噴嘴進(jìn)行網(wǎng)格劃分。噴嘴三維結(jié)構(gòu)如圖2所示,為便于劃分網(wǎng)格,利用“split volume”命令將整體分割成6塊,由上而下依次定義為volume.1、volume.2、volume.3、volume.4、volume.5、volume.6。
圖2 噴嘴三維模型
利用分塊耦合的方法進(jìn)行網(wǎng)格劃分,劃分結(jié)果如圖3所示,網(wǎng)格總數(shù)為109.23萬(wàn),Aspect Ratio小于2.4的網(wǎng)格總數(shù)達(dá)到99.6%,滿足仿真計(jì)算的要求。為避免不同網(wǎng)格劃分方法對(duì)流動(dòng)特性的影響,必須對(duì)銜接區(qū)域進(jìn)行合理過(guò)渡,保證流動(dòng)方向一致,并對(duì)噴孔入口和噴孔內(nèi)部流動(dòng)狀態(tài)復(fù)雜處進(jìn)行網(wǎng)格加密。
圖3 噴嘴計(jì)算網(wǎng)格
混合模型的連續(xù)性方程為
混合模型的動(dòng)量方程為
本文在模擬空化現(xiàn)象時(shí),采用FLUENT軟件的Schnerr and Sauer模型。
Schnerr and Sauer模型中蒸汽體積分?jǐn)?shù)方程為
蒸汽體積分?jǐn)?shù)與單位體積流體中所含氣泡數(shù)量的關(guān)系為
模型中表示質(zhì)量轉(zhuǎn)移率的方程為
試驗(yàn)用油為柴油BD0、生物柴油BD100和生物柴油/乙醇混合燃料BD70E30。通過(guò)互溶性試驗(yàn)可知,生物柴油與無(wú)水乙醇的互溶性良好,在生物柴油中添加30%(體積比)的無(wú)水乙醇,放置一周及更長(zhǎng)時(shí)間后觀察,無(wú)分層現(xiàn)象發(fā)生。生物柴油采用以大豆油為原料通過(guò)酯交換法制成的脂肪酸甲酯,它是由多種不同碳鏈長(zhǎng)度的飽和與不飽和脂肪酸甲酯組成,根據(jù)前期試驗(yàn)采用氣相色譜法測(cè)得其中不同組分的含量見(jiàn)表1。由表1可知,該生物柴油中飽和脂肪酸甲酯的含量為30.3%,不飽和脂肪酸甲酯的含量為59.5%,其中亞油酸甲酯、油酸甲酯和棕櫚酸甲酯是其主要成分。
表1 大豆油生物柴油的脂肪酸組成
根據(jù)前期試驗(yàn)結(jié)果,噴孔內(nèi)多相流仿真需要用到BD0、BD100、BD70E30 3種燃油及其蒸汽的物性參數(shù),通過(guò)試驗(yàn)測(cè)得3種燃油的密度、動(dòng)力粘度和表面張力等物性參數(shù);由于BD100和BD70E30的蒸汽參數(shù)難以獲得,因此采用柴油蒸汽的物性參數(shù)計(jì)算,燃料的物性參數(shù)[30]如表2所示。
表2 燃油物性參數(shù)(20℃)
注:BD0為柴油燃料,BD100為生物柴油燃料,BD70E30為生物柴油-乙醇混合燃料,下同。
Note: BD0 is diesel fuel, BD100 is biodiesel fuel, BD70E30 is biodiesel-ethanol blend fuel, the same below.
對(duì)于針閥和噴孔中的固定壁面采用不可滲透、無(wú)滑移的壁面邊界條件,設(shè)定壁面溫度為293.15 K,壁面法向和切向速度梯度為零,近壁區(qū)邊界層采用標(biāo)準(zhǔn)壁面函數(shù)邊界條件。
圖4為CCD相機(jī)拍攝圖像[27]與本文數(shù)值模擬所得柴油噴孔內(nèi)空穴分布對(duì)比圖。從圖中可以看出,隨著噴射壓力的增大,斜單孔噴嘴內(nèi)空穴分布區(qū)域逐漸增大,其內(nèi)部流動(dòng)由空穴初生發(fā)展為超空穴,數(shù)值模擬和試驗(yàn)結(jié)果得出的空穴分布區(qū)域基本一致。
圖5為柴油在噴孔內(nèi)空化相對(duì)面積的試驗(yàn)與仿真結(jié)果對(duì)比。從圖中可以看出,空化面積隨著噴射壓力的增大而增大,在噴射壓力為0.35 MPa以下時(shí),增速較慢,當(dāng)超過(guò)此噴射壓力時(shí),空化面積急劇增大。仿真結(jié)果與試驗(yàn)結(jié)果的變化規(guī)律一致,數(shù)據(jù)吻合較好,驗(yàn)證了模型的準(zhǔn)確性。但數(shù)值模擬相比于試驗(yàn)測(cè)定的空化面積稍大,這是由于試驗(yàn)過(guò)程中,沿程阻力損失大,使得試驗(yàn)中實(shí)際流經(jīng)噴孔處的壓力相比于數(shù)值模擬中的壓力小,因此試驗(yàn)所得空化相對(duì)面積略小于數(shù)值模擬結(jié)果。
注:p為噴射壓力。
圖5 柴油空化相對(duì)面積的試驗(yàn)與仿真結(jié)果對(duì)比
圖6為柴油BD0、生物柴油BD100和生物柴油/乙醇混合燃料BD70E30 3種燃油在相同噴射條件下,噴孔內(nèi)的壓強(qiáng)分布云圖;圖7為3種燃油在不同截面的壓強(qiáng)變化規(guī)律??梢钥闯觯?)3種燃油壓強(qiáng)分布情況相似,在壓力室與噴孔入口銜接處,壓強(qiáng)梯度很大,從30 MPa迅速下降到11.5 MPa左右;進(jìn)入噴孔后,在拐角處壓強(qiáng)首先下降到燃油的飽和蒸氣壓;隨著燃油繼續(xù)向出口流動(dòng),壓強(qiáng)維持在飽和蒸氣壓,變化不大;在噴孔出口附近,壓強(qiáng)略有上升。這是因?yàn)楫?dāng)燃油流經(jīng)壓力室到達(dá)噴孔入口附近時(shí),流動(dòng)方向發(fā)生改變并且流通截面急劇收縮,導(dǎo)致流動(dòng)速度迅速增加,壓強(qiáng)隨之下降;在噴孔入口拐角處燃油流動(dòng)速度和流動(dòng)方向變化最為劇烈,首先在該區(qū)域達(dá)到燃油飽和蒸氣壓;進(jìn)入噴孔后,燃油流速逐漸穩(wěn)定,壓強(qiáng)變化不明顯;在噴孔出口附近,由于壁面對(duì)燃油的黏滯力和環(huán)境氣壓的影響,導(dǎo)致燃油流速下降,壓強(qiáng)略有上升。2)BD100的壓強(qiáng)下降幅度最大,在噴孔不同截面處,與BD0相比BD100的壓強(qiáng)平均下降了23.91%;BD0和BD70E30的壓強(qiáng)下降幅度非常接近。這是因?yàn)殡S著燃油流速的增加,壓強(qiáng)逐漸下降到飽和蒸氣壓后才趨于穩(wěn)定,而B(niǎo)D100的飽和蒸氣壓最小,穩(wěn)定后的壓強(qiáng)最??;BD70E30的飽和蒸氣壓與BD0比較接近,壓強(qiáng)變化規(guī)律相似。
圖6 3種燃油噴孔內(nèi)壓強(qiáng)分布云圖噴射壓力35 MPa
圖7 3種燃油在噴孔不同截面處的壓強(qiáng)變化
圖8為3種燃油噴孔內(nèi)的速度分布云圖,圖9為噴孔不同截面上的速度變化規(guī)律。從圖中可以看出:1)3種燃油速度分布規(guī)律基本相同,都是先緩慢增加,在壓力室與噴孔入口交界處,速度迅速增加;進(jìn)入噴孔后,增速放緩,流速逐漸穩(wěn)定在最大值;在噴孔出口附近,流速出現(xiàn)小幅度下降。這主要是因?yàn)槿加土鹘?jīng)壓力室,流通截面逐漸變小,流動(dòng)的均勻性變差,方向逐漸改變,流速緩慢增加[31];噴孔入口附近流通截面積最小而且無(wú)光滑過(guò)渡圓角,流速迅速增加;進(jìn)入噴孔后,流動(dòng)截面不再變化,加之壁面對(duì)燃油的黏滯效應(yīng),流速緩慢增加并趨于穩(wěn)定[32];噴孔出口附近,壁面黏滯力對(duì)流速的影響占據(jù)主導(dǎo)地位,流動(dòng)損失增加,流速出現(xiàn)小幅減小。 2)噴孔徑向,速度值由中心軸線向兩側(cè)呈遞減趨勢(shì)。這主要是因?yàn)槿加团c壁面之間存在摩擦作用,導(dǎo)致噴孔中心速度最大,壁面附近速度最小[32]。3)3種燃油在噴孔不同截面處的平均速度不同,BD0的速度最大,其次是BD70E30,BD100的速度最小。在噴嘴出口處,柴油BD0的流速為229.8 m/s,生物柴油/乙醇混合燃料BD70E30的流速為223.1 m/s;生物柴油的流速為214.9 m/s。這主要是因?yàn)?種燃油的理化性質(zhì)不同,BD100的密度、粘度和表面張力最大,流動(dòng)損失較大,速度相對(duì)較?。籅D70E30中添加了30%的無(wú)水乙醇,可有效降低生物柴油的密度、粘度和表面張力,提高燃油的流動(dòng)特性,流速增加[33]。
注:橫截面取從左到右依次距噴孔入口0、0.25、0.50、0.75、1.00、1.25、1.50 mm,下同。
圖10為3種燃油噴孔內(nèi)空穴分布云圖,圖11為3種燃油在噴孔不同截面處的氣相體積分?jǐn)?shù)變化規(guī)律。1)由圖10可以看出,3種燃油空穴分布規(guī)律基本一致,空穴現(xiàn)象首先發(fā)生在噴孔入口拐角處,隨后向噴孔出口方向發(fā)展;空穴層厚度先增加后減小,并且越靠近噴孔壁面,氣相體積分?jǐn)?shù)越高[34];隨著流動(dòng)的進(jìn)行,空穴現(xiàn)象逐漸減弱。這是因?yàn)楫?dāng)燃油流經(jīng)噴孔入口附近時(shí),流通截面急劇收縮,流動(dòng)速度急劇上升,壓力快速下降,并且在噴孔入口拐角處壓力下降到燃油飽和蒸氣壓之下,形成空穴。空穴在射流的帶動(dòng)下向噴孔下游發(fā)展,由于空穴具有不穩(wěn)定性,在發(fā)展過(guò)程中受到流體的擾動(dòng)和壓力作用,氣泡發(fā)生潰滅,氣相體積分?jǐn)?shù)逐漸下降[34]。2)3種燃油在噴孔內(nèi)不同截面上的氣相體積分?jǐn)?shù)不同,BD100的氣相體積分?jǐn)?shù)值最小,其氣相體積分?jǐn)?shù)比BD0平均下降了11.1%;BD70E30的氣相體積分?jǐn)?shù)與BD0差別不大,僅比BD0降低了1.8%。這是由于3種燃油理化特性不同,BD100的粘度和表面張力最大,飽和蒸汽壓最低,不利于空穴現(xiàn)象的產(chǎn)生[28],同時(shí)也說(shuō)明在生物柴油中摻加一定比例的乙醇對(duì)于提高燃油空化程度有積極作用。
圖9 3種燃油在噴孔不同截面處的速度變化
圖10 3種燃油噴孔內(nèi)空穴分布云圖
圖11 3種燃油在不同截面處的氣相體積分?jǐn)?shù)變化
1)BD0、BD100和BD70E30 3種燃料在壓力室與噴孔入口銜接處壓強(qiáng)迅速下降;燃料進(jìn)入噴孔后,壓強(qiáng)維持在飽和蒸汽壓,變化不大;在噴孔出口處,壓強(qiáng)略有上升。BD100的壓強(qiáng)降幅最大,在噴孔不同截面處,與柴油相比生物柴油的壓強(qiáng)平均下降了23.91 %;BD70E30和BD0的壓強(qiáng)下降幅度基本相同。
2)3種燃料的流速在噴孔入口處迅速增加,進(jìn)入噴孔后增速逐漸放緩,達(dá)到最大值后趨于穩(wěn)定,在噴孔出口處,流速略有下降;3種燃料的流速在噴孔徑向從中心向外圍呈遞減趨勢(shì)。在噴嘴出口處,BD0的速度最大,達(dá)到229.8 m/s;其次為BD70E30,流速為223.1 m/s;BD100的流速最小,其在噴嘴出口處的流速為214.9 m/s。
3)空穴首先發(fā)生在噴孔入口拐角處,隨后向噴孔出口發(fā)展,空穴層厚度先增加后減小,隨著流動(dòng)的進(jìn)行,空化逐漸減弱。在噴孔不同截面處,BD100的氣相體積分?jǐn)?shù)最小,其氣相體積分?jǐn)?shù)平均比柴油下降了11.1%,BD70E30的氣相體積分?jǐn)?shù)與柴油差別不大,僅比柴油低1.8%。在生物柴油中摻混乙醇可有效提高燃油的流動(dòng)特性,促進(jìn)空化現(xiàn)象的產(chǎn)生。
[1] Chauhan B S, Kumar N, Cho H M, et al. A study on the performance and emission of a diesel engine fueled with Jatropha biodiesel oil and its blends[J]. Energy, 2012, 37(1): 616-622.
[2] Adaileh W M, AlQdah K S, et al. Performance of diesel engine fuelled by a biodiesel extracted from a waste cooking oil[J]. Energy Procedia, 2012, 18(5): 1317-1334.
[3] McCarthy P, Rasul M G, Moazzem S, et al. Analysis and comparison of performance and emissions of an internal combustion engine fuelled with petroleum diesel and different biodiesels[J]. Fuel, 2011, 90(6): 2147-2157.
[4] Qi D H, Geng L M, Chen H, et al. Combustion and performance evaluation of a diesel engine fueled with biodiesel produced from soybean crude oil[J]. Renewable Energy, 2009, 34(12): 2706-2713.
[5] 張軍,杜青,楊延相,等. 柴油機(jī)不同類型噴嘴內(nèi)部空化流動(dòng)特性的研究[J]. 內(nèi)燃機(jī)學(xué)報(bào),2010,28(2):133-140.Zhang Jun, Du Qing, Yang Yanxiang, et al. Study on cavitating flow in different types of diesel nozzle orifice[J]. Transactions of CSICE, 2010, 28(2): 133-140. (in Chinese with English abstract)
[6] Hassan Mohammadi, Parinaz Jabbarzadeh, Mehrnaz Jabbarzadeh, et al. Numerical investigation on the hydrodynamics of the internal flow and spray behavior of diesel fuel in a conical nozzle orifice with the spiral rifling like guides[J]. Fuel, 2017, 196(5): 419-430.
[7] Wu Shengqi, Xu Min, David L S Hung, et al. Effects of nozzle configuration on internal flow and primary jet breakup of flash boiling fuel sprays[J]. International Journal of Heat and Mass Transfer, 2017, 110(7): 730-738.
[8] Roberto Torelli, Sibendu Soma, Yuanjiang Pei, et al. Influence of fuel properties on internal nozzle flow development in a multi-hole diesel injector[J]. Fuel, 2017, 204(9): 171-184.
[9] Valentino G, Allocca L, Iannuzzi S, et al. Biodiesel/mineral diesel fuel mixtures: Spray evolution and engine performance and emissions characterization[J]. Energy, 2011, 36(6): 3924-3932.
[10] Galle J, Defruyt S, Maele C V D, et al. Experimental investigation concerning the influence of fuel type and properties on the injection and atomization of liquid biofuels in an optical combustion chamber[J]. Biomass & Bioenergy, 2013, 57(10): 215-228.
[11] Mancaruso E, Sequino L, Vaglieco B M. First and second generation biodiesels spray characterization in a diesel engine[J]. Fuel, 2011, 90(9): 2870-2883.
[12] Seunghun C, Youngtaig O. The spray characteristics of unrefined biodiesel[J]. Renewable Energy, 2012, 42(1): 136-139.
[13] 耿莉敏,汪月英,王城,等. 燃料物理性質(zhì)差異對(duì)柴油機(jī)噴霧特性的影響[J]. 鄭州大學(xué)學(xué)報(bào)(工學(xué)版),2014,35(4):14-18. Geng Limin, Wang Yueying, Wang Cheng, et al. Effects of physical properties of fuel on spray characteristics of diesel engine[J]. Journal of Zhengzhou University (Engineering Science), 2014, 35(4): 14-18. (in Chinese with English abstract)
[14] 汪月英. 生物柴油霧化質(zhì)量改善方法研究[D]. 西安:長(zhǎng)安大學(xué),2012. Wang Yueying. Study on the Improvement Method of Biodiesel Atomization Quality[D]. Xi’an: Chang’an University, 2012. (in Chinese with English abstract)
[15] 耿莉敏,曹建明,王磊,等. 生物柴油-柴油混合燃料噴霧特性[J]. 長(zhǎng)安大學(xué)學(xué)報(bào)(自然科學(xué)版),2009,29(3):89-92. Geng Limin, Cao Jianming, Wang Lei, et al. Atomization characteristics of biodiesel/diesel blend fuel[J]. Journal of Chang’an University(Natural Science Edition), 2009, 29(3): 89-92. (in Chinese with English abstract)
[16] 楊康康,李昕昕,李俊鴿,等. 醇類-生物柴油混合燃料噴霧特性的試驗(yàn)[J]. 內(nèi)燃機(jī)學(xué)報(bào),2016,34(3):260-267.Yang Kangkang, Li Xinxin, Li Junge, et al. Experiment on spray characteristics of alcohol and biodiesel blends[J]. Transactions of CSICE, 2016, 34(3): 260-267. (in Chinese with English abstract)
[17] 關(guān)力,湯成龍,楊柯,等. 添加二丁醚對(duì)生物柴油噴霧特性的影響[J]. 燃燒科學(xué)與技術(shù),2015,21(5):453-457.Guan Li, Tang Chenglong, Yang Ke, et al. Effect of Di-n-Butyl ether blending with soybean-biodiesel on spray characteristics[J]. Journal of Combustion Science and Technology, 2015, 21(5): 453-457. (in Chinese with English abstract)
[18] 郭恒杰,李雁飛,李莉,等. 棕櫚油生物柴油摻混燃料宏觀與微觀噴霧特性[J]. 內(nèi)燃機(jī)學(xué)報(bào),2015,33(5):385-392.Guo Hengjie, Li Yanfei, Li Li, et al. Experiment on macroscopic and microscopic spray characteristics of palm oil methyl ester[J]. Transactions of CSICE, 2015, 33(5): 385-392. (in Chinese with English abstract)
[19] Yu Shenghao, Yin Bifeng, Jia Hekun, et al. Theoretical and experimental comparison of internal flow and spray characteristics between diesel and biodiesel[J]. Fuel, 2017, 208(11): 20-29.
[20] Su H P, Kim H J, Suh H K, et al. Experimental and numerical analysis of spray-atomization characteristics of biodiesel fuel in various fuel and ambient temperatures conditions[J]. International Journal of Heat & Fluid Flow, 2009, 30(5): 960-970.
[21] 宋曉超,王天友,孟祥贊,等. 燃油溫度對(duì)生物柴油噴霧特性影響的模擬[J]. 內(nèi)燃機(jī)學(xué)報(bào),2015,33(3):232-237.Song Xiaochao, Wang Tianyou, Meng Xiangzan, et al. Numerical investigation of the effect of fuel temperature on spray characteristics of biodiesel fuel[J]. Transactions of CSICE, 2015, 33(3): 232-237. (in Chinese with English abstract)
[22] 王忠,毛功平,袁銀男,等. 生物柴油缸內(nèi)噴霧特性的數(shù)值模擬[J]. 內(nèi)燃機(jī)工程,2009,30(3):6-11. Wang Zhong, Mao Gongping, Yuan Yinnan, et al. Numerical simulation of spray characteristics of biodiesel fuel in cylinder[J]. Chinese Internal Combustion Engine Engineering, 2009, 30(3): 6-11. (in Chinese with English abstract)
[23] 姜磊,葛蘊(yùn)珊,何超. 生物柴油噴霧特性的數(shù)值模擬[J]. 內(nèi)燃機(jī)工程,2009,30(5):17-21. Jiang Lei, Ge Yunshan, He Chao. Numerical simulation on spray characteristics of biodiesel fuel[J]. Chinese Internal Combustion Engine Engineering, 2009, 30(5): 17-21. (in Chinese with English abstract)
[24] Som S, Longman D E, Ramírez A I, et al. A comparison of injector flow and spray characteristics of biodiesel with petrodiesel[J]. Fuel, 2010, 89(12): 4014-4024.
[25] 謝陽(yáng),姚子澍,麻劍,等. 柴油溫度對(duì)噴孔內(nèi)流動(dòng)特性影響的仿真分析[J]. 浙江大學(xué)學(xué)報(bào)(工學(xué)版),2015,49(5):938-943. Xie Yang, Yao Zishu, Ma Jian, et al. Numerical study on internal nozzle flow characteristic of diesel under hot fuel conditions[J]. Journal of Zhejiang University(Engineering Science), 2015, 49(5): 938-943. (in Chinese with English abstract)
[26] Battistoni M, Grimaldi C N. Numerical analysis of injector flow and spray characteristics from diesel injectors using fossil and biodiesel fuels[J]. Applied Energy, 2012, 97(3): 656-666.
[27] 邵壯,何志霞,鐘汶君,等. 柴油與生物柴油不同長(zhǎng)徑比噴嘴內(nèi)空穴流動(dòng)的試驗(yàn)[J]. 內(nèi)燃機(jī)學(xué)報(bào),2014,32(4): 322-327. Shao Zhuang, He Zhixia, Zhong Wenjun, et al. Visualization experiment on cavitating flow of different length-diameter ratios using diesel and biodiesel in diesel engine nozzles[J]. Transactions of CSICE, 2014, 32(4): 322-327. (in Chinese with English abstract)
[28] 姜光軍,張煜盛,Medhat Elkelawy,等. 不同燃料的噴嘴內(nèi)流動(dòng)與噴霧形態(tài)可視化試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(5):22-29. Jiang Guangjun, Zhang Yusheng, Medhat Elkelawy, et al. Visualization experiment of internal flow of nozzle and spray construction for various fuels[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(5): 22-29. (in Chinese with English abstract)
[29] 解茂昭. 內(nèi)燃機(jī)計(jì)算燃燒學(xué)(第2版)[M]. 大連:大連理工大學(xué)出版社,2005.
[30] 孫德魁,樊祥山,李俊鴿,等. 脂肪酸甲酯-乙醇混合燃料噴霧特性試驗(yàn)和數(shù)值模擬[J]. 內(nèi)燃機(jī)學(xué)報(bào),2015,33(2):144-153.Sun Dekui, Fan Xiangshan, Li Junge, et al. Experimental study and numerical simulation of spray characteristics of ethanol-fatty acid methyl ester(FAME)blends[J]. Transactions of CSICE, 2015, 33(2): 144-153. (in Chinese with English abstract)
[31] 張俊. 徑向流空氣純化器內(nèi)流場(chǎng)模擬與氣流均布影響因素分析[D]. 天津:天津大學(xué),2014. Zhang Jun. Simulation and Analysis of Gas Flow Distribution in Radial Flow Air Adsorber[D]. Tianjin: Tianjin University, 2014. (in Chinese with English abstract)
[32] 江宏俊. 流體力學(xué)(上、下冊(cè))[M]. 北京:高等教育出版社,1990.
[33] 王城. 生物柴油-乙醇混合燃料噴孔內(nèi)流動(dòng)及噴霧特性的仿真分析和試驗(yàn)研究[D]. 西安:長(zhǎng)安大學(xué),2017. Wang Cheng. Experiment and Simulation of Injector Flow and Spray Characteristics of Biodiesel-ethanol Blend Fuel[D]. Xi’an: Chang’an University, 2017. (in Chinese with English abstract)
[34] 張軍. 柴油機(jī)噴嘴內(nèi)空化效應(yīng)的機(jī)理及射流破碎特征的研究[D]. 天津:天津大學(xué),2010. Zhang Jun. Investigations of Cavitation in Nozzle and Characteristic of Breakup for Diesel Spray[D]. Tianjin: Tianjin University, 2010. (in Chinese with English abstract)
耿莉敏,王 城,魏有濤,李 琪. 生物質(zhì)混合燃料在柴油機(jī)噴嘴內(nèi)流動(dòng)特性模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(21):70-77. doi:10.11975/j.issn.1002-6819.2017.21.008 http://www.tcsae.org
Geng Limin, Wang Cheng, Wei Youtao, Li Qi. Simulation on internal flow characteristics of nozzle for diesel engine fueled with biomass blend fuel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 70-77. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.21.008 http://www.tcsae.org
Simulation on internal flow characteristics of nozzle for diesel engine fueled with biomass blend fuel
Geng Limin, Wang Cheng, Wei Youtao, Li Qi
(710064,)
The internal turbulent flow and cavitation flow of the nozzle have effect on the fuel spray and atomization of diesel engine, and especially they have a great impact on the process of primary atomization. Biodiesel is a kind of renewable alternative fuel of diesel. Previous studies have shown that biodiesel has higher density, viscosity and surface tension. Compared with diesel, biodiesel is less likely to generate cavitation flow inside nozzle. Therefore, this paper intends to add ethanol to biodiesel so as to improve cavitation flow of biodiesel in nozzle and advance biodiesel atomization. The geometry of the actual nozzle is very small and visual experimental research on full-size jet nozzle is relatively difficult. Therefore, in this paper, the effects of the fuel properties on the internal flow characteristics of nozzle were studied by computational simulation approaches. A three-dimensional nozzle model was created by GAMBIT, in which, pressure distribution, velocity distribution and cavitation distribution of diesel, biodiesel and biodiesel/ethanol blended fuel in nozzle were simulated with the mixture multiphase model of FLUENT. During the simulation, for validating the mixture multiphase model, turbulence model and cavity model, the comparison between visual experiment and computational simulation results of diesel cavitation area was carried out under different injection pressures. These models were confirmed to be effective. The simulation results show that the pressure drops rapidly at the joint connecting the pressure chamber and nozzle entrance, and the pressure tends to be stable after entering the nozzle, while the pressure increases slightly near nozzle exit. The pressure decline range of biodiesel is the greatest. Compared with diesel, the pressure of biodiesel reduces by 23.91% at the different cross section of nozzle. The pressure decline range is comparable between diesel fuel and biodiesel/ethanol blended fuel. The fuel flow velocity increases rapidly at the entrance of the nozzle, and the flow velocity rises slowly after entering the nozzle, while the fuel flow velocity slightly decreases near the nozzle exit. From the nozzle center to the nozzle periphery, the fuel flow velocity gradually reduces owing to viscous force of the nozzle wall. At the different cross sections of the nozzle, the flow velocity of diesel is the fastest and its flow velocity reaches 229.8 m/s at the nozzle outlet. The flow velocity of biodiesel/ethanol blended fuel is slower than that of diesel and its flow velocity is 223.1 m/s at the nozzle outlet, while the flow velocity of biodiesel is the slowest among the 3 kinds of fuels, and its flow velocity is 214.9 m/s at the nozzle outlet. The cavitation first occurs at the corner of the nozzle entrance, and then it develops to nozzle exit and gradually weakens. At the different sections of nozzle, the gas volume fraction of diesel is the greatest and that of biodiesel is the smallest. The gas volume fraction of biodiesel drops on the average by 11.1% compared with that of diesel and the cavitation of biodiesel is relatively weaker than that of diesel. However, the gas volume fraction of biodiesel/ethanol blended fuel is nearly comparable with that of diesel and there is only 1.8% difference between blended fuel and diesel fuel. Adding ethanol to biodiesel can reduce fuel density, viscosity and surface tension, improve fuel flow characteristics and promote the cavitation of biodiesel in the nozzle. The cavitation in the nozzle can provide initial disturbance for the circular jet spray and promote fuel atomization.
biofuels; ethanol; simulation; blended fuel; internal cavitation flow of nozzle
10.11975/j.issn.1002-6819.2017.21.008
TK6
A
1002-6819(2017)-21-0070-08
2017-07-27
2017-10-10
陜西省交通新能源開(kāi)發(fā)、應(yīng)用與汽車(chē)節(jié)能重點(diǎn)實(shí)驗(yàn)室開(kāi)放課題資助項(xiàng)目基金項(xiàng)目(310822161121);中央高?;究蒲袠I(yè)務(wù)費(fèi)資助項(xiàng)目(310822172203)
耿莉敏,副教授,主要從事汽車(chē)代用燃料噴霧與燃燒特性研究。Email:genglimin@chd.edu.cn
農(nóng)業(yè)工程學(xué)報(bào)2017年21期