国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

嫁接機(jī)鋼針頂起穴盤苗過程EDEM模擬驗(yàn)證及參數(shù)優(yōu)化

2017-11-17 08:56高國華孫曉娜
關(guān)鍵詞:鋼針基質(zhì)直徑

高國華,王 凱,孫曉娜

?

嫁接機(jī)鋼針頂起穴盤苗過程EDEM模擬驗(yàn)證及參數(shù)優(yōu)化

高國華,王 凱,孫曉娜

(北京工業(yè)大學(xué)機(jī)械工程及應(yīng)用電子技術(shù)學(xué)院,北京 100124)

針對該課題組自主開發(fā)研制的ZGM-7自動(dòng)化穴盤苗嫁接機(jī)中出現(xiàn)的鋼針頂起穴盤苗失敗現(xiàn)象,該文在EDEM離散元分析軟件中利用ECM粘結(jié)力彈塑性接觸模型作為顆粒接觸模型并建立多種不同材料屬性的復(fù)雜顆粒模型來模擬真實(shí)的育苗基質(zhì),進(jìn)而研究鋼針與育苗基質(zhì)的作用關(guān)系。并以頂起過程中的穴盤苗基質(zhì)底面最大頂起高度作為指標(biāo)參數(shù),分析了不同鋼針長度、不同鋼針徑粗、不同頂起速度條件下頂起穴盤苗的工作情況。利用響應(yīng)曲面法設(shè)計(jì)并執(zhí)行仿真和實(shí)際試驗(yàn),仿真分析結(jié)果與試驗(yàn)結(jié)果得到了很好地驗(yàn)證,變化趨勢基本一致,數(shù)值結(jié)果誤差在0.7%~7.2%;鋼針直徑和頂起速度對指標(biāo)參數(shù)影響顯著,且存在顯著的交互作用。以育苗基質(zhì)底面豎直成功頂起的理論最大頂起高度144 mm為優(yōu)化目標(biāo),利用Design_expert軟件得到仿真優(yōu)化參數(shù)結(jié)果:鋼針直徑2.28 mm,鋼針長度12.28 mm,頂起速度0.09 m/s。仿真優(yōu)化參數(shù)下進(jìn)行試驗(yàn),頂起機(jī)構(gòu)頂起穴盤苗成功率高達(dá)95.3%,優(yōu)化效果顯著。該研究結(jié)果極大地提高了鋼針頂起穴盤苗的運(yùn)行效果,同時(shí)為鋼針頂起離散基質(zhì)等類似問題提供參考。

農(nóng)業(yè)機(jī)械;嫁接;優(yōu)化;EDEM;穴盤苗;鋼針;頂起;響應(yīng)曲面法

0 引 言

目前,發(fā)達(dá)國家設(shè)施園藝的人均種植面積超過1.00 hm2,相比之下中國0.07 hm2的水平顯得尤為落后。因此,加速實(shí)現(xiàn)設(shè)施農(nóng)業(yè)發(fā)展的機(jī)械化、現(xiàn)代化和高效化,推動(dòng)中國農(nóng)業(yè)生產(chǎn)效率的不斷提高,已列入“十二五”發(fā)展計(jì)劃的重點(diǎn)扶持部分[1]。在農(nóng)業(yè)朝著機(jī)械化發(fā)展的過程中,大多數(shù)設(shè)施農(nóng)業(yè)機(jī)械設(shè)計(jì)都會(huì)涉及到機(jī)械部件與育苗基質(zhì)之間的作用關(guān)系,其作用效果的好壞通常也決定了機(jī)械化程度的高低。因而,設(shè)施農(nóng)業(yè)機(jī)械部件與育苗基質(zhì)之間作用關(guān)系的研究有著重要的意義。

本課題組自主開發(fā)研制的ZGM-7自動(dòng)化穴盤苗嫁接機(jī)出現(xiàn)了鋼針頂起穴盤苗失敗現(xiàn)象,極大地降低了嫁接效率。因此,鋼針與穴盤苗基質(zhì)之間作用關(guān)系的研究就顯得格外重要。該研究屬于農(nóng)業(yè)機(jī)械核心部件與育苗基質(zhì)之間作用關(guān)系的研究。目前鋼針和離散基質(zhì)頂起的相關(guān)研究較少,類似相關(guān)研究也是以試驗(yàn)為主,但這種研究方法費(fèi)時(shí)費(fèi)力,且不容易得到理想結(jié)果。

近年來,國內(nèi)外許多學(xué)者嘗試著采用離散元法[2-3]進(jìn)行相關(guān)研究。與有限元法相比,育苗基質(zhì)不滿足有限元法所基于的連續(xù)基質(zhì)理論,而離散元法考慮了顆粒的物性參數(shù)及其分布等對顆粒流的影響,采用牛頓第二定律、動(dòng)態(tài)松弛法和時(shí)步迭代求解每個(gè)顆粒的運(yùn)動(dòng)速度和位移,因而特別適合于求解育苗基質(zhì)的非線性問題[4-5]。目前,離散單元法廣泛應(yīng)用于巖石力學(xué)[6-7]、物料運(yùn)動(dòng)[8-9]、農(nóng)業(yè)機(jī)械優(yōu)化[10-13]及土壤力學(xué)[14-19]等領(lǐng)域。在離散單元法仿真農(nóng)業(yè)基質(zhì)顆粒方面,張金波在深松鏟減阻耐磨仿真理論與技術(shù)中,采用離散元法和PFC-2D軟件對深松鏟與土壤基質(zhì)的接觸進(jìn)行了二維模擬分析,分析計(jì)算了土壤基質(zhì)顆粒與深松鏟的接觸力,從定性方面分析了結(jié)果與土槽試驗(yàn)、田間試驗(yàn)的結(jié)果基本一致[20]。于建群等采用離散元法研究土壤基質(zhì)開溝器的工作過程及工作阻力,仿真與試驗(yàn)的相對誤差在10%~20%,由此證明用離散元法分析開溝器工作過程和阻力的基本可行性,但并未細(xì)致考慮土壤的成分復(fù)雜性[21]。Obermayr等也對推土板與無粘結(jié)顆粒間的作用進(jìn)行了離散單元法研究,以期對今后更復(fù)雜的研究有所幫助[22]。綜上可知,大多數(shù)學(xué)者均是以成分相對簡單的土壤基質(zhì)或其他基質(zhì)為研究對象,很少研究成分復(fù)雜且有較強(qiáng)粘性的育苗基質(zhì)動(dòng)態(tài)行為,以優(yōu)化農(nóng)業(yè)中與育苗基質(zhì)發(fā)生作用的核心部件。

本文在EDEM(enhanced discrete element method)軟件中應(yīng)用ECM(elasto-plastic cohesion model)[23-25]粘結(jié)力彈塑性接觸模型作為顆粒接觸模型并建立不同材料屬性的復(fù)雜育苗基質(zhì)顆粒模型仿真分析鋼針頂起穴盤苗工作過程,并將仿真結(jié)果和試驗(yàn)結(jié)果進(jìn)行對比,驗(yàn)證仿真數(shù)據(jù)有效性,為后續(xù)鋼針與育苗基質(zhì)作用關(guān)系的研究提供參考。

1 離散元仿真建模

1.1 問題描述

ZGM-7自動(dòng)化穴盤苗嫁接機(jī)中的頂起機(jī)構(gòu)(如圖1所示)主要實(shí)現(xiàn)的功能是頂起帶有育苗基質(zhì)的穴盤苗并旋轉(zhuǎn)苗木子葉方向。頂起機(jī)構(gòu)主要結(jié)構(gòu)有:氣缸安裝板1、氣缸2、旋轉(zhuǎn)電機(jī)3、底板4、頂桿5、鋼針6。氣缸2固定在氣缸安裝板1上,并與底板4螺栓連接。旋轉(zhuǎn)電機(jī)3固定在底板4上,并與頂桿5螺栓連接。鋼針6固定在頂桿5上端。氣缸2推出帶動(dòng)安裝在頂桿5上的鋼針6向上運(yùn)動(dòng)并頂起帶有育苗基質(zhì)的穴盤苗,再通過旋轉(zhuǎn)電機(jī)3旋轉(zhuǎn)苗木子葉方向。

1. 氣缸安裝板 2. 氣缸 3. 旋轉(zhuǎn)電機(jī) 4. 底板 5. 頂桿 6. 鋼針

按照預(yù)期設(shè)計(jì)要求,需要鋼針豎直頂起帶有育苗基質(zhì)的苗木一段距離。但在實(shí)際運(yùn)行時(shí)出現(xiàn)了頂起失敗現(xiàn)象:頂歪和頂?shù)簦ㄈ鐖D2所示)。根據(jù)調(diào)試過程分析,將失敗現(xiàn)象的原因歸結(jié)于設(shè)備參數(shù)調(diào)制未佳。本文將利用離散元仿真和試驗(yàn)相結(jié)合的方式研究不同參數(shù)對于鋼針頂起穴盤苗過程的作用關(guān)系。

1.頂歪的穴盤苗 2. 頂?shù)舻难ūP苗

1.2 機(jī)構(gòu)模型

考慮到實(shí)際試驗(yàn)中苗木部分對于頂起過程的影響很小且很難利用離散元法來仿真,因此,只對育苗基質(zhì)進(jìn)行離散單元建模和分析,并將苗木根系對育苗基質(zhì)的緊固力通過提高育苗基質(zhì)顆粒的粘結(jié)性來體現(xiàn)。圖1中的頂起機(jī)構(gòu)可同時(shí)頂起6株穴盤苗,可極大地提高嫁接效率。本文為提高仿真效率,以單株穴盤苗頂起過程進(jìn)行研究,并建立如圖3所示的機(jī)構(gòu)簡化模型。圖中,穴盤單元格為上底半徑19 mm、下底半徑10 mm、高44 mm的圓臺型育苗基質(zhì)槽,且下底面中心有一個(gè)半徑為5 mm的孔。機(jī)構(gòu)簡化模型利用SolidWorks 2014軟件繪制,以.igs格式導(dǎo)入EDEM軟件。

1. 顆粒生成表面 2. 穴盤單元格 3. 模擬地面 4. 鋼針

1.3 基質(zhì)顆粒模型

建立準(zhǔn)確的育苗基質(zhì)顆粒模型是保證仿真結(jié)果有效性的基礎(chǔ)。為穴盤苗提供營養(yǎng)成分的育苗基質(zhì)是北京鴻信達(dá)育苗基質(zhì),其主要由珍珠巖、泥炭和玉米皮按照1∶8∶1的成分組成。顆粒模型外型的建立根據(jù)顆粒實(shí)際外型建模,現(xiàn)有研究表明,泥炭顆粒的基本結(jié)構(gòu)主要包括塊狀顆粒、核狀顆粒、柱狀顆粒[26]。珍珠巖、玉米皮的基本結(jié)構(gòu)分別為球狀和片狀。因此,建立相應(yīng)的顆粒模型如圖4所示。其中模型中球形直徑為1 mm。設(shè)置六種顆粒模型接觸參數(shù)如下,泥炭顆粒接觸表面能20 J/m2,顆粒接觸彈塑比0.6;珍珠巖顆粒接觸表面能12 J/m2,顆粒接觸彈塑比0.9;玉米皮顆粒接觸表面能8 J/m2,顆粒接觸彈塑比0.8。顆粒接觸表面能反映的是顆粒的粘性水平,數(shù)值越大,粘性越強(qiáng);顆粒接觸彈塑比反映的是顆粒的接觸彈塑性水平。0為完全彈性,1為完全塑性[27-28]。

圖4 育苗基質(zhì)成分顆粒模型

1.4 仿真參數(shù)設(shè)置

對育苗基質(zhì)進(jìn)行基本物理性能試驗(yàn)(環(huán)刀法測量密度、直剪試驗(yàn)和三軸試驗(yàn)等),獲得如表1的仿真參數(shù)。育苗基質(zhì)顆粒接觸模型采用北京?;萍及l(fā)展有限責(zé)任公司提供的ECM粘結(jié)力彈塑性接觸模型,版本號V2_2014。在EDEM前處理器模塊依次進(jìn)行接觸力學(xué)模型、仿真參數(shù)、育苗基質(zhì)顆粒模型、幾何模型和顆粒工廠等的設(shè)置。在EDEM求解器模塊設(shè)置仿真步長1′10–5s、數(shù)據(jù)保存間隔時(shí)間0.01 s等。仿真開始時(shí)生成育苗基質(zhì)顆粒,待顆粒沉降穩(wěn)定后,頂起鋼針開始運(yùn)動(dòng),直至仿真結(jié)束,最后在EDEM后處理工具模塊進(jìn)行仿真結(jié)果的分析和導(dǎo)出?,F(xiàn)有研究表明,泥炭中顆粒大小呈正態(tài)分布。為提高仿真育苗基質(zhì)與實(shí)際育苗基質(zhì)的一致程度,并考慮EDEM運(yùn)算仿真效率,設(shè)置6種育苗基質(zhì)顆粒大小分別呈正態(tài)分布,平均值為1 mm,標(biāo)準(zhǔn)差為0.1。EDEM模型中,對應(yīng)于圖4a~4f中顆粒的數(shù)量分別為360、360、360、360、180、180。

表1 離散單元仿真的參數(shù)

2 仿真及試驗(yàn)設(shè)計(jì)

2.1 參數(shù)范圍選擇

通過多次實(shí)地調(diào)試,總結(jié)影響穴盤苗頂起效果好壞的主要參數(shù)如下:

1)鋼針直徑

為了保證頂起穴盤苗的穩(wěn)定性,頂起機(jī)構(gòu)采用2根鋼針同時(shí)頂起的方式。鋼針直徑的大小是鋼針插入育苗基質(zhì)過程中重要的影響因素之一。經(jīng)試驗(yàn)驗(yàn)證,若鋼針直徑小于1 mm,則鋼針容易損壞;若鋼針直徑大于3 mm,則鋼針很難完全插入育苗基質(zhì)。經(jīng)過試驗(yàn)測定,鋼針直徑選擇取值范圍1~3 mm。

2)鋼針長度

鋼針長度決定了鋼針插入育苗基質(zhì)的最大深度。穴盤苗基質(zhì)高度與穴盤單元格高度基本一致為44 mm。經(jīng)試驗(yàn)驗(yàn)證,若鋼針長度小于5 mm,則鋼針頂起育苗基質(zhì)不穩(wěn)固;若鋼針長度大于15 mm,則容易損壞穴盤苗的根系。經(jīng)過試驗(yàn)測定,鋼針長度選擇取值范圍5~15 mm。

3)頂起速度

頂起速度決定了頂起過程的平穩(wěn)程度。經(jīng)試驗(yàn)驗(yàn)證,若頂起速度小于0.04 m/s,則鋼針不容易插入育苗基質(zhì);若頂起速度大于0.12 m/s,則鋼針容易頂?shù)粲缁|(zhì)。經(jīng)過試驗(yàn)測定,頂起速度選擇取值范圍0.04~0.12 m/s。

2.2 仿真方案

本文選用響應(yīng)曲面試驗(yàn)方法中的BBD設(shè)計(jì)方法(box-benhnken design)進(jìn)行仿真方案設(shè)計(jì),并對頂起機(jī)構(gòu)頂起穴盤苗的影響因素進(jìn)行優(yōu)化。響應(yīng)曲面法是一個(gè)建立過程模型,以及對過程進(jìn)行優(yōu)化的系統(tǒng)方法,很適用于本文連續(xù)因素變量的研究[29-32]。不同的參數(shù)條件都可能造成育苗基質(zhì)的頂?shù)艉晚斖岈F(xiàn)象,但在育苗基質(zhì)頂起的過程中,育苗基質(zhì)底面所能達(dá)到的最大高度是不同的。以操作平臺水平面高度作為零高度面,考慮氣缸運(yùn)動(dòng)行程和氣缸安裝位置等后,育苗基質(zhì)豎直成功頂起的理論高度是144 mm。當(dāng)基質(zhì)發(fā)生歪斜,以基質(zhì)底面中心點(diǎn)高度作為測量點(diǎn)。考慮到每次鋼針成功豎直頂起高度不會(huì)恰巧在144 mm,設(shè)定可接受范圍誤差在±0.5 mm之間。當(dāng)頂起最大高度小于可接受范圍,表明育苗基質(zhì)在頂起過程中提前掉落了;當(dāng)頂起最大高度大于可接受范圍時(shí),表明鋼針沒有完全插入育苗基質(zhì)或鋼針頂歪了育苗基質(zhì)。當(dāng)頂起最大高度在可接受范圍內(nèi)時(shí),表明鋼針豎直成功頂起育苗基質(zhì)。因此,本文以頂起過程中的育苗基質(zhì)底面最大頂起高度作為指標(biāo)參數(shù),來區(qū)分不同參數(shù)條件對于育苗基質(zhì)的頂起效果。利用軟件Design-expert依據(jù)水平因素編碼表(如表2所示)進(jìn)行仿真方案設(shè)計(jì)。

表2 因素水平編碼 Table 2 Factors levels coding

2.3 實(shí)際試驗(yàn)

為驗(yàn)證仿真數(shù)據(jù)的可信度,對頂起機(jī)構(gòu)頂起穴盤苗進(jìn)行了與仿真方案相同的實(shí)際試驗(yàn),選用頂起過程中育苗基質(zhì)底面的最大頂起高度作為不同參數(shù)條件對頂起穴盤苗運(yùn)行效果的指標(biāo)參數(shù)。

試驗(yàn)地點(diǎn)北京市京鵬環(huán)球科技股份有限公司,頂起機(jī)構(gòu)頂起穴盤苗試驗(yàn)測試平臺如圖5所示,利用ZGM-7自動(dòng)化穴盤苗嫁接機(jī)中的頂起機(jī)構(gòu),并通過安裝不同的鋼針和氣缸調(diào)流閥控速的方式進(jìn)行試驗(yàn)參數(shù)調(diào)控,頂起過程中最大頂起高度的測量通過AOS高速相機(jī)AOS-Q-MIZE捕捉以及相應(yīng)處理軟件AIS獲得。試驗(yàn)現(xiàn)場的育苗基質(zhì)濕度為20.3%。每組試驗(yàn)重復(fù)5次,每次同時(shí)試驗(yàn)6株穴盤苗,剔除個(gè)別明顯差異結(jié)果,最后以最大頂起高度的平均值作為該組參數(shù)的結(jié)果。

1. 傳感器 2. 數(shù)顯儀表 3. 測速系統(tǒng) 4. 高速相機(jī)

3 仿真及試驗(yàn)結(jié)果

離散元仿真和試驗(yàn)結(jié)果見表3。仿真中的育苗基質(zhì)頂起失敗現(xiàn)象如圖6所示,基本符合實(shí)際失敗現(xiàn)象。

表3 仿真與試驗(yàn)結(jié)果

a. 頂?shù)舻挠缁|(zhì) a. Dropped seedling substrateb. 頂歪的育苗基質(zhì) b. Crooked seedling substrate

圖6 仿真中頂起穴盤苗失敗現(xiàn)象

Fig.6 Failure phenomenon of jacking tray-seedling in simulation

利用數(shù)據(jù)處理軟件Design-expert Version 8.0對仿真數(shù)據(jù)進(jìn)行分析。仿真數(shù)據(jù)的方差分析如表4所示,該模型的<0.05,說明該模型顯著;失擬項(xiàng)的>0.05,說明模型失擬性不顯著,具有很好的擬合性。在此模型中,各因素對穴盤苗最大頂起高度的影響依次為鋼針直徑>頂起速度>鋼針長度。鋼針直徑和頂起速度交互項(xiàng)的值為0.0317<0.05,說明鋼針直徑和頂起速度存在顯著的交互作用。

表4 最大頂起高度的回歸模型方差分析

4 結(jié)果與分析

4.1 結(jié)果分析

對比分析仿真結(jié)果與試驗(yàn)結(jié)果,發(fā)現(xiàn)誤差在0.7%~7.2%之間。較大誤差僅存在于頂歪和頂?shù)舻让黠@失敗現(xiàn)象中,主要是因?yàn)樵囼?yàn)育苗基質(zhì)中存在苗株根系阻礙鋼針插入,加速了育苗基質(zhì)提前掉落和頂歪。另外,仿真結(jié)果和試驗(yàn)結(jié)果均表明鋼針直徑和頂起速度對育苗基質(zhì)底面的最大頂起高度影響顯著,且鋼針直徑、頂起速度存在顯著的交互作用,利用軟件Design-expert繪制顯著因素與育苗基質(zhì)底部最大頂起高度關(guān)系圖(如圖7所示)。

鋼針直徑對育苗基質(zhì)底面最大頂起高度的仿真和試驗(yàn)影響曲線如圖7a所示。在鋼針直徑試驗(yàn)水平范圍內(nèi)可以得出:隨著鋼針直徑的增加,最大頂起高度先緩慢單調(diào)遞增,再單調(diào)遞減。頂起速度對穴盤苗底部最大頂起高度的仿真和試驗(yàn)影響曲線如圖7b所示。在頂起速度試驗(yàn)水平范圍內(nèi)可以得出:隨著頂起速度的增加,最大頂起高度單調(diào)遞增。鋼針直徑、頂起速度的試驗(yàn)和仿真響應(yīng)曲面圖如圖7c、7d所示,兩者均表明:鋼針直徑、頂起速度的交互作用顯著。鋼針直徑較小時(shí),最大頂起高度隨頂起速度的增大逐漸減??;鋼針直徑較大時(shí),最大頂起高度隨頂起速度的增大逐漸增大;鋼針頂起速度較小時(shí),最大頂起高度隨鋼針直徑的增大逐漸減??;鋼針頂起速度較大時(shí),最大頂起高度隨鋼針直徑的增大,先逐漸增大再減小。

4.2 參數(shù)優(yōu)化

利用Design_expert軟件的優(yōu)化功能,以期育苗基質(zhì)豎直成功頂起理論最大高度144 mm,其他因素參數(shù)在試驗(yàn)水平范圍內(nèi)為標(biāo)準(zhǔn)對仿真結(jié)果進(jìn)行優(yōu)化,得到一組最優(yōu)解:鋼針直徑2.28 mm,鋼針長度12.28 mm,頂起速度0.09 m/s。將最優(yōu)解代入到實(shí)際機(jī)構(gòu)中,150株穴盤苗頂起高度在誤差接受范圍內(nèi)有143株,頂起成功率95.3%。優(yōu)化參數(shù)下的頂起效果如圖8所示,頂起效果優(yōu)化明顯。

注:圖a中鋼針長度10 mm頂起速度0.08 m/s;圖b中鋼針長度10 mm,鋼針直徑2 mm;圖c、d中鋼針長度10 mm。

根據(jù)仿真結(jié)果和實(shí)際試驗(yàn)結(jié)果對比分析,兩者誤差較小、規(guī)律基本一致,且根據(jù)仿真數(shù)據(jù)的優(yōu)化結(jié)果取得了顯著效果。研究可為今后鋼針與育苗基質(zhì)作用關(guān)系的研究提供參考。

圖8 優(yōu)化參數(shù)后的頂起效果圖

5 結(jié) 論

本文采用ECM粘結(jié)力彈塑性顆粒接觸模型作為育苗基質(zhì)的顆粒接觸模型并建立多種不同材料屬性的育苗基質(zhì)顆粒來模擬接近真實(shí)的育苗基質(zhì)環(huán)境,進(jìn)而研究鋼針頂起穴盤苗工作過程,取得了較好的仿真效果,這種方法可被應(yīng)用于其他類似復(fù)雜環(huán)境。

1)采用離散元軟件對鋼針頂起穴盤苗的工作過程進(jìn)行仿真研究,并通過實(shí)際試驗(yàn)驗(yàn)證。仿真結(jié)果和試驗(yàn)結(jié)果的誤差在0.7%~7.2%之間且規(guī)律基本一致。各因素對穴盤苗最大頂起高度的影響順序由大到小依次為鋼針直徑、頂起速度、鋼針長度,其中鋼針直徑和頂起速度存在顯著的交互作用。

2)運(yùn)用Design_expert軟件對仿真數(shù)據(jù)分析,以穴盤苗基質(zhì)底面理論最大頂起高度144 mm為指標(biāo)參數(shù),確定最優(yōu)參數(shù):鋼針直徑2.28 mm,鋼針長度12.28 mm,頂起速度0.09 m/s,頂起成功率95.3%,頂起優(yōu)化效果顯著。研究結(jié)果可為今后鋼針與育苗基質(zhì)作用關(guān)系的研究提供參考。

[1] 王恒一,鄒雪劍,王濤. 我國設(shè)施農(nóng)業(yè)機(jī)械發(fā)展現(xiàn)狀及趨勢分析[J]. 農(nóng)業(yè)科技與裝備,2015,2(248):61-62. Wang Hengyi, Zou Xuejian, Wang Tao. Status and trend analysis of facility agricultural machinery development in china[J]. Agricultural Science & Technology and Equipment, 2015, 2(248): 61-62. (in Chinese with English abstract)

[2] Cundall P A. A computer model for simulating progressive large scale movements in blocky system In: Muller Led[J]. Proceedings of Symposium of International Society of Rock Mechanics. Rotterdam; A. A. Balkema, 1971(1): 8-12.

[3] Cundall P A. The Measurement and Analysis of Acceleration Inrock Slopers[D]. London: Imperial College London (University of London), 1971.

[4] 鄧佳玉,胡軍,李慶達(dá),等. 基于EDEM離散元法的深松鏟仿真與試驗(yàn)研究[J]. 中國農(nóng)機(jī)化學(xué)報(bào),2016,37(4):

13-18. Deng Jiayu, Hu Jun, Li Qingda, et al. Simulation and experimental study on subsoiler based on EDEM discrete element method[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(4): 13-18. (in Chinese with English abstract)

[5] Cundall P A. UDEC-a generalized distinct element program for modeling jointed rock[R]. Report PCA R-1-80, Peter Cundall Associates. European Research Office, US Army Corps of Engineers. 1980.

[6] 周先齊,衛(wèi)亞鈕,鈕新強(qiáng),等. 離散單元法研究進(jìn)展機(jī)器醫(yī)用綜述[J]. 巖土力學(xué),2007,28(增刊):408-417. Zhou Xianqi, Wei Yaniu, Xiu Xinqiang, et al. A review of distinct element method researching progress and application[J]. Rock and Soil Mechanics, 2007, 28(Supp): 408-417. (in Chinese with English abstract)

[7] 徐寅,陳勝宏. 基于離散單元法的滑坡堆積及其涌浪設(shè)計(jì)[J]. 巖土力學(xué),2012,33(9):2850-2856. Xu Yin, Cheng Shenghong. Calculation of heap shape of landslide and its surge based on discrete element method [J]. Rock and Soil Mechanics, 2012, 33(9): 2850-2856. (in Chinese with English abstract)

[8] 石林榕,吳建民,趙武云,等. 基于CFD-EDEM耦合的小區(qū)玉米簾式滾筒干燥箱數(shù)值模擬[J]. 干旱地區(qū)農(nóng)業(yè)研究,2014,32(6):273-278. Shi Linrong, Wu Jianmin, Zhao Wuyun, et al. The numerical simulation for corn curtain roller drying box based on CFD-EDEM coupling[J]. Agriculture Resear-ch in the Arid Areas, 2014, 32(6): 273-278. (in Chinese with English abstract)

[9] 周德義,馬成林,左春檉,等. 散粒農(nóng)業(yè)物料孔口出流成拱的離散元仿真[J]. 農(nóng)業(yè)工程學(xué)報(bào),1996,12(2):186-189. Zhou Deyi, Ma Chenglin, Zuo Chuncheng, et al. Discrete element simulation for arch flowing of agricultural particle material in outlet[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1996, 12(2): 186-189. (in Chinese with English abstract)

[10] 李洪昌,李耀明,唐忠,等.基于EDEM的振動(dòng)篩分?jǐn)?shù)值模擬與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(5):117-121. Li Hongchang, Li Yaoming, Tang Zhong, et al. Numerical simulation and analysis of vibration screening based on EDEM[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(5): 117-121. (in Chinese with English abstract)

[11] 廖慶喜,張鵬玲,廖宜濤,等.基于EDEM的離心式排種器排鐘性能數(shù)值模擬[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(2):109-114. Liao Qingxi, Zhang Pengling, Liao Yitao, et al. Numerical simulation on seeding performance of centrifugal rape-seed metering device based on EDEM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(2): 109-114. (in Chinese with English abstract)

[12] 陳進(jìn),周韓,趙湛,等.基于EDEM的振動(dòng)種盤中水稻種群運(yùn)動(dòng)規(guī)律研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(10):79-83. Chen Jin, Zhou Han, Zhao Zhan, et al. Analysis of rice seeds motion on vibrating plate using EDEM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(10): 79-83. (in Chinese with English abstract)

[13] 石林榕,吳建民,趙武云,等.基于離散單元法的水平圓盤式精量排鐘器排種仿真實(shí)驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(8):40-48. Shi Linrong, Wu Jianmin, Zhao Wuyun, et al. Simulation test for metering process of horizontal disc precision metering device based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 40-48. (in Chinese with English abstract)

[14] 徐泳,李紅艷,黃文彬.耕作土壤動(dòng)力學(xué)的三維離散元模型和仿真方案策劃[J]. 農(nóng)業(yè)工程學(xué)報(bào),2003,19(2):34-38. Xu Yong, Li Hongyan, Huang Wenbin. Modeling and method logical strategy of discrete element method simulation for tillage soil dynamics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(2): 34-38. (in Chinese with English abstract)

[15] 張銳,李劍橋,李因武. 離散單元法在土壤機(jī)械特性動(dòng)態(tài)仿真中的應(yīng)用進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2003,19(1):16-19. Zhang Rui, Li Jianqiao, Li Yinwu. Development of simulation on mechanical dynamic behavior of soil by distinct element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(1): 16-19. (in Chinese with English abstract)

[16] 李艷潔,吳騰,林劍輝. 基于離散單元法的貫入圓錐對沙土顆粒運(yùn)動(dòng)特性分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(24):55-61. Li Yanjie, Wu Teng, Lin Jianhui. Influence of penetrating cone on motion characteristics of sandy soil particle using discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(24): 55-61. (in Chinese with English abstract)

[17] 李艷潔,徐泳. 土壤試樣單軸亞索試驗(yàn)與離散元法模擬對比研究[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報(bào),2009,14(4):103-108. Li Yanjie, Xu Yong. Comparison study between the soil uniaxial compression test and the discrete element simualtion[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 14(4): 103-108. (in Chinese with English abstract)

[18] 李艷潔,劉翼晨,林劍輝,等. 圓錐指數(shù)儀貫入沙土過程的三維離散元法模擬[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(7):63-68. Li Yanjie, Liu Yichen, Lin Jianhui, et al. 3D DEM simulations of the cone penetration tests in sandy soil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(7): 63-68. (in Chinese with English abstract)

[19] 翟力欣,姬長英. 基于離散單元法的土壤力學(xué)接觸模型的建立[J]. 江西農(nóng)業(yè)學(xué)報(bào),2008,20(9):108-111. Zhai Lixin, Ji Changying. Foundation of dynamic soil model based on distinct element method[J]. Acta Agriculture Jiangxi, 2008, 20(9): 108-111. (in Chinese with English abstract)

[20] 張金波. 深松鏟減阻耐磨仿真理論與技術(shù)[D]. 長春:吉林大學(xué),2014. Zhang Jinbo. Bionic Drag Reduction and Wear-resistant Theory and Techniques of Subsoiler[D]. Changchun: Jilin University, 2014.(in Chinese with English abstract)

[21] 于建群,錢立彬,于文靜,等. 開溝器工作阻力的離散元法仿真分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(6):53-57. Yu Jianqun, Qian Libin, Yu Wenjing, et al. DEM Analysis of the resistances applied on furrow openers[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(6): 53-57. (in Chinese with English abstract)

[22] Obermayr M, Dressler K, Vrettos C, et al. Prediction of draft forces in cohesionless soil with the Discrete Element Method[J]. Journal of Terramechaics, 2011, 48(5): 347-358.

[23] Subhash SC, Morrissey JP, Sun J, et al. Micromechanical analysis of cohesive granular materials using the discrete element method withan adhesive elasto-plastic contact model[J]. Granular Matter, 2014, 16: 383-400.

[24] Tsuji T, Nakagawa Y, Matsumoto N. 3-D DEM simulation of cohesive soil-pushing behavior by bulldoz-er blade[J]. Journal of Terramechanics, 2012, 49: 37-47.

[25] Obermayr M, Vrettos C, Eberhard P, et al. A discrete element model and its experimental validation for the prediction of draft forces in cohesive soil[J]. Journal of Terramechanics, 2014, 53: 91-104.

[26] 王燕. 基于離散單元法的深松鏟結(jié)構(gòu)與松土效果研究[D]. 長春:吉林農(nóng)業(yè)大學(xué),2014. Wang Yan. Simultion Analysis of Structure and Effect of the Subsoiler Based on DEM[D]. Changchun: Jilin Agricultural University, 2014. (in Chinese with English abstract)

[27] Thakur S C, Morrissey J P, Sun J, et al. Micromechanical analysis of cohesive granular materials using the discrete element method with an adhesive elasto-plastic contact model[J]. Granular Matter, 2014, 16(3): 383-400.

[28] 玉亞. 土壤接觸角及土壤表面能量特征的研究[D]. 西安:西安建筑科技大學(xué),2007. Yu Ya. A Study on Soil Contact Angle and Soil Surface Free Energy Properties[D]. Xi’an: Xi’an University of Architecture and Technology, 2007. (in Chinese with English abstract)

[29] 周福君,蘆杰,杜佳興. 玉米缽苗移栽機(jī)圓盤式栽植機(jī)構(gòu)參數(shù)優(yōu)化及試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(1):18-24. Zhou Fujun, Lu Jie, Du Jiaxing. Parameters optimization and experiment of corn-paper transplanting machine with seedling disk[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(1): 18-24. (in Chinese with English abstract)

[30] 田素博,楊繼峰,王瑞麗,等. 蔬菜嫁接機(jī)嫁接夾振動(dòng)排序裝置工作參數(shù)優(yōu)化試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(6):9-16. Tian Subo, Yang Jifeng, Wang Ruili, et al. Optimization experiment of operating parameters on vibration sorting-clip device for vegetable grafting machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(6): 9-16. (in Chinese with English abstract)

[31] 高國華,馮天翔,李福. 盆栽紅掌移栽手爪設(shè)計(jì)與工作參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(17):34-42. Gao Guohua, Feng Tianxiang, Li Fu. Design and optimization of operating parameters for potted anthodium transplant manipulator[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(17): 34-42. (in Chinese with English abstract)

[32] 賈洪雷,趙佳樂,郭明卓,等. 雙凹面搖桿式排種器設(shè)計(jì)與性能試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,45(1):60-65. Jia Honglei, Zhao Jiale, Guo Mingzhuo, et al. Design and performance experiment on double-concave surface rocker type seed metering device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 45(1): 60-65. (in Chinese with English abstract)

高國華,王 凱,孫曉娜.嫁接機(jī)鋼針頂起穴盤苗過程EDEM模擬驗(yàn)證及參數(shù)優(yōu)化 [J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(21):29-35. doi:10.11975/j.issn.1002-6819.2017.21.003 http: //www.tcsae.org

Gao Guohua, Wang Kai, Sun Xiaona. Verification for EDEM simulation of process of jacking tray-seedling by steel needle in grafting machine and parameter optimization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 29-35. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.21.003 http: //www.tcsae.org

Verification for EDEM simulation of process of jacking tray-seedling by steel needle in grafting machine and parameter optimization

Gao Guohua, Wang Kai, Sun Xiaona

(100124,)

The jacking mechanism of ZGM-7 automatic tray-seedling grafting machine developed by our research group has failure problems in the process of jacking seedling by needle. For solving those failure problems, the software EDEM (enhanced discrete/distinct element method) is used in the research of the process of jacking seedling by needle in this paper. The Edinburgh elastic-plastic cohesion model (ECM) is chosen as particle contact model and a variety of complex particle models with various material properties are established to simulate the realistic seedling substrate in the software EDEM. Furthermore, the relationship between the mechanism and the seedling substrate is studied in simulation. It takes the maximum jacking height of the bottom of seedling substrate as index parameter and analyzes the principles how the different factors, including needle diameter, needle length and jacking speed, influence the process of jacking seedling by needle. The simulation and experimental tests are designed and performed by response surface methodology. The actual experimental result is consistent with the simulation result. The both results show that needle diameter and jacking speed have a significant influence on the maximum jacking height of the bottom of seedling substrate, and the interaction between needle diameter and jacking speed is significant. The maximum jacking height of the bottom of seedling substrate increases monotonically and then slowly decreases monotonically with the increasing of needle diameter in the test level. The maximum jacking height of the bottom of seedling substrate increases monotonically with the increasing of jacking speed in the test level. The maximum jacking height of the bottom of seedling substrate increases with the increasing of jacking speed, when the needle diameter is large. The maximum jacking height of the bottom of seedling substrate decreases with the increasing of the needle diameter, when the jacking speed is small. The maximum jacking height of the bottom of seedling substrate gradually increases and then decreases with the increasing of the diameter of steel needle, when the jacking speed is large. The error between simulation and experiment result is only 0.7%-7.2%. Among those errors, larger errors only exist in phenomenon of dropping and crooking seedling substrate. The realistic seedling substrate has a root system, which prevents the insertion of needle. Thus, the seedling substrate is easier to be dropped and crooked early. However, the error when vertically jacking seedling substrate is less than 2.1% in simulation and experiment. The successful maximum jacking height of the bottom of seedling substrate is 144 mm, which is proposed as the optimization target. The software Design-Expert is used to optimize the simulation results within test level. The optimal parameters of the simulation result are needle diameter of 2.28 mm, needle length of 12.28 mm and jacking speed of 0.09 mm/s. The simulation optimization parameters are applied to the actual mechanism. It’s found that the effect of simulation optimization is significant and the success rate of jacking seedlings is 95.3%. This study greatly improves the operation effect of jacking mechanism of ZGM-7 automatic plug-seedling grafting machine, and it provides reference for the similar problems like jacking up the discrete matrix by needle. Meantime, the reliability of simulation results has been proved in this paper. So, the experimental results can be replaced by simulation results, which will reduce actual test workload significantly and shorten the equipment development cycle obviously. The method in this paper achieves a good simulation effect, which can be applied to other similar complicated environments.

agricultural machinery; grafting; optimization; enhanced discrete element method; seedling; needle; jacking; response surface methodology

10.11975/j.issn.1002-6819.2017.21.003

S223.9

A

1002-6819(2017)-21-0029-07

2017-07-12

2017-10-20

國家自然科學(xué)基金(51675011)—盆花移栽機(jī)筑模成穴機(jī)構(gòu)多因素作用優(yōu)化設(shè)計(jì)方法研究。

高國華,男,河北大城人,博士,教授,主要研究方向?yàn)闄C(jī)械設(shè)計(jì)及理論。Email:ggh6768@126.com

猜你喜歡
鋼針基質(zhì)直徑
機(jī)插秧育苗專用肥——機(jī)插水稻育苗基質(zhì)
金銀花扦插育苗基質(zhì)復(fù)配及驗(yàn)證
各顯神通測直徑
不同栽培基質(zhì)對一品紅扦插苗的影響
山水(直徑40cm)
愛虛張聲勢的水
小魔術(shù)之鋼針隔杯入雞蛋
預(yù)爆破法處理大直徑嵌巖樁樁底傾斜巖面問題
雞蛋里的鋼針
一種冰雪防滑鞋
麦盖提县| 阿拉善左旗| 宝坻区| 沅陵县| 东阿县| 肥西县| 桑日县| 永定县| 尖扎县| 独山县| 扶余县| 乐清市| 分宜县| 连州市| 六枝特区| 寿阳县| 横峰县| 西乡县| 瓮安县| 金塔县| 黄大仙区| 阿尔山市| 武宁县| 界首市| 怀来县| 贵德县| 古蔺县| 木兰县| 曲麻莱县| 吉首市| 姜堰市| 新沂市| 松桃| 常德市| 宽城| 黄山市| 自贡市| 定州市| 景谷| 乌鲁木齐市| 东港市|