蔡月琴, 褚燕青, 朱科燕, 陳 誠, 王德軍
(浙江中醫(yī)藥大學(xué) 動物實驗研究中心/比較醫(yī)學(xué)研究所, 杭州 315700)
miR-21對TGF-β1誘導(dǎo)的腎小管上皮細(xì)胞間質(zhì)轉(zhuǎn)分化的影響*
蔡月琴, 褚燕青, 朱科燕, 陳 誠, 王德軍1△
(浙江中醫(yī)藥大學(xué) 動物實驗研究中心/比較醫(yī)學(xué)研究所, 杭州 315700)
目的觀察miR-21在轉(zhuǎn)化生長因子β1(TGF-β1)誘導(dǎo)的人腎小管上皮細(xì)胞(HK-2細(xì)胞)上皮間質(zhì)轉(zhuǎn)分化(EMT)中的作用,并探討miR-21參與調(diào)控HK-2細(xì)胞EMT的可能靶點。方法體外培養(yǎng)的HK-2細(xì)胞分為6組:正常對照組、轉(zhuǎn)化生長因子β1(TGF-β1)模型組、miR-21 mimic陰性組、miR-21 mimic組、miR-21 inhibitor陰性組和miR-21 inhibitor組。細(xì)胞經(jīng)4 ng/ml TGF-β1處理建立EMT模型,檢測miR-21和EMT相關(guān)指標(biāo)的表達(dá)變化,利用基因轉(zhuǎn)染技術(shù),將miR-21 mimic質(zhì)?;騧iR-21 inhibitor質(zhì)粒轉(zhuǎn)染經(jīng)TGF-β1處理的HK-2細(xì)胞,使細(xì)胞過表達(dá)或抑制表達(dá)miR-21,在此基礎(chǔ)上觀察細(xì)胞EMT相關(guān)指標(biāo)的變化以及磷酸酯酶(PTEN)基因的影響。結(jié)果①與正常組相比,模型組的miR-21含量顯著升高(P<0.05),上皮表型標(biāo)志物E-cadherin的mRNA和蛋白表達(dá)水平均顯著降低(P<0.01),間質(zhì)表型標(biāo)志物α平滑肌肌動蛋白(α-SMA) mRNA和蛋白水平也顯著升高(P<0.05,P<0.01);②轉(zhuǎn)染miR-21 mimic后,與miR-21 mimic陰性對照組相比,miR-21含量顯著升高(P<0.01),PTEN、E-cadherin的mRNA和蛋白水平顯著降低(P<0.05,P<0.01),α-SMA mRNA和蛋白水平顯著升高(P<0.05,P<0.01);轉(zhuǎn)染miR-21 inhibitor后,與miR-21 inhibitor陰性對照組相比,miR-21含量顯著降低(P<0.01),PTEN、E-cadherin的mRNA和蛋白含量顯著升高(P<0.05,P<0.01),α-SMA mRNA、蛋白水平顯著降低(P<0.05,P<0.01)。結(jié)論miR-21在TGF-β1誘導(dǎo)的HK-2細(xì)胞EMT發(fā)生中具有重要作用,并且可能通過靶基因PTEN參與EMT相關(guān)分子的表達(dá)調(diào)控。
微小RNA-21;HK-2細(xì)胞;轉(zhuǎn)化生長因子-β1;上皮間質(zhì)轉(zhuǎn)分化
腎間質(zhì)纖維化(renal interstitial fibrosis,RIF)是各種不同病因的慢性腎臟病進展到終末期腎衰竭的最終共同病變過程,RIF輕重程度決定各種腎臟疾病進行性腎功能的惡化程度,已經(jīng)成為威脅世界公共健康的主要疾病之一[1-4]。RIF的關(guān)鍵發(fā)病機制是腎小管上皮細(xì)胞向間充質(zhì)細(xì)胞的轉(zhuǎn)分化(epithelial-mesenchymal transition,EMT),EMT 是RIF發(fā)生的中心環(huán)節(jié),表現(xiàn)為上皮細(xì)胞失去粘附能力、α-SMA 表達(dá)和肌動蛋白的重組、基底膜破壞和細(xì)胞遷移和侵襲能力增強[5]。EMT受許多生長因子、細(xì)胞因子、激素和細(xì)胞外基質(zhì)的調(diào)節(jié)[6]。在眾多的調(diào)節(jié)因子中,轉(zhuǎn)化生長因子-β1(transformation growth factor-β1,TGF-β1)被公認(rèn)為是最主要的致纖維化因子,始動并調(diào)節(jié)腎小管上皮細(xì)胞EMT的全過程[7]。但目前腎小管細(xì)胞EMT的具體分子機制仍不明確,這也是目前研究的熱點之一。
近年來研究發(fā)現(xiàn),microRNA(miRNA)對EMT和腫瘤的侵襲轉(zhuǎn)移具有調(diào)控作用。miR-10 b可以通過上調(diào)HOXD10 基因的翻譯、下調(diào)RhoC的表達(dá),從而促進腫瘤的侵襲和轉(zhuǎn)移,其表達(dá)水平與乳腺癌的進展密切相關(guān)[8]。miR-200 不僅可以通過抑制TGF-β對EMT的誘導(dǎo)作用,而且可以直接作用于ZEB1 及SIP1 的mRNA,上調(diào)腫瘤細(xì)胞中E-cadherin的表達(dá),抑制EMT的發(fā)生,降低腫瘤細(xì)胞的侵襲性[9, 10]。研究發(fā)現(xiàn),miR-21在腎纖維化小鼠模型和腎移植病人中都顯著上調(diào),并且miR-21敲除小鼠在腎臟損傷后很少會發(fā)生纖維化[11, 12]。另外,有研究發(fā)現(xiàn)TGF-β1能夠上調(diào)miR-21表達(dá)[13]。這些結(jié)果提示,miR-21可能參與TGF-β1誘導(dǎo)的EMT,但至今miR-21在EMT中發(fā)揮的功能仍不十分清楚。因此,本研究通過在人腎小管上皮細(xì)胞(HK-2細(xì)胞)中過表達(dá)或抑制表達(dá)miR-21,觀察miR-21在TGF-β1誘導(dǎo)的HK2細(xì)胞EMT轉(zhuǎn)分化中的作用,探討miR-21參與調(diào)控HK2細(xì)胞EMT的可能的靶點。
1.1 細(xì)胞株
人腎小管上皮細(xì)胞(HK-2細(xì)胞)購自武漢大學(xué)中國典型培養(yǎng)物保藏中心,用含10%胎牛血清的DMEM/F12培養(yǎng)基,于37℃細(xì)胞培養(yǎng)箱培養(yǎng)。
1.2 藥物與試劑
TGF-β1購自R&D公司,DMEM/F12培養(yǎng)基、胰蛋白酶、胎牛血清均購自Gibco公司,Lipofectamine 3000購自invitrogen公司, RNA提取試劑盒、RT-PCR反轉(zhuǎn)錄試劑盒、SYBR Green熒光定量試劑均購自TaKaRa,PTEN、α-SMA、E-cadherin抗體購自Abcam公司,內(nèi)參β-actin抗體購自CST公司,Odyssey熒光羊抗鼠二抗購自LI-COR公司,蛋白提取試劑盒、蛋白定量試劑盒購自凱基公司。
1.3 EMT細(xì)胞模型制備
參照Wang等操作方法,將HK-2細(xì)胞用含10%胎牛血清的DMEM/F12培養(yǎng)液,置37℃、5% CO2細(xì)胞培養(yǎng)箱內(nèi)培養(yǎng)并傳代。按5×105cells/well密度分別將上述細(xì)胞均勻種于6孔培養(yǎng)板中,80%融合后,換無血清DMEM/F12培養(yǎng)液,繼續(xù)培養(yǎng)16 h同步化細(xì)胞,培養(yǎng)液中加入終濃度為4 ng/ml的TGF-β1,用于轉(zhuǎn)染miR-21類似物、抑制劑。
1.4 轉(zhuǎn)染miR-21類似物mimic、抑制劑inhibitor
將不同濃度的miR-21 mimic或inhibitor溶于250 μl無血清的Opti-MEMⅠ Reduced Serum Medium中,混合均勻。將適量 Lipofectamine 3000 溶于 250 μl 無血清的Opti-MEMⅠ中,混合均勻,在室溫下孵育5 min。孵育5 min后,將上述兩種混合物混合(總體積500 μl)。輕輕混合均勻在室溫下孵育20 min(可能出現(xiàn)霧狀沉淀)。在6孔板中每孔加入500 μl 的復(fù)合物,十字法混合均勻。細(xì)胞在37℃ 5% CO2培養(yǎng)箱中培養(yǎng)18~48 h后備用。
細(xì)胞分組:(1)正常對照組:加入新鮮無血清的DMEM/F12培養(yǎng)液;(2)TGF-β1誘導(dǎo)組:培養(yǎng)液中加入終濃度為4 ng/ml的TGF-β1;(3)miR-21 mimic陰性組:培養(yǎng)液中加入TGF-β1后,脂質(zhì)體轉(zhuǎn)染FAM標(biāo)記的miR-21 mimic陰性對照;(4)miR-21 mimic組:培養(yǎng)液中加入TGF-β1后,轉(zhuǎn)染miR-21 mimic;(5)miR-21 inhibitor陰性組:培養(yǎng)液中加入TGF-β1后,脂質(zhì)體轉(zhuǎn)染FAM標(biāo)記miR-21 inhibitor陰性對照;(6)miR-21 inhibitor組:培養(yǎng)液中加入TGF-β1后,轉(zhuǎn)染miR-21 inhibitor。每組3個復(fù)孔,繼續(xù)培養(yǎng)48 h,收集細(xì)胞。
1.5 HK-2細(xì)胞miR-21含量檢測
總RNA提取:各組6孔細(xì)胞培養(yǎng)板中的HK-2細(xì)胞,用0.01 mol/L PBS(pH 7.4)洗滌兩次,用RNA提取試劑盒(TaKaRa)提取總RNA,操作按照說明書進行。提取的總RNA濃度和純度用Nanodrop 2000微量核酸測定儀測定后,備用。
miR-21逆轉(zhuǎn)錄RT:將上述已提取的總RNA分別用has-miR-21 RT Primer、has-U6 snRNA RT Primer引物逆轉(zhuǎn)錄為miR-21和U6 cDNA。加入總RNA 250 ng,RT primer (2 μmol/L) 0.5 μl,并補足ddH2O至總體積3.0 μl,RT反應(yīng)條件:65℃ 10 min,冰上放置3 min。在上述反應(yīng)液中依次加入Denatured total RNA and RT primer、dNTP、5x RT緩沖液、Rnase inhibitor、M-MLV,在42℃下孵育60 min,然后再70℃孵育15 min,進行逆轉(zhuǎn)錄反應(yīng)。
miR-21熒光定量PCR檢測:將反轉(zhuǎn)錄的miR-21和U6 cDNA用實時熒光定量PCR儀進行擴增。PCR反應(yīng)體系:SYBR Green Mix 10 μl,10 μmol/L Forward Primer 0.4 μl,10 μmol/L Reverse Primer 0.4 μl,加入0.5 μl miR-21或U6 cDNA,ddH2O補足至20 μl。PCR擴增程序如下:95℃預(yù)變性5 min,然后95℃變性10 s,60℃復(fù)性30 s,40個循環(huán)后進入熔解曲線程序。每個樣品PCR反應(yīng)重復(fù)3次,根據(jù)熔解曲線判斷產(chǎn)物特異性,miR-21表達(dá)量通過公式2-△△CT計算。has-miR-21 RT Primer、has-miR-21熒光定量PCR引物和內(nèi)參照has-U6 snRNA RT Primer、has-U6 snRNA熒光定量PCR引物序列由invitrogen設(shè)計并合成,各引物序列見表1。
Tab.1RT and quantitative PCR primer sequence of has-miR-21, has-U6 snRNA
miRNAprimernameSequencesofprimershas?miR?21RTPrimerGTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTCAAChas?miR?21forwardF5’?GCCGCGTAGCTTATCAGACT?3’has?miR?21reverseR5’?CAGTGCAGGGTCCGAGGTATT?3’has?U6snRNARTPrimerCGAATTTGCGTGTCATCCThas?U6snRNAfor?wardF5’?CTCGCTTCGGCAGCACATA?3’has?U6snRNAre?verseR5’?CGAATTTGCGTGTCATCCT?3’
1.6HK-2細(xì)胞PTEN、α-SMA、E-cadherinmRNA檢測
總RNA逆轉(zhuǎn)錄為cDNA:將上述已提取的總RNA用逆轉(zhuǎn)錄試劑盒逆轉(zhuǎn)錄為cDNA,按照逆轉(zhuǎn)錄試劑盒PrimeScript TM RT reagent(TaKaRa)說明書配置RT反應(yīng)液,將反轉(zhuǎn)錄反應(yīng)體系加到無RNase的PCR管內(nèi),逆轉(zhuǎn)錄反應(yīng)條件:37°C 15 min,85°C 5 s。反應(yīng)結(jié)束后,將cDNA保存于-20°C冰箱備用。Real time PCR:將cDNA用實時熒光定量PCR儀進行擴增,PCR反應(yīng)體系:SYBR Green Mix 10 μl,10 μmol/L Forward Primer 1 μl,10 μmol/L Reverse Primer 1 μl,加入2 μl cDNA,ddH2O補足至20 μl。PCR擴增反應(yīng)條件:95℃預(yù)變性30 s;95℃ 變性10 s,60℃ 復(fù)性30 s,40個循環(huán);熔解曲線:從55℃開始,每10 s升高0.5℃,直到95℃,循環(huán)1次。所有反應(yīng)信息資料由Bio-Rad iQ5 PCR儀收集,目的基因mRNA水平通過公式2-△△CT計算。PTEN、α-SMA、E-cadherin和管家基因β-actin熒光定量PCR引物序列由invitrogen設(shè)計并合成,各引物序列見表2。
Tab. 2 Primer sequences for quantitative PCR
1.7Westernblot檢測HK-2細(xì)胞PTEN、α-SMA、E-cadherin蛋白
各組6孔細(xì)胞培養(yǎng)板中的HK-2細(xì)胞質(zhì)粒轉(zhuǎn)染48 h后,用0.01 mol/L PBS(pH 7.4)清洗兩次,用細(xì)胞刮將細(xì)胞從6孔培養(yǎng)板中分離,用蛋白提取試劑盒提取總蛋白,提取的總蛋白經(jīng)BCA蛋白質(zhì)定量試劑盒測定其蛋白濃度,取部分樣品加蛋白上樣緩沖液進行煮沸5 min變性。取50 μg總蛋白樣品經(jīng)10% SDS-PAGE電泳分離蛋白質(zhì),凝膠蛋白質(zhì)轉(zhuǎn)膜于硝酸纖維膜,經(jīng)5% BSA 37℃封阻2 h后,每張膜分別加一抗PTEN、α-SMA、E-cadherin或內(nèi)參β-actin抗體,一抗用5% BSA 1∶1 000稀釋,4℃搖動孵育過夜,加odyssey熒光抗兔二抗,室溫下?lián)u動1.5 h,含0.1% Tween 20的TBST緩沖液洗5次,每次5 min,將膜置于odyssey近紅外激光成像系統(tǒng)上掃描目的條帶和內(nèi)參條帶,經(jīng)odyssey圖像軟件系統(tǒng)分析PTEN、α-SMA、E-cadherin蛋白表達(dá)量。
1.8 統(tǒng)計學(xué)方法
2.1TGF-β1處理后HK-2細(xì)胞miR-21水平以及EMT相關(guān)指標(biāo)α-SMA、E-cadherin的變化
與正常組相比,TGF-β1誘導(dǎo)的模型組細(xì)胞的miR-21含量顯著升高(P<0.05),間質(zhì)表型標(biāo)志物α-SMA的 mRNA含量和蛋白水平均顯著升高(P<0.05,P<0.01),上皮表型標(biāo)志物E-cadherin的mRNA含量和蛋白表達(dá)水平均顯著降低(P<0.01,表3,圖1),表明已成功建立EMT模型。
Fig.1Changes of protein expressions of α-SMA, E-cadherin and PTEN by Western blot analysis in all groups A: Control group; B: Model group; C: MiR-21 mimic negative control group; D: MiR-21 mimic group; E: MiR-21 inhibitor negative control group; F: MiR-21 inhibitor group
Tab. 3 Changes of miR-21 level, mRNA and protein expressions of α-SMA, E-cadherin in HK-2 cells after treating with TGF-β1(±s, n=3)
α-SMA: α-smooth muscle actin; TGF-β1: Transformation growth factor-β1
*P<0.05,**P<0.01vscontrol group
2.2HK-2細(xì)胞過表達(dá)或抑制表達(dá)miR-21對PTENmRNA和蛋白水平的影響
從表4、圖1可以看出,HK-2細(xì)胞轉(zhuǎn)染miR-21 mimic后,miR-21含量較miR-21 mimic陰性對照組顯著升高(P<0.01),PTEN的mRNA和蛋白水平顯著下降(P<0.05,P<0.01);HK-2細(xì)胞轉(zhuǎn)染miR-21 inhibitor后,miR-21含量較miR-21 inhibitor陰性對照組顯著降低(P<0.01),PTEN的mRNA和蛋白水平顯著升高(P<0.05,P<0.01)。
2.3HK-2細(xì)胞過表達(dá)或抑制表達(dá)miR-21對α-SMA、E-cadherinmRNA和蛋白水平的影響
從表5、圖1可以看出,HK-2細(xì)胞轉(zhuǎn)染miR-21 mimic后,與miR-21 mimic陰性組相比,α-SMA mRNA和蛋白水平顯著升高(P<0.05,P<0.01),E-cadherin的mRNA和蛋白水平顯著降低(P<0.05,P<0.01);HK-2細(xì)胞轉(zhuǎn)染miR-21 inhibitor后,與miR-21 inhibitor陰性組相比,α-SMA mRNA和蛋白水平顯著降低(P<0.05,P<0.01),E-cadherin的mRNA和蛋白水平顯著升高(P<0.05,P<0.01)。
Tab. 4 Changes of miR-21 level on the mRNA and protein expression of PTEN in HK-2 cells after transfecting with miR-21 mimic or inhibitor plasmid(±s, n=3)
PTEN: Phosphatase and tensin homolog
*P<0.05,**P<0.01vsmiR-21 mimic negative control group;#P<0.05,##P<0.01vsmiR-21 inhibitor negative control group
Tab. 5 Changes of mRNA and protein expression of α-SMA and E-cadherin in HK-2 cells after transfecting with miR-21 mimic or inhibitor plasmid(±s, n=3)
*P<0.05,**P<0.01vsmiR-21 mimic negative control group;#P<0.05,##P<0.01vsmiR-21 inhibitor negative control group
TGF-β1 是目前公認(rèn)的最主要致纖維化細(xì)胞因子,是誘導(dǎo)EMT過程的關(guān)鍵因素,EMT是指上皮細(xì)胞在特定的情況下向間質(zhì)細(xì)胞轉(zhuǎn)分化的現(xiàn)象,其主要特征為上皮細(xì)胞粘附分子(E-cadherin)表達(dá)的喪失,并獲得間質(zhì)細(xì)胞特征性表型蛋白(α-SMA)的高表達(dá)[14]。E-cadherin的作用是維持上皮細(xì)胞間連接的穩(wěn)定性,其表達(dá)水平與EMT的發(fā)生及腫瘤的侵襲和轉(zhuǎn)移能力呈負(fù)相關(guān),是EMT的關(guān)鍵分子,α-SMA是間質(zhì)細(xì)胞的特征性表型蛋白,也是EMT的主要分子標(biāo)志之一。本實驗中,HK-2細(xì)胞經(jīng)TGF-β1誘導(dǎo)后,模型組的上皮細(xì)胞表型標(biāo)志物E-cadherin的 mRNA含量和蛋白表達(dá)水平均顯著降低,而間質(zhì)表型標(biāo)志物α-SMA的mRNA含量和蛋白水平顯著升高,表明已成功建立EMT模型。
miRNA是一類長約19~23 nt的單鏈非編碼RNA,其與靶mRNA的3’-UTR(3’非編碼區(qū))特異性結(jié)合,引起靶 mRNA 的翻譯抑制或切割降解,調(diào)控基因的表達(dá)。miRNA可通過靶基因的抑制和降解在EMT調(diào)控中起重要作用。miR-21在EMT中發(fā)揮調(diào)控作用的靶mRNA可能是與張力蛋白同源的磷酸酯酶基因(phosphatase and tensin homolog,PTEN)[15, 16]。miR-21通過降解PTEN的表達(dá)和結(jié)合于靶mRNA 的3’UTR端抑制其翻譯兩種作用方式調(diào)控基因的表達(dá),使腎小管上皮細(xì)胞發(fā)生EMT。本實驗發(fā)現(xiàn),TGF-β1誘導(dǎo)的EMT模型細(xì)胞中miR-21表達(dá)顯著升高,提示miR-21可能在腎纖維化過程中具有重要調(diào)控作用。這和前期Wang等報道的在腎纖維化小鼠模型中miR-21顯著上調(diào)的結(jié)論相一致[11]。為驗證這一結(jié)論,我們通過轉(zhuǎn)染試驗,將EMT模型組細(xì)胞分別轉(zhuǎn)染miR-21 mimic或miR-21 inhibitor,轉(zhuǎn)染后miR-21含量進一步升高或者顯著降低,表明質(zhì)粒轉(zhuǎn)染成功。轉(zhuǎn)染miR-21 mimic后,miR-21過表達(dá)下調(diào)了PTEN的mRNA和蛋白水平,上調(diào)了間質(zhì)表型標(biāo)志物α-SMA的mRNA和蛋白表達(dá)、下調(diào)了上皮表型標(biāo)志物E-cadherin的mRNA和蛋白表達(dá),即miR-21過表達(dá)加劇了HK-2細(xì)胞的EMT;正好相反,轉(zhuǎn)染miR-21 inhibitor后,miR-21抑制表達(dá),上調(diào)了PTEN的mRNA和蛋白水平,下調(diào)了間質(zhì)表型標(biāo)志物α-SMA的mRNA和蛋白表達(dá),上調(diào)了上皮表型標(biāo)志物E-cadherin的mRNA和蛋白表達(dá),逆轉(zhuǎn)了HK-2細(xì)胞的EMT。這些結(jié)果表明miR-21作為體內(nèi)調(diào)控基因表達(dá)的重要分子,參與了EMT相關(guān)分子的表達(dá)調(diào)控。
以上實驗結(jié)果表明,miR-21能夠加劇HK2細(xì)胞TGF-β1誘導(dǎo)的EMT,并且可能通過靶基因PTEN參與了EMT相關(guān)分子的表達(dá)調(diào)控。
[1] Woo KT, Choong HL, Wong KS,etal. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases [J].KidneyInt, 2012, 81(10): 1044-1045.
[2] Nugent RA, Fathima SF, Feigl AB,etal. The burden of chronic kidney disease on developing nations: a 21st century challenge in global health [J].NephronClinPract, 2011, 118(3): c269-277.
[3] Farris AB, Colvin RB. Renal interstitial fibrosis: mechanisms and evaluation [J].CurrOpinNephrolHypertens, 2012, 21(3): 289-300.
[4] Mahdavi-Mazdeh M, Hatmi ZN, Shahpari-Niri S. Does a medical management program for CKD patients postpone renal replacement therapy and mortality? A 5-year-cohort study [J].BMCNephrol, 2012, 13: 138.
[5] 林成成, 陸 紅, 梁 勇, 等. 腎小管上皮細(xì)胞表型轉(zhuǎn)化在大鼠輸尿管梗阻及再通中的意義[J]. 中國應(yīng)用生理學(xué)雜志, 2013, 29(5): 454-456.
[6] Wang QL, Tao YY, Yuan JL,etal. Salvianolic acid B prevents epithelial-to-mesenchymal transition through the TGF-beta1 signal transduction pathway in vivo and in vitro [J].BMCCellBiol, 2010, 11(31): 1668-1681.
[7] Fan DM, Qi PW, Gao SG,etal. TGF-β1 mediates estrogen receptor-induced epithelial-to-mesenchymal transition in some tumor lines [J].TumourBiol, 2014, 35(11): 11277-11282.
[8] Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer [J].Nature, 2007, 449(7163): 682-688.
[9] Korpal M, Lee ES, Hu G,etal. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2[J].JBiolChem, 2008, 283(22): 14910-14914.
[10]Li Y, Vanden Boom TG 2nd, Kong D,etal. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells[J].CancerRes, 2009, 69(16): 6704-6712.
[11]Wang JY, Gao YB, Zhang N,etal. miR-21 overexpression enhances TGF-β1-induced epithelial-to- mesenchymal transition by target smad7 and aggravates renal damage in diabetic nephropathy [J].MolCellEndocrinol, 2014, 392(1-2): 163-172.
[12]Wilflingseder J, Sunzenauer J, Toronyi E,etal. Molecular pathogenesis of post-transplant acute kidney injury: assessment of whole-genome mRNA and miRNA profiles [J].PLoSOne, 2014, 9(8): e104164.
[13]Liu Z, Wang J, Guo C,etal. microRNA-21 mediates epithelial-mesenchymal transition of human hepatocytes via PTEN/Akt pathway [J].BiomedPharmacother, 2015, 69: 24-28.
[14]涂容芳, 張秀峰, 何振華. 5-HTR2B、E-cad、α-SMA在博萊霉素致大鼠肺纖維化中的表達(dá)變化[J]. 中國應(yīng)用生理學(xué)雜志, 2016, 32(4): 365-369.
[15] Haghikia A, Hilfiker-Kleiner D. MiRNA-21: a key to controlling the cardiac fibroblast compartment [J].CardiovascRes, 2009, 82(1): 1-3.
[16]Zhang Z, Peng H, Chen J,etal. MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice [J].FEBSLett, 2009, 583(12): 2009-2014.
TheinfluenceofmiR-21onHK-2EMTcellsinducedbyTGF-beta1
CAI Yue-qin, CHU Yan-qing, ZHU Ke-yan, CHEN Cheng, WANG De-jun△
(Zhejiang Chinese Medical University, Laboratory Animal Research Center/Comparative Medicine Institude, Hangzhou 310053, China)
Objective: To investigate the effect of the miR-21 and its target mRNA in renal tubular epithelial mesenchymal transformation (EMT) model induced by transformation growth factor-β1(TGF-β1) in human renal tubular epithelial (HK-2) cells.MethodsHK-2 cells were divided into 6 groups: normal control group, TGF-β1 group, miR-21 mimic negative group, miR-21 mimic group, miR-21 inhibitor negative group and miR-21 inhibitor group. EMT model was established in HK-2 cells induced by 4 ng/ml TGF-β1. The level of miR-21, the mRNA and protein expression of EMT related factors were detected. MiR-21 mimic plasmid and miR-21 inhibitor plasmid were transfected into HK-2 cells that treated with TGF-β1 respectively using liposome transfection technique. Observe the impact of overexpression or inhibition expression of miR-21 on the mRNA and protein expression of EMT related factors and PTEN.Results①Compared with the normal group, the level of miR-21 was significantly increased in model group (P<0.05), the mRNA and protein expression levels of epithelial cells marker E-cadherin was significantly decreased (P<0.01), while the mRNA and protein levels of mesenchymal cells marker α-SMA was significantly increased (P<0.05,P<0.01). ②Compared with the miR-21 mimic negative group, the level of miR-21 in miR-21 mimic group increased significantly (P<0.01), the mRNA and protein expression levels of PTEN and E-cadherin decreased significantly (P<0.05,P<0.01), the mRNA and protein levels of α-SMA increased significantly (P<0.05,P<0.01). Compared with the miR-21 inhibitor negative control group, the level of miR-21 in miR-21 inhibitor group decreased significantly (P<0.01), the mRNA and protein expression levels of PTEN and E-cadherin increased significantly (P<0.05,P<0.01), the mRNA and protein levels of α-SMA decreased significantly (P<0.05,P<0.01).ConclusionMiR-21 may play an important role in EMT induced by TGF-β1 in HK-2 cells and regulate the expression of EMT related factors its target gene PTEN.
microRNA-21; HK-2 cells; transformation growth factor-β1; epithelial mesenchymal transformation
R392.11
A
1000-6834(2017)04-346-05
浙江省自然科學(xué)基金資助項目(LQ14H290004);浙江中醫(yī)藥大學(xué)比較醫(yī)學(xué)創(chuàng)新團隊資助項目(XTD201301)
2016-07-21
2017-01-30
△
Tel: 0571-86613662; E-mail: wdj0369@126.com
10.12047.j.cjap.5477.2017.084