国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

沙障風(fēng)荷載作用下嵌固端受力分析

2017-10-13 21:03劉晉浩黃青青
關(guān)鍵詞:沙障剪力脈動(dòng)

孫 浩,劉晉浩,黃青青

?

沙障風(fēng)荷載作用下嵌固端受力分析

孫 浩,劉晉浩※,黃青青

(北京林業(yè)大學(xué)工學(xué)院,北京 100083)

該文應(yīng)用大渦模擬方法研究不同孔隙度透過(guò)性沙障嵌固端受力變化及其周?chē)鲌?chǎng)結(jié)構(gòu)特征。結(jié)果表明,非透過(guò)沙障在相同速度的促發(fā)氣流下嵌固端受力遠(yuǎn)高于孔隙沙障,其嵌固端彎矩和剪力最大值分別為40%孔隙率沙障的2倍和1.5倍,為80%孔隙率沙障的16.5倍和14.45倍,沙障嵌固端最大彎矩和剪力值隨孔隙率增大而逐漸減小。在持續(xù)風(fēng)力作用下,沙障嵌固端所受彎矩和剪力大大降低,沙障孔隙率為0時(shí),其最大彎矩和剪力值約為其平均值的9.4倍和6.9倍,而沙障孔隙率為80%時(shí),最大彎矩和剪力值分別約為其平均值的2.3倍與2.5倍。沙障孔隙度在一定范圍內(nèi)變化時(shí),其周?chē)鲌?chǎng)結(jié)構(gòu)有一定的相似性,以50%孔隙率為分界點(diǎn)可以分為2組,每組沙障嵌固端受力各有其相似的變化特征。研究可為沙障設(shè)計(jì)插入深度提供理論支撐。

孔隙度;流場(chǎng)結(jié)構(gòu);數(shù)值方法;透過(guò)性沙障;大渦模擬;固沙

0 引 言

土地荒漠化是人類(lèi)面臨的最嚴(yán)峻的環(huán)境問(wèn)題之一,設(shè)立沙障在眾多的防風(fēng)固沙方法中占有重要地位。由桿狀生物材料構(gòu)成的格狀沙障固沙效果明顯,成本低,得到大面積推廣應(yīng)用。然而,網(wǎng)格尺寸、埋入深度和沙障高度都根據(jù)實(shí)踐經(jīng)驗(yàn)確定,尚缺乏相應(yīng)的施工規(guī)范。在草沙障鋪設(shè)時(shí),傳統(tǒng)的草沙障施工工藝以人力和鐵鍬為生產(chǎn)工具,鋪設(shè)效率較低,為此,筆者所在課題組研制了固沙裝備,可以模擬人工整草-鐵锨軋草過(guò)程,實(shí)現(xiàn)沙障鋪設(shè)的機(jī)械化作業(yè)。但當(dāng)前裝備在軋草過(guò)程動(dòng)力傳輸系統(tǒng)耗能巨大,能耗隨軋草深度增大呈非線性增加,因而,改進(jìn)施工工藝,控制軋草深度,節(jié)省鋪設(shè)成本已成為該固沙裝備面臨的關(guān)鍵問(wèn)題之一。

目前以中科院、蘭州大學(xué)等單位為首,對(duì)風(fēng)沙作用過(guò)程、風(fēng)蝕過(guò)程和風(fēng)積沙過(guò)程,沙障對(duì)風(fēng)速的減弱機(jī)理和風(fēng)沙作用過(guò)程及其控制方法等[1-6]方面的研究較為深入。他們將沙障簡(jiǎn)化為透過(guò)性墻體,著重研究沙障的防風(fēng)阻沙效果和沙障對(duì)風(fēng)沙流結(jié)構(gòu)的影響[7-10]。Zhang等在風(fēng)洞環(huán)境下對(duì)孔隙沙障進(jìn)行研究,闡述了沙障對(duì)沙粒的影響作用規(guī)律[11-12];Dong等[13-14]則對(duì)透過(guò)性沙障的防風(fēng)特性進(jìn)行研究,而對(duì)立式沙障的力學(xué)穩(wěn)定性方面卻鮮有涉及。而對(duì)立式沙障的力學(xué)穩(wěn)定性方面卻鮮有涉及。作為一種插入沙地的立式沙障,植入于沙地的生物墻體結(jié)構(gòu)主要受風(fēng)荷載和沙地的嵌固力作用,沙障結(jié)構(gòu)必須保證足夠的埋入深度,以防止水平風(fēng)力過(guò)大而發(fā)生倒伏,造成沙障破壞。郜永貴等[15]根據(jù)沙障結(jié)構(gòu)的受力特點(diǎn)依據(jù)經(jīng)驗(yàn)公式估算風(fēng)荷載,并折算出立柱作用于沙面上的彎矩和剪力,從而確定出立柱埋入深度。此方法雖然對(duì)工程應(yīng)用有一定的指導(dǎo)意義,但是在估算風(fēng)荷載方面經(jīng)驗(yàn)程度較高。

從空氣動(dòng)力學(xué)角度來(lái)看,氣流在流經(jīng)沙障時(shí),障前和障后會(huì)產(chǎn)生壓力差,從而產(chǎn)生對(duì)沙障的水平作用力,透過(guò)性沙障周?chē)目諝鈩?dòng)力特征很早就得到了研究人員的關(guān)注[16-19]。早期的立式沙障模型高度一般在0.61~2.54 m之間,多采用對(duì)風(fēng)場(chǎng)擾動(dòng)較大的風(fēng)杯式風(fēng)速儀進(jìn)行風(fēng)速測(cè)量[20-21]。近年來(lái),將小型沙障模型置于風(fēng)洞環(huán)境下,并采用粒子成像測(cè)速系統(tǒng)(particle image velocimetry,PIV)進(jìn)行流場(chǎng)測(cè)量成為主要的研究方法[22-24],沙障模型高度一般在20~200 mm之間。PIV系統(tǒng)可以對(duì)速度場(chǎng)進(jìn)行直接測(cè)量,但不能測(cè)量壓力場(chǎng)。Liu等[25-26]應(yīng)用2套PIV系統(tǒng)首先對(duì)速度場(chǎng)進(jìn)行測(cè)量,并應(yīng)用相鄰4幀粒子圖像來(lái)計(jì)算粒子加速度,從而推倒出流場(chǎng)的壓力分布,此方法技術(shù)上雖然可以實(shí)現(xiàn),但精度上受圖像采樣頻率很大,并不實(shí)用。數(shù)值計(jì)算是研究風(fēng)沙流場(chǎng)的一個(gè)重要的研究方法,其準(zhǔn)確性已得到了大量的試驗(yàn)驗(yàn)證[27-30]。

目前的沙障都是根據(jù)經(jīng)驗(yàn)鋪設(shè),插入深度過(guò)大會(huì)造成不必要的資源浪費(fèi)。理論研究方面,前人都未涉及到立式沙障力學(xué)特性的研究。為了對(duì)立式沙障埋入深度設(shè)計(jì)提供理論支撐,本文應(yīng)用數(shù)值分析手段,對(duì)沙障周?chē)鲌?chǎng)變化進(jìn)行研究,進(jìn)而闡述沙障在風(fēng)荷載作用下,嵌固端受力變化規(guī)律,對(duì)裝備固沙工程有重要的實(shí)踐意義。

1 數(shù)值方法與幾何模型

本文采用計(jì)算流體力學(xué)軟件Fluent16.1模擬透過(guò)性沙障的周?chē)鲌?chǎng)。該軟件應(yīng)用有限體積法離散流體控制方程。湍流模型采用LES,亞格子模型采用動(dòng)態(tài)應(yīng)力的Smagorinsky-Lilly模型。采用SMPLEC算法進(jìn)行壓力速度耦合的求解。

1.1 控制方程

對(duì)于不可壓縮流動(dòng),笛卡爾坐標(biāo)系下,張量形式的流體控制方程[27]為

式中u為流體的瞬時(shí)速度,m/s;,其中為過(guò)濾后的大尺度速度,m/s;為過(guò)濾后的亞格子尺度速度,m/s;為速度過(guò)濾后的動(dòng)量通量;為流動(dòng)中流體動(dòng)量通量的過(guò)濾值,m2/s2;xx為張量的分量,m;為壓力的過(guò)濾值,N2/m;為流體密度,kg/m3;為流體運(yùn)動(dòng)黏度,N·s/m2;表示亞格子應(yīng)力,代表過(guò)濾小尺度脈動(dòng)和大尺度湍流的動(dòng)量輸運(yùn),m2/s2;f為質(zhì)量力,m/s2。

為實(shí)現(xiàn)大渦模擬計(jì)算,需要建立亞格子應(yīng)力的封閉模式。本文采用的亞格子模型為Smagorinsky-Lilly模型,由Smagorinsky首先提出。在Smagorinsky-Lilly模型中,渦黏度控制方程[31]為

式中L為亞格子尺度的混合長(zhǎng)度,m;,為大尺度應(yīng)變率張量,s-1。在Fluent軟件中,L

式中為Karman常數(shù);為單元到最近的壁面距離,m;C為Smagorinsky常數(shù);為當(dāng)前的網(wǎng)格尺度,并根據(jù)計(jì)算單元的體積計(jì)算求出,=1/3。本文中C取值為0.1[31]。

1.2 幾何模型

從以往的風(fēng)洞試驗(yàn)中不難看出,雖然風(fēng)洞環(huán)境為立體空間,但無(wú)論是沙障形態(tài)還是測(cè)量手段,都可簡(jiǎn)化為二維平面問(wèn)題。因此,本研究采用二維模型進(jìn)行數(shù)值計(jì)算。計(jì)算域如圖1所示,其中為沙障高度。

研究表明,氣流在流經(jīng)透過(guò)性沙障時(shí),在障前和障后會(huì)產(chǎn)生渦流區(qū),其中障前渦流區(qū)域范圍在障前2~5之間,障后渦流區(qū)域范圍在10~15之間。本算例中為避免入口和出口距離過(guò)小而造成尾流計(jì)算錯(cuò)誤,障前尺寸為10,為500 mm,障后尺寸為30,為1 500 mm。計(jì)算域高度為500 mm,沙障高度為50 mm,厚度1 mm。

沙障根據(jù)其材料的不同,障體的孔隙率會(huì)有很大的不同。本研究選取5種孔隙率的沙障進(jìn)行研究,孔隙率分別為0、20%、40%、60%、80%,0代表沙障不具有透過(guò)性。沙障模型如圖2所示。本研究不采用多孔介質(zhì)數(shù)值模型,而是在幾何實(shí)體上直接開(kāi)孔,建立孔隙沙障幾何模型。

1.3 網(wǎng)格劃分

本文采用結(jié)構(gòu)網(wǎng)格對(duì)計(jì)算域進(jìn)行劃分。壁面內(nèi)側(cè)布置網(wǎng)格10層,壁面第1層網(wǎng)格厚度為0.01 mm,經(jīng)計(jì)算滿足yplus<1。同時(shí)對(duì)沙障附近網(wǎng)格進(jìn)行加密,遠(yuǎn)離壁面網(wǎng)格逐漸稀疏,沙障附近網(wǎng)格劃分如圖3所示。

1.4 邊界條件

計(jì)算域的上邊界采用滑移邊界,下邊界和沙障壁面采用無(wú)滑移邊界條件,左邊界采用速度入口邊界條件,入口風(fēng)速U分布為

式中*為摩阻風(fēng)速,為保證與文獻(xiàn)[32]中的風(fēng)洞環(huán)境有相近的入口邊界條件,本文取值為0.5 m/s。為karman常數(shù),此處為0.4,為距離地面高度,0取值為d/10,d為沙粒平均直徑,本文取0.5 mm。計(jì)算參數(shù)設(shè)置見(jiàn)表1。

表1 數(shù)值模擬參數(shù)設(shè)置

2 結(jié)果與分析

2.1 數(shù)值模型驗(yàn)證

為驗(yàn)證數(shù)值計(jì)算結(jié)果的可靠性,將本文數(shù)值計(jì)算結(jié)果與文獻(xiàn)[32]中的風(fēng)洞試驗(yàn)結(jié)果進(jìn)行對(duì)比。Dong等[32]對(duì)孔隙沙障進(jìn)行試驗(yàn)研究,并采用PIV試驗(yàn)獲取流場(chǎng)數(shù)據(jù)。試驗(yàn)在中國(guó)科學(xué)院沙漠與沙漠化重點(diǎn)實(shí)驗(yàn)室的非循環(huán)風(fēng)洞進(jìn)行。風(fēng)洞總長(zhǎng)37.8 m,截面寬度為0.6 m、高1 m。沙障孔隙率為0,入口風(fēng)速為10 m/s時(shí),尾流區(qū)湍流強(qiáng)度的水平分量和垂直分量沿高度變化如圖4所示。研究采用無(wú)量綱的表示方式,豎直方向與水平方向距離用模型高度做歸一化處理。湍流計(jì)算方式與文獻(xiàn)[32]相同。如圖4所示,=0截面的湍流強(qiáng)度的數(shù)值計(jì)算結(jié)果與試驗(yàn)數(shù)據(jù)差距較大,原因可能在于:1)由于近壁面風(fēng)速梯度較大,測(cè)量設(shè)備不能滿足近壁面流場(chǎng)的測(cè)量要求,導(dǎo)致測(cè)量誤差較大;2)因?yàn)楸狙芯恐?0的監(jiān)測(cè)截面在壁面上,導(dǎo)致壁面上節(jié)點(diǎn)計(jì)算湍流強(qiáng)度值為0。遠(yuǎn)離沙障截面處的尾流區(qū)數(shù)值結(jié)果與試驗(yàn)數(shù)據(jù)吻合較好,可以反映出真實(shí)流場(chǎng)的風(fēng)速脈動(dòng)統(tǒng)計(jì)規(guī)律,說(shuō)明本文邊界條件,模型網(wǎng)格劃分及參數(shù)取值是可信的,為下文的分析提供可靠性保證。

2.2 數(shù)值模擬結(jié)果

沙障的水平荷載來(lái)源于沙障前后的氣壓差和氣流的拖拽力作用。而本文所使用的模型厚度僅為1 mm,因此氣流的黏滯力作用相對(duì)較小,本研究忽略了氣流黏滯力作用,僅考慮沙障前后壁面壓力差值對(duì)沙障的荷載作用。定義沙障豎直坐標(biāo)為0的截面為所要分析的截面,及沙障根部。由于本文的模型為二維模型,假定沙障的縱向長(zhǎng)度為1 m,取沙障壁面上的節(jié)點(diǎn)氣壓數(shù)據(jù),并對(duì)節(jié)點(diǎn)間進(jìn)行線性插值。然后計(jì)算監(jiān)測(cè)截面的彎矩和剪力。

2.1.1 嵌固端受力隨時(shí)間變化規(guī)律

沙障在風(fēng)荷載作用下,嵌固端主要受剪力和彎矩作用,沙床必須提供足夠的嵌固力以防止沙障發(fā)生倒伏。在促發(fā)的持續(xù)風(fēng)力作用下,沙障受力從無(wú)荷載作用到受到持續(xù)荷載作用必然會(huì)出現(xiàn)一個(gè)變化過(guò)程。圖5為沙障嵌固端彎矩和剪力時(shí)程圖。采樣間隔為0.001 s。彎矩和剪力按下式計(jì)算

式中和F分別為彎矩(N·m)和剪力(N),P()和P()分別為沙障前后壁面的壓力分布函數(shù),為沙障縱向長(zhǎng)度,本文取值為1 m,為沙障壁面任一點(diǎn)的離地高度,m。

a. 彎矩隨時(shí)間變化

a. Bending moment change with time

如圖5所示,沙障嵌固端的彎矩和剪力在促發(fā)氣流作用下迅速增大,隨著流場(chǎng)逐漸發(fā)展,沙障周?chē)饾u形成相對(duì)穩(wěn)定的流場(chǎng)結(jié)構(gòu),前后壁面壓力差逐漸降低,彎矩和剪力逐漸減小,并最終達(dá)到平穩(wěn)。促發(fā)氣流下,沙障孔隙率對(duì)其受力特性有較大影響,隨孔隙率增加而逐漸減小。沙障受力穩(wěn)定后伴有一定的壓力波動(dòng),嵌固端受到的彎矩和剪力脈動(dòng)隨孔隙率降低而明顯增大。將沙障嵌固端受力從最大值降低到穩(wěn)定值所需要的時(shí)間定義為穩(wěn)定時(shí)間??梢钥闯?,穩(wěn)定時(shí)間隨沙障孔隙率增長(zhǎng)逐漸降低。沙障孔隙率為0時(shí),沙障受力約在1.5 s后達(dá)到穩(wěn)定,當(dāng)孔隙率為80%時(shí),沙障受力穩(wěn)定時(shí)間約為0.15 s,由此可知,沙障孔隙率越高,流場(chǎng)從靜止?fàn)顟B(tài)發(fā)展到成熟流場(chǎng)結(jié)構(gòu)所需的時(shí)間越短。

2.2.2 孔隙率對(duì)嵌固端彎矩剪力的影響

沙障的迎風(fēng)面積和周?chē)鲌?chǎng)活動(dòng)對(duì)沙障受力特性有顯著的影響。促發(fā)氣流下和穩(wěn)定后沙障嵌固端受力隨孔隙率變化如圖6所示。

從圖6可知,沙障孔隙率較低時(shí),其嵌固端承受的最大彎矩和剪力值遠(yuǎn)高于穩(wěn)定后的彎矩剪力值??紫堵蕿?時(shí),最大彎矩和剪力值分別約為其平均值的9.4倍與6.9倍。隨著沙障孔隙率增加,這種差距逐漸減小,沙障孔隙率為80%時(shí),最大彎矩和剪力值分別約為其平均值的2.3倍與2.5倍。促發(fā)氣流下,沙障孔隙率對(duì)嵌固端受力有較大影響,嵌固端的彎矩和剪力隨孔隙率增加而逐漸減小,其中孔隙率為0的沙障嵌固端彎矩和剪力最大值分別為40%孔隙率沙障的2倍和1.5倍,為80%孔隙率沙障的16.5倍和14.45倍。相對(duì)而言,流場(chǎng)發(fā)展穩(wěn)定后,孔隙率對(duì)平均彎矩與剪力影響程度較弱。

在實(shí)際工況下,沙障嵌固端設(shè)計(jì)插入深度主要受最大彎矩和剪力控制,文獻(xiàn)[7]提出的沙障插入深度設(shè)計(jì)方法中,首先根據(jù)風(fēng)速計(jì)算基本風(fēng)力強(qiáng)度,然后將其乘以沙障體形系數(shù)及其他分項(xiàng)系數(shù),計(jì)算出沙障根部所承受的剪力彎矩值,最終計(jì)算插入深度,其中沙障體形系數(shù)的選擇沒(méi)有相關(guān)依據(jù),由此算出的彎矩剪力值也有很大的經(jīng)驗(yàn)性與隨機(jī)性。為了對(duì)沙障嵌固端剪力與彎矩計(jì)算提供理論支撐,可將最大彎矩和剪力值隨孔隙率變化按式(8)進(jìn)行擬合,對(duì)其取值進(jìn)行量化。對(duì)彎矩和剪力做回歸分析,其2均大于0.99(<0.01),說(shuō)明此函數(shù)能較好的表征沙障嵌固端彎矩與剪力隨孔隙率變化規(guī)律。

式中y為彎矩(N·m)或剪力(N);為孔隙率,%;、和為擬合參數(shù)。

沙障在風(fēng)力作用下,嵌固端受力在小范圍內(nèi)呈波動(dòng)狀態(tài),因此可以分解為平均力和脈動(dòng)力。脈動(dòng)強(qiáng)度為

表2 波動(dòng)強(qiáng)度隨孔隙率變化

如表2所示,除孔隙率為80%外,波動(dòng)強(qiáng)度隨孔隙率增大而逐漸減小。其中孔隙率為20%、40%和60%的波動(dòng)強(qiáng)度較相近,而孔隙率為0的波動(dòng)強(qiáng)度大大高于其他組,孔隙率為0的沙障嵌固端承受的彎矩與剪力波動(dòng)強(qiáng)度比20%孔隙率的沙障分別高50%與100%??紫堵蕿?0%時(shí),波動(dòng)強(qiáng)度反而有所增加。從圖5可以看出,沙障孔隙率為80%時(shí),其彎矩和剪力的波動(dòng)幅度最低,但由于其受到的水平荷載也相對(duì)較小,導(dǎo)致相對(duì)波動(dòng)強(qiáng)度有所提高。

2.2.3 透過(guò)性沙障障后流場(chǎng)結(jié)構(gòu)

鈍體繞流是風(fēng)工程中的經(jīng)典問(wèn)題,不同形狀的鈍體會(huì)形成相應(yīng)的流場(chǎng)結(jié)構(gòu)特征,氣流的分離與尾流區(qū)渦的形成與耗散直接表現(xiàn)為風(fēng)速的脈動(dòng)變化過(guò)程。沙障承受的水平荷載及其脈動(dòng)規(guī)律最終可歸結(jié)為沙障周?chē)鲌?chǎng)分布變化。沙障前后的湍流強(qiáng)度、渦旋結(jié)構(gòu)的形成及脫落與沙障受力密切相關(guān)。研究表明,鈍體后部渦旋的大小及其脫落頻率對(duì)鈍體的脈動(dòng)風(fēng)壓有重要影響。圖7為透過(guò)性沙障后部流場(chǎng)分布圖。

平板繞流是流體力學(xué)中的經(jīng)典問(wèn)題,但以往的研究中,平板的孔隙率都為0,為實(shí)心平板。由圖7可以看出,流場(chǎng)中鈍體孔隙率對(duì)流場(chǎng)結(jié)構(gòu)有很大的影響,實(shí)心平板與孔隙平板呈現(xiàn)出完全不同的氣動(dòng)力學(xué)特征。當(dāng)孔隙率為0時(shí),障后流場(chǎng)結(jié)構(gòu)相對(duì)簡(jiǎn)單,沙障頂部形成以尺寸較大的主渦,而沙障根部有1次渦形成。當(dāng)鈍體結(jié)構(gòu)具有透過(guò)性時(shí),流場(chǎng)結(jié)構(gòu)變得相對(duì)復(fù)雜,氣流從平板間的孔隙流過(guò),可看作為多個(gè)尺寸相同的平行鈍體繞流問(wèn)題,且鈍體間距離較近,導(dǎo)致鈍體間繞流結(jié)構(gòu)相互影響,最終在尾流形成隨機(jī)的渦旋結(jié)構(gòu)。透過(guò)性沙障近壁面處都有小渦生成,受相鄰鈍體影響較弱,且隨著孔隙率增大,近壁面渦尺寸逐漸減小,其尺寸與鈍體垂直風(fēng)向的長(zhǎng)度密切相關(guān)。而遠(yuǎn)離壁面處由于渦流結(jié)構(gòu)相互影響,其合并與耗散作用較為復(fù)雜,形成隨機(jī)的渦旋結(jié)構(gòu),孔隙率為20%和40%沙障后部流場(chǎng)尤為顯著。孔隙率為60%和80%時(shí),由于鈍體之間距離較遠(yuǎn),且鈍體尺寸較小,尾流區(qū)影響相對(duì)較弱,在近壁面處可看作為相互影響較弱的多個(gè)獨(dú)立鈍體繞流問(wèn)題,孔隙率為80%的沙障尤為符合這一假設(shè),在沙障后部一段距離內(nèi)形成平行的渦階氣流結(jié)構(gòu)。

沙障所承受的脈動(dòng)作用力與近壁面渦的大小及脫落頻率密切相關(guān),且受到主渦旋影響較大??紫堵蕿?時(shí),主渦旋尺寸較大,抵抗氣流變化能力較強(qiáng),渦的脫落與形成頻率相對(duì)較低,對(duì)于沙障而言直接表現(xiàn)為作用力脈動(dòng)幅度較大,且脈動(dòng)頻率較低,這個(gè)現(xiàn)象可以由圖5看出,由于障后主渦尺寸遠(yuǎn)高于其他透過(guò)性沙障后的主渦尺寸,導(dǎo)致孔隙率為0的沙障震動(dòng)幅度大大高于孔隙沙障,且振動(dòng)頻率相對(duì)較低??紫堵蕿?0%時(shí),由于孔隙存在,導(dǎo)致主渦尺寸急劇縮小,障后壁面上的小渦形成與脫落頻率大幅度提高,導(dǎo)致其受力特點(diǎn)與孔隙率為0的沙障受力差距較大。由圖5可以看出,沙障根部受力脈動(dòng)強(qiáng)度相對(duì)于孔隙率為0的沙障大幅降低,且脈動(dòng)頻率大幅度提高,體現(xiàn)出振幅小頻率高的脈動(dòng)特征。從障后氣流結(jié)構(gòu)來(lái)看,孔隙沙障后部流場(chǎng)結(jié)構(gòu)按相似性大致可分為2組,透過(guò)率為20%與40%時(shí)為一組,沙障孔隙率為60%與80%時(shí)為另一組,即由50%透過(guò)率劃分為2組。圖6和圖7也可看出,每組沙障嵌固端受力的相似性特征。

3 結(jié)論與討論

在土木工程中,承受水平荷載較大的結(jié)構(gòu),一般要進(jìn)行地基抗傾覆驗(yàn)算,以保證結(jié)構(gòu)安全,而相對(duì)準(zhǔn)確的估算結(jié)構(gòu)水平荷載,是驗(yàn)算工作的必要條件。本文的數(shù)值計(jì)算及果表明,沙障的嵌固端荷載和孔隙率不是簡(jiǎn)單的線性變化關(guān)系,而是符合指數(shù)函數(shù)變換規(guī)律,這一結(jié)果可以對(duì)沙障水平荷載的計(jì)算提供理論支撐。

本文應(yīng)用大渦模型對(duì)孔隙率為0、20%、40%、60%和80%沙障的周?chē)鲌?chǎng)進(jìn)行計(jì)算,分析沙障嵌固端受力隨沙障孔隙率變化規(guī)律,并通過(guò)分析障后渦流尺寸及運(yùn)動(dòng)變化,闡述沙障受力變化機(jī)理,得到以下結(jié)論:

1)非透過(guò)沙障在相同速度的促發(fā)氣流下受力遠(yuǎn)高于高透過(guò)率沙障,其嵌固端彎矩和剪力最大值分別為40%孔隙率沙障的2倍和1.5倍,為80%孔隙率沙障的16.5倍和14.45倍。

2)沙障在持續(xù)風(fēng)力作用下,嵌固端承受的最大彎矩與剪力高于其平衡狀態(tài)下的彎矩剪力值,隨著沙障透過(guò)率增大,其差距逐漸降低。其中,孔隙率為0時(shí),最大彎矩和剪力值分別約為其平均值的9.4倍與6.9倍,而沙障孔隙率為80%時(shí),最大彎矩和剪力值分別約為其平均值的2.3倍與2.5倍。

3)沙障孔隙率對(duì)沙障嵌固端受力變化的影響可以由沙障周?chē)鲌?chǎng)結(jié)構(gòu)變化來(lái)解釋?zhuān)虾蠼诿媪鲌?chǎng)主渦尺寸隨透過(guò)性增加而逐漸降低。大尺寸渦對(duì)其運(yùn)動(dòng)變化的抵抗能力更強(qiáng),導(dǎo)致非透過(guò)性沙障嵌固端受力大小和脈動(dòng)強(qiáng)度遠(yuǎn)高于孔隙沙障。

4)不同孔隙率范圍內(nèi)的孔隙沙障后部流場(chǎng)結(jié)構(gòu)呈現(xiàn)相似性,可以由50%透過(guò)率劃分為2組,每組各自有其相似性特征,直接表現(xiàn)為沙障嵌固端受力變化規(guī)律的相似性。

[1] 周娜等,張春來(lái),田金鷺,等. 半隱蔽式草方格沙障凹曲面形成的流場(chǎng)解析及沉積表征[J]. 地理研究,2014,33(11):2145-2156.

Zhou Na, Zhang Chunlai, Tian Jinlu et al. Flow field controlling the concave surface of the semi-buried checkerboards and its characterization by grain sizes of sediments[J]. Geographical Eographical Researcy, 2014, 33(11): 2145-2156. (in Chinese with English abstract)

[2] Bo, Tianli, Peng Ma, Zheng Xiaojing. Numerical study on the effect of semi-buried straw checkerboard sand barriers belt on the wind speed[J]. Aeolian Research, 2015, 16: 101-107.

[3] 王振亭,鄭曉靜. 草方格沙障尺寸分析的簡(jiǎn)單模型[J]. 中國(guó)沙漠,2002,22(3):229-232.

Wang Zhenting, Zheng Xiaojing. A simple model for calculating measurements of straw checkerboard barriers[J]. Journal of Deser Teresearc, 2002, 22(3): 229-232. (in Chinese with English abstract)

[4] Bo Tianli, Zheng Xiaojing, Duan Shaozhen, et al. The influence of wind velocity and sand grain diameter on the falling velocities of sand particles[J]. Powder Technology, 2013, 241: 158-165.

[5] Cheng Hong, He Jiajia, Zou Xueyong, et al. Characteristics of particle size for creeping and saltating sand grains in aeolian transport[J]. Sedimentology, 2015, 62(5): 1497-1511.

[6] Cheng Hong, Liu Chenchen, Zou Xueyong, et al. Aeolian creeping mass of different grain sizes over sand beds of varying length[J]. Journal of Geophysical Research, 2015, 120(7): 1404-1417.

[7] Cheng Jianjun, Xue Chunxiao. The sand damage prevention engineering system for the railway in the desert region of the Qinghai-Tibet plateau[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 125: 30-37.

[8] Huang Longming, Chan H C, Lee JungTai. A numerical study on flow around nonuniform porous fences[J]. Journal of Applied Mathematics, 2012(1/2): 203-222.

[9] Liu Benli, Qu Jianjun, Zhang Wenming, et al. Numerical evaluation of the scale problem on the wind flow of a windbreak[J]. Scientific Reports, 2014, 41(2): 1-5.

[10] Zhang Ning, Kang Jonghoon, Lee Sangjoon. Wind tunnel observation on the effect of a porous wind fence on shelter of saltating sand particles[J]. Geomorphology, 2010, 120(3): 224-232.

[11] Zhang Ning, Sang Joon Lee, Chen Tingguo. Trajectories of saltating sand particles behind a porous fence[J]. Geomorphology, 2015, 228(1): 608-616.

[12] Dong Zhibao, Qian Guangqiang, Luo Wanyin, et al. Threshold velocity for wind erosion: The effects of porous fences[J]. Environmental geology, 2006, 51(3): 471-475.

[13] Dong Zhibao, Qian Guangqiang, Luo Wanyin, et al. Threshold velocity for wind erosion: The effects of porous fences[J]. Environmental geology, 2006, 51(3): 471-475.

[14] Dong Zhibao, Qian Guangqiang, Luo Wanyin, et al. Threshold velocity for wind erosion: the effects of porous fences[J]. Environmental Geology, 2006, 51(3): 471-475.

[15] 郜永貴,林慶功. 高立式移動(dòng)沙障應(yīng)用技術(shù)試驗(yàn)研究[J]. 中國(guó)沙漠,2005,25(5):790-794.

Gao Yonggui, Lin Qinggong. Testing research on application technology of high vertical mobile sand-barrier[J]. Journal of Desert Research, 2005, 25(5): 790-794. (in Chinese with English abstract)

[16] Gloyne RW. Some effects of shelterbelts upon local and micro climate[J]. Forestry, 1954, 27(2): 85-95.

[17] Stipho A. Aeolian sand hazards and engineering design for desert regions[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 1992, 25: 83-92.

[18] Deborah L, Miller. Evaluation of sand fence and vegetation for dune building following overwash by hurricane opal on Santa Rosa Island, Florida[J]. Journal of Coastal Research, 17(4): 936-948.

[19] Raine J K, Stevenson D C. Wind protection by model fences in a simulated atmospheric boundary layer[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1977, 2(2): 159-180.

[20] Gloyne R W. Some effects of shelterbelts upon local and microclimate[J]. Forestry, 1954, 27(2): 85-95.

[21] Li Bailiang, Sherman D J. Aerodynamics and morphodynamics of sand fences: A review[J]. Aeolian Research, 2015, 17: 33-48.

[22] Chen Kai, Zhu Fengrong, Niu Zhennan. Evaluation on shelter effect of porous windbreak fence through wind tunnel test[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2006, 42(5): 636-640.

[23] Dong Zhibao, Luo Wanyin, Qian Guangqiang, et al. A wind tunnel simulation of the mean velocity fields behind upright porous fences[J]. Agricultural and Forest Meteorology, 2007, 146(1): 82-93.

[24] Frank C, Ruck B. Double-Arranged Mound-Mounted Shelterbelts: Influence of Porosity on Wind Reduction between the Shelters[J]. Environmental Fluid Mechanics, 2005, 5(3): 267-292.

[25] Liu Xiaofeng, Joseph Katz. Vortex-corner interactions in a

cavity shear layer elucidated by time-resolved measurements of the pressure field[J]. Journal of Fluid Mechanics, 2013, 728: 417-457.

[26] Liu Xiaofeng, Joseph Katz. Cavitation phenomena occurring due to interaction of shear layer vortices with the trailing corner of a two-dimensional open cavity[J]. Physics of Fluids, 2008, 20(4): 20-23.

[27] 王婷婷,楊慶山. 基于FLUENT的大氣邊界層風(fēng)場(chǎng)LES模擬[J]. 計(jì)算力學(xué)學(xué)報(bào),2012,29(5):734-739.

Wang Tingting, Yang Qingshan. Large eddy simulation of atmospheric boundary layer flow based on FLUENT[J]. Chinese Journal of Computational Mechanics, 2012, 29(5): 734-739. (in Chinese with English abstract)

[28] Chen Guanghui, Wang Weiwen, Sun Changfeng, et al. 3D numerical simulation of wind flow behind a new porous fence[J]. Powder Technology, 2012, 230: 118-126.

[29] Santiago J L, Martin F, Cuerva A, et al. Experimental and numerical study of wind flow behind windbreaks[J]. Atmospheric Environment, 2007, 41(30): 6406-6420.

[30] Lopes A M G, Oliveira L A, Almerindo, et al. Numerical simulation of sand dune erosion[J]. Environmental Fluid Mechanics, 2013, 13(2): 145-168.

[31] Canuto V M, Cheng Y. Determination of the Smagorinsky-lilly constantC[J]. Physics of Fluids, 1997, 9(5): 1368-1378.

[32] Dong Zhibao, Luo Wanyin, Qian Guangqiang, et al. Evaluating the optimal porosity of fences for reducing wind erosion[J]. Sci in Cold Arid Regions, 2011, 3(1): 1-12.

Numerical analysis for force at embedded end of sand barrier under wind loads

Sun Hao, Liu Jinhao※, Huang Qingqing

(100083,)

Inserted depth is an important parameter in sand fence engineering. In order to provide a theoretical support for inserted depth of sand fence, the sand fence with different porosity was studied by using LES method. Five kinds of sand fence were selected as the research objects with the porosity of 0, 20%, 40%, 60% and 80%. The height of sand fence was 50 mm. Boundary condition was of great importance to the simulation of the flow structure around the sand fence, the large eddy model (LES) was employed as the turbulence model. The gas phase had been simplified with the influence of sand particles ignored. It was treated as incompressible gas, and its flow was assumed to be in transition state. The velocity at inlet of calculation domain followed the logarithm distribution and the friction velocity was 0.5 m/s. The SIMPLIC method was employed for flow field prediction. Ten layers were arranged near wall and the height of the first layer was 0.01 mm, and yplus was less than 1. The top boundary of calculation domain was slip wall boundary, and the bottom was nonslip wall boundary. The turbulence numerical results for sand fence with the porosity 0 were compared with the experimental results of a similar study that was conducted in a blowing sand wind tunnel at the Key Laboratory of Desert and Desertification of Chinese Academy of Sciences. The particle image velocimetry (PIV) was employed to determine mean velocity and the turbulence fields were calculated by the velocity. The numerical model was well verified. Then, the variation of bending moment and shear force with porosity and the flow structure around the fence were analyzed. The results showed that the bending moment and shear force on the embedded end of sand fence without pores was much higher than that for the sand fence with pores under the sudden air flow with same velocity, and its maximum bending moment and shear force on the embedded end were 2 and 1.5 times of that with 40% porosity, and were 16.5 and 14.45 times of that with 80% porosity. The maximum bending moment and shear force on the embedded end decreased with increasing porosity. The bending moment and shear force decreased greatly under continuous wind forces. When the porosity of sand fence was 0, its maximum bending moment and shear force on the embedded end was about 9.4 and 6.9 times of the mean under the continuous wind forces. When the porosity of sand fence was 80%, its maximum bending moment and shear force on the embedded end was about 2.3 and 2.5 times of the mean under the continuous wind forces. The size of the main vortex behind the sand fence decreased with the increase of the porosity. Large eddy had a stronger resistance to its movement change, causing the lager bending moment and shear force at the embedded end of sand fence with 0 porosity compared to the sand fence which has porosity. When the porosity was less than 50%, there was no obvious main vortex structure in the rear of the sand fence and its flow structure was similar to that for the single plate. The flow structure around the sand barrier with closed porosity had similar appearance, and it could be divided into 2 groups by the porosity of 50%, and the stress in each of the group had the similar varying characteristics.

porosity; flow structure; numerical methods; porous fences; large eddy simulation; sand fixation

10.11975/j.issn.1002-6819.2017.02.020

S157.1; U216.41+3

A

1002-6819(2017)-02-0148-07

2016-04-07

2016-10-10

國(guó)家科技支撐計(jì)劃項(xiàng)目-林業(yè)生態(tài)科技工程(2015BAD07B00)

孫 浩,男,黑龍江人,博士生,主要從事環(huán)境流體力學(xué)、風(fēng)沙物理學(xué)研究。北京北京林業(yè)大學(xué)工學(xué)院,100083。Email:251045257@qq.com

劉晉浩,北京人,男,教授,博士生導(dǎo)師。主要從事林業(yè)裝備自動(dòng)化及智能化研究。北京 北京林業(yè)大學(xué)工學(xué)院,100083。 Email:liujinhao@vip.163.com

孫 浩,劉晉浩,黃青青. 沙障風(fēng)荷載作用下嵌固端受力分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(2):148-154. doi:10.11975/j.issn.1002-6819.2017.02.020 http://www.tcsae.org

Sun Hao, Liu Jinhao, Huang Qingqing. Numerical analysis for force at embedded end of sand barrier under wind loads[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 148-154. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.02.020 http://www.tcsae.org

猜你喜歡
沙障剪力脈動(dòng)
RBI在超期服役脈動(dòng)真空滅菌器定檢中的應(yīng)用
不同荷載作用下T形連續(xù)梁和懸臂梁的剪力滯效應(yīng)
沙障治沙知多少
關(guān)于散貨船剪力修正的思考
不同沙埋程度下帶狀沙障的防風(fēng)固沙效果研究
我國(guó)沙障固沙技術(shù)研究進(jìn)展及展望
考慮截面配筋的箱梁剪力滯效應(yīng)分析
有限水域水中爆炸氣泡脈動(dòng)的數(shù)值模擬
箱型梁剪力滯效應(yīng)的解耦求解
地脈動(dòng)在大震前的異常變化研究