周 龍,龍光強,湯 利,鄭 毅
?
綜合產(chǎn)量和土壤N2O排放的馬鈴薯施氮量分析
周 龍,龍光強,湯 利※,鄭 毅
(云南農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,昆明 650201)
施氮可提高作物產(chǎn)量,但同時也增加溫室氣體N2O的土壤排放量。研究施氮量與產(chǎn)量和土壤N2O排放的關(guān)系,對保障作物產(chǎn)量并兼顧環(huán)境效應(yīng)的農(nóng)業(yè)生產(chǎn)實踐具有重要指導(dǎo)意義。該研究設(shè)置N0(0)、N1(67.5 kg/hm2)、N2(125 kg/hm2)、N3(187.5 kg/hm2)4個施氮水平,采用靜態(tài)箱-氣相色譜法對土壤N2O排放進行田間原位測定,研究施氮量對馬鈴薯產(chǎn)量、土壤N2O排放的影響,分析綜合產(chǎn)量與土壤N2O排放的合理施氮量。結(jié)果表明:施氮顯著增加馬鈴薯產(chǎn)量和土壤N2O累積排放量,較不施氮(N0)處理,N1、N2和N3處理馬鈴薯產(chǎn)量增加78.5%、93.1%和95.6%;生育期N1、N2和N3處理馬鈴薯土壤N2O累積排放量分別是N0處理的2.3、4.4和6.7倍。同時,隨施氮量增加,N2O排放系數(shù)、硝態(tài)氮強度和單產(chǎn)N2O排放量均顯著增加。在低氮處理(N0、N1)時,土壤N2O排放通量與土壤溫度、濕度顯著正相關(guān),而在高氮水平時,土壤N2O排放通量與土壤硝態(tài)氮含量顯著正相關(guān)。施氮67.5 kg/hm2可確保研究區(qū)馬鈴薯產(chǎn)量并有效降低土壤N2O排放。
產(chǎn)量;化肥;排放控制;馬鈴薯;N2O排放
氮素是作物生長必需的三大營養(yǎng)元素之一,通過增施氮肥提高作物產(chǎn)量被廣泛用于農(nóng)業(yè)生產(chǎn)實踐。然而,施氮量與作物產(chǎn)量之間并非簡單的直線關(guān)系,當(dāng)施氮量達到某一程度后,作物產(chǎn)量不再隨施氮量增加而提高,更多的氮投入甚至導(dǎo)致減產(chǎn)[1-2]。從另一個角度看,過量氮肥投入不僅沒有起到增產(chǎn)作用,反而導(dǎo)致農(nóng)田生態(tài)系統(tǒng)活性氮排放增加,加劇硝態(tài)氮淋洗、溫室氣體排放,由此帶來水體和大氣污染等系列環(huán)境問題[1,3-5]。因此,作物氮肥用量是既關(guān)系作物產(chǎn)量,同時又影響農(nóng)業(yè)生產(chǎn)環(huán)境效應(yīng)的關(guān)鍵農(nóng)業(yè)舉措,合理施用氮肥具有保障糧食安全和降低環(huán)境負(fù)面效應(yīng)的雙重意義。
作為一種含氮的重要溫室氣體,N2O潛在增溫作用是CO2的296~310倍[6],可參與多種光化學(xué)反應(yīng),破壞大氣臭氧層,引起全球氣候變暖。N2O是重要溫室氣體[7-8],農(nóng)業(yè)土壤是N2O重要的排放源,占全球N2O排放總量的25%~39%,并且以較快的速率增長[9]。中國因施氮造成每年63萬t的N2O排放,農(nóng)業(yè)生產(chǎn)過程中排放的N2O占全國N2O排放總量的92%[10]。針對中國氮肥用量大,肥效低、N2O排放損失大的事實[10-11],一些研究指出,通過合理的氮肥用量提高作物對氮肥利用率,可有效降低土壤N2O排放[12-13]。
馬鈴薯是全球第4大栽培作物,中國是世界馬鈴薯第一生產(chǎn)國[14]。據(jù)聯(lián)合國糧農(nóng)組織統(tǒng)計資料(FAOSTAT)顯示,2012年中國馬鈴薯種植面積占世界總種植面積28%,總產(chǎn)占世界的24%,預(yù)計2020年50%以上的馬鈴薯將作為主糧消費[15]。在中國西南山區(qū)、東北北部和黃土高原省份,馬鈴薯作為當(dāng)?shù)刂饕募Z食和蔬菜作物,占全國播種面積85%以上,而其單產(chǎn)卻不到世界平均水平的83%[16-17]。在大量氮肥施用引起農(nóng)田土壤N2O排放加劇全球氣候變暖的大背景下,研究施氮量對產(chǎn)量和土壤N2O排放的關(guān)系,對保障作物產(chǎn)量并兼顧環(huán)境效應(yīng)的農(nóng)業(yè)生產(chǎn)實踐具有重要指導(dǎo)意義。已有部分研究涉及施氮條件下馬鈴薯土壤N2O排放和產(chǎn)量,但主要集中在溫帶大陸性氣候區(qū),且單一關(guān)注施氮對產(chǎn)量或N2O排放的影響[18-21],而在北亞熱帶季風(fēng)氣候條件下尚無報道。本文采用田間小區(qū)試驗,利用靜態(tài)箱-氣相色譜法測定土壤N2O排放,研究不同施氮量對馬鈴薯產(chǎn)量與N2O排放的影響,通過綜合分析探討合理施氮量,為氮肥施用提供理論參考。
1.1 試驗點概況
2015年4-11月在云南農(nóng)業(yè)大學(xué)尋甸大河橋試驗基地進行試驗(23°32′N、103°13′E),地處昆明市東北部,屬北亞熱帶季風(fēng)氣候。年日照數(shù)2 077.7 h,無霜期257 d,試驗期間月平均氣溫和月降水量如圖1所示。土壤類型為紅壤,有機質(zhì)質(zhì)量分?jǐn)?shù)25.06 g/kg,全氮1.11 g/kg,堿解氮87.37 mg/kg,速效磷23.31 mg/kg,速效鉀207.82 mg/kg,pH 6.79。
1.2 試驗設(shè)計
本試驗供試馬鈴薯(L)品種為“會澤2號”,小區(qū)試驗采用隨機區(qū)組設(shè)計,4個施氮量水平,3次重復(fù),小區(qū)面積32.5 m2(5 m×6.5 m)。馬鈴薯株距35 cm,行距均為50 cm。
4個施氮水平分別為不施氮(N0)、低氮(N1,比常規(guī)施氮減50%,67.5 kg/hm2)、常規(guī)施氮(N2,125 kg/hm2)、高氮(N3,比常規(guī)施氮高50%,187.5 kg/hm2)。分2次施入,基肥60%,現(xiàn)蕾期40%。磷肥(P2O5)75 kg/hm2,鉀肥(K2O)125 kg/hm2,磷鉀肥均以基肥形式施入。所用氮、磷、鉀肥分別為46%尿素、14%普鈣和50%硫酸鉀。
馬鈴薯于2015年4月4日播種,5月14日出苗,8月11日收獲,生育過程各處理中耕、培土、除草、病蟲害防治等田間管理保持一致。
1.3 樣品采集及測定方法
在馬鈴薯成熟期取中間2行進行測產(chǎn)。同時,取部分塊莖在105 ℃殺青30 min,65~70 ℃烘干至恒重,稱重并計算塊莖含水量,折算出每公頃馬鈴薯產(chǎn)量(含水量80%)。
在作物生育期每隔1周使用土鉆采集表層土壤(0~20 cm),如遇施肥和降雨等特殊情況增加采樣頻次,采集樣品立即保存在4 ℃冰箱,直到測定時取出。準(zhǔn)確稱取鮮土12 g,加入50 mL濃度為1 mol/L的KCl溶液,180 r/min震蕩1 h后過濾備用。濾液用連續(xù)流動分析儀(Bran Luebbe AA3,Germany)直接測定土壤NO3--N和NH4+-N含量。取濾液5 mL于50 mL容量瓶中,加入氧化劑在121~123 ℃高壓鍋中氧化30 min,冷卻定容后使用流動分析儀測定溶解性全氮(TDN)。將濾液過0.45m濾膜,吸取5 mL濾液,使用高錳酸鉀-外加熱法測定溶解性有機碳(DOC)。使用pH計水土比2.5:1測定pH。用烘干法測定土壤質(zhì)量含水量。溶解性有機氮(DON)=溶解性全氮含量(TDN)-硝態(tài)氮含量-銨態(tài)氮含量。以上指標(biāo)測定參照《土壤農(nóng)業(yè)化學(xué)分析方法》[22]。
采用靜態(tài)箱-氣相色譜法對土壤N2O排放量進行原位觀測。采樣箱由頂箱和底座兩部分組合而成,箱體材料為6 mm厚PVC板。靜態(tài)箱規(guī)格尺寸為40 cm×40 cm× 40 cm,箱內(nèi)配有攪拌空氣的小風(fēng)扇和溫度計,確保所采氣體均勻有代表性,所測溫度用于計算N2O排放通量。整個馬鈴薯生育期,每隔1周采集1次氣體樣品,遇施肥或降雨增加采樣頻次,采樣時間均安排在9:00-11:00。采樣時,在底座凹槽中加入2~3 cm的水(加水起到密封作用),蓋上頂箱。使用25 mL三通注射器分別于0、15、30 min進行取樣。取樣同時,使用土壤溫度計測定土壤15 cm溫度,使用土壤水分測定儀測定土壤體積含水量。N2O濃度采用安捷倫氣相色譜儀測定(GC;7890A GC System,Agilent Technologies,US)。
1.4 數(shù)據(jù)處理與統(tǒng)計分析
土壤N2O排放通量計算公式為[18]
式中為被測氣體的排放通量,g/(m2·h);為標(biāo)準(zhǔn)狀態(tài)下被測氣體濃度,g/m3;為單位時間內(nèi)取樣箱內(nèi)被測氣體濃度的變化量,g/h;為采樣時箱內(nèi)氣溫,℃;為采樣箱體積,m3;為采樣箱底面積,m2。
土壤孔隙含水量(Water-filled pore spaces, WFPS, %)[19]
式中SGC為土壤質(zhì)量含水量,%;BD為土壤容重,g/cm3;2.65為土壤密度,g/cm3。
氮素以N2O排放量占施肥量的比例計為N2O排放系數(shù)[20]。
式中為N2O排放系數(shù);為生育期施氮處理N2O累積排放量,kg/hm2;0為不施氮處理生育期N2O累積排放量,kg/hm2;為單位面積施肥量,kg/hm2。
累積N2O排放量[21]
式中為生育期內(nèi)氣體排放量,kg/hm2,為氣體排放通量,g/(m2·h),為采樣次數(shù),為采樣時間即距初次采樣的天數(shù),d。
硝酸鹽強度(Nitrate intensity,NI)反映某一時間尺度內(nèi)硝態(tài)氮累積量[21]。
式中為生育期表層(0~20 cm)土壤硝態(tài)氮含量,mg/kg,為采樣次數(shù),為采樣時間,d。
單位產(chǎn)量N2O累積排放量(Yield-scaled N2O intensity,Y-SN2O):
式中Y-SN2O為單位產(chǎn)量N2O累積排放量,g/kg,為作物產(chǎn)量,kg/hm2。
采用excel 2010、SPSS 17.0軟件對數(shù)據(jù)進行處理和分析,采用LSD進行處理間差異顯著性檢驗。
2.1 不同施氮水平下馬鈴薯產(chǎn)量及土壤N2O排放情況
整個馬鈴薯生長季,馬鈴薯種植土壤都是大氣N2O排放的源,呈現(xiàn)明顯的季節(jié)性差異(圖2)。N0、N1、N2和N3處理土壤N2O排放通量分別為1.39~18.63、2.53~67.61、3.70~250.07和3.80~391.33g/(m2·h),平均達9.61、23.60、47.16和68.45g/(m2·h)(表1)。施肥顯著增加馬鈴薯土壤N2O排放通量(<0.05),N1、N2和N3分別是NO處理的2.5、4.9、7.1倍。
整個馬鈴薯生長季N2O共觀測214 d,土壤N2O累積排放量如表1所示。4個處理累積排放量在0.50~3.30 kg/hm2之間,隨著施氮量增加,累積N2O排放量顯著增加(<0.05),N1、N2和N3處理是N0處理的2.3、4.4、6.7倍。施氮顯著增加氮素以N2O形式損失的比例,N1、N2和N3處理土壤N2O排放系數(shù)分別為0.93%、1.36%、1.50%。同時,施氮也顯著增加馬鈴薯產(chǎn)量(<0.05),較不施氮(N0)處理,N1、N2和N3處理馬鈴薯產(chǎn)量增加78.5%、93.1%和95.6%。與N1處理相比,N2和N3處理馬鈴薯產(chǎn)量分別增加8.2%和9.6%,N2和N3處理間差異不顯著。盡管施氮顯著增加馬鈴薯產(chǎn)量,隨施氮量增加,單產(chǎn)N2O排放量損失越大,暗示在高氮水平下,生產(chǎn)1 kg馬鈴薯將損失更多的氮素,所付出的環(huán)境代價更大。
表1 不同施氮水平馬鈴薯土壤N2O排放及其相關(guān)影響因子
注:同一列中數(shù)值后不同小寫字母表示處理間0.05水平差異顯著性。
Note: Different lowercase letters following values in same column means significant difference among treatments at 5% level.
硝態(tài)氮強度為整個馬鈴薯生育期內(nèi)硝態(tài)氮累積量,與土壤N2O排放通量密切相關(guān)。隨施氮量增加,土壤硝態(tài)氮累積強度逐漸增加,較不施氮處理,分別增加了0.86、0.89和1.37g/(d·kg)(表1)。以累積N2O排放量與硝態(tài)氮強度的商表征單位硝態(tài)氮強度累積N2O排放量(無量綱),反映隨土壤硝態(tài)氮強度變化土壤累積N2O排放的響應(yīng)程度。通過計算可得,N0、N1、N2和N3施氮處理單位硝態(tài)氮強度累積N2O排放量分別為0.51、0.70、1.17和1.40,不同施氮水平差異顯著(<0.05)。土壤硝態(tài)氮強度能更直觀地反映施氮對土壤N2O排放的影響程度。
施氮顯著增加馬鈴薯產(chǎn)量,但馬鈴薯氮素農(nóng)學(xué)利用率隨施氮量增加呈逐漸降低趨勢,N1、N2和N3處理依次為17.7、11.3和7.7 kg/kg。施氮顯著增加生育期馬鈴薯累積N2O排放量,且土壤N2O排放系數(shù)隨施氮量增加,呈顯著上升趨勢,N1、N2和N3處理N2O排放系數(shù)分別為0.93%、1.36%和1.50%。施氮提高馬鈴薯產(chǎn)量同時也導(dǎo)致N2O排放增加,當(dāng)產(chǎn)量最大時,繼續(xù)施氮馬鈴薯不再增產(chǎn),而土壤N2O排放量仍繼續(xù)增加。因此要獲得高產(chǎn)低N2O排放不現(xiàn)實,需要在產(chǎn)量和N2O排放之間折衷。
從表1可看出,當(dāng)施氮量為67.5 kg/hm2時,N2O排放系數(shù)為0.93%,接近1%(IPCC報道農(nóng)田生態(tài)系統(tǒng)平均N2O排放系數(shù))[6],產(chǎn)量相比最高產(chǎn)量僅降低7.5%;當(dāng)施氮量為125 kg/hm2時,盡管產(chǎn)量達最大,但N2O排放系數(shù)(1.36%)超過1%。因而,該試驗地兼顧施氮量和累積N2O排放的環(huán)保施氮量可在62.5 kg/hm2的基礎(chǔ)上有所增加,但需低于125 kg/hm2。
2.2 土壤理化性質(zhì)變化及土壤N2O排放影響因子
從圖1和圖3中可以看出,馬鈴薯生育期大氣溫度和地下0~20 cm深處土壤溫度具有相似季節(jié)變化規(guī)律,5-8月溫度最高,最高溫度32 ℃,最低溫度?1 ℃,平均溫度18.3 ℃,不同施氮處理間土壤溫度沒有顯著不同。不同施氮水平土壤孔隙含水量(WFPS)與降雨量變化趨勢相似,存在明顯季節(jié)變化規(guī)律,變化幅度較大,為9.5%~124.9%,平均為82.2%,不同施氮處理土壤孔隙含水量變化規(guī)律一致。
生育期不同施氮水平馬鈴薯土壤溫度、濕度及硝態(tài)氮和銨態(tài)氮動態(tài)變化(0~20 cm)見圖3。整個生長季,土壤銨態(tài)氮質(zhì)量分?jǐn)?shù)大多時候低于1 mg/kg,不同施氮處理間沒有顯著差異。土壤無機氮中硝態(tài)氮占比較大,是銨態(tài)氮質(zhì)量分?jǐn)?shù)的5~10倍。不同施氮處理土壤硝態(tài)氮含量季節(jié)變化趨勢一致,明顯受施肥時間和作物氮素吸收的影響,在5~7月最高,之后逐漸降低。N0、N1、N2和N3處理土壤硝態(tài)氮平均質(zhì)量分?jǐn)?shù)為4.78、8.37、10.07和12.43 mg/kg,施氮量增加顯著提高土壤硝態(tài)氮含量,N1、N2、N3分別為N0處理的1.8、2.1和2.6倍。
針對不同施氮水平,運用不同時期土壤理化因子與土壤N2O排放通量進行相關(guān)分析,結(jié)果表明(表2),N0施氮水平下,土壤N2O排放通量與土壤溫度和土壤濕度極顯著相關(guān)(<0.01),與土壤NH4+-N含量呈顯著負(fù)相關(guān)(<0.05);而N1施氮水平下,土壤N2O排放通量與土壤濕度顯著相關(guān)(<0.05),與土壤溫度極顯著相關(guān)(<0.01),與其他因素?zé)o顯著相關(guān)性。隨施氮量增加,土壤溫度和濕度與土壤N2O排放通量相關(guān)性不顯著,而N3處理時,NO3--N、TDN含量顯著影響土壤N2O排放(<0.05),DON含量極顯著影響土壤N2O排放(<0.01)。不同施氮水平下(N0~N3),土壤濕度、溫度、溶解性氮(NO3--N、TDN、DON)含量顯著影響土壤N2O排放。
表2 土壤理化因子與N2O排放的相關(guān)性
注:**表示極顯著相關(guān)(P<0.01);*表示顯著相關(guān)(P<0.05)。
Note: ** represented significant correlation at 0.01 level, * represented significant correlation at 0.05 level.
氮肥用量是土壤N2O排放最重要的影響因子,也是最有效的調(diào)控措施。本研究中,施氮顯著增加土壤N2O累積排放量(表1),這與其他研究結(jié)果一致[21,23]。
在整個生育期共出現(xiàn)2次較高的排放峰值,分別是馬鈴薯發(fā)稞期(5月23日)和收獲期(8月11日)。基肥深施后受土壤含水量的影響,土壤N2O排放通量并沒有顯著增加,而是在第1次降雨后土壤N2O排放通量才迅速增加,與Zebarth等[18,20-21]的研究一致??赡苁腔噬钍┖?,土壤質(zhì)地較干,土壤N2O并沒有立即釋放[24-25]。另一N2O排放峰值發(fā)生在馬鈴薯收獲期,受翻耕和土壤干-濕交替影響,迅速產(chǎn)生一個短暫的N2O排放高峰[26-28]。很多研究顯示,翻耕會破壞土壤結(jié)構(gòu)體釋放土壤團聚體中的有機質(zhì),促進土壤有機質(zhì)礦化、無機氮的釋放[29-30]和土壤微生物的降解及N的釋放[31],從而促進硝化和反硝化作用,增加土壤N2O的排放[32]。
農(nóng)業(yè)中有84%的N2O排放來自于土壤微生物的硝化和反硝化過程,而氮肥施用一方面為土壤微生物提供充足的氮源,且直接或間接引起土壤溫度、濕度、NO3--N、NH4+-N等變化,進而影響土壤微生物活性,最終導(dǎo)致土壤N2O排放的不同[33-34]。前人研究表明土壤溫度和濕度顯著影響土壤N2O排放,而針對不同施氮量下土壤N2O排放的影響因素不清楚[35]。本文研究發(fā)現(xiàn),在不施氮和低氮水平(N0、N1)土壤N2O排放主要受土壤溫度和濕度影響,而高氮水平(N2、N3)時無機氮影響較大。在外源氮輸入較少時,土壤硝態(tài)氮和銨態(tài)氮含量處于低水平,氮素含量對硝化和反硝化過程的影響較弱,土壤N2O排放主要受溫度和濕度的影響。而當(dāng)土壤有效氮素盈余過多時則土壤N2O排放受施氮量影響[36]。盡管土壤溫度、濕度仍然對土壤N2O排放有貢獻作用,其作用遠(yuǎn)小于土壤氮素的影響,肥料效應(yīng)掩蓋了土壤溫度和水分的效應(yīng),使得相關(guān)性并不顯著[37-38]。
本研究顯示,土壤N2O排放對硝態(tài)氮累積強度更為敏感??梢酝ㄟ^降低硝態(tài)氮強度減少土壤N2O排放[20,39]。因此,在農(nóng)業(yè)生產(chǎn)中,通過調(diào)整施氮次數(shù)(少量多次)、施氮時期(與作物氮吸收相匹配)有望大幅降低土壤N2O排放。本試驗結(jié)果還顯示,土壤累積N2O排放量隨施氮水平提高而加倍增加,即低氮處理,土壤N2O累積排放量隨施氮量緩慢增加,超過一定施氮量,土壤N2O排放量將會急劇增加,Snyder等[40]的研究結(jié)果也證實這一點。可能是過量施氮后,作物對氮素的吸收利用率降低,多余的氮素進入土壤系統(tǒng),增加了硝化和反硝化作用的底物,加劇土壤N2O的排放[41]。
前人研究表明,施氮量在80~180 kg/hm2時,可實現(xiàn)馬鈴薯高產(chǎn),繼續(xù)施加氮肥馬鈴薯產(chǎn)量不再增加[19,42]。黃繼川等[43]研究認(rèn)為,馬鈴薯產(chǎn)量隨施氮量增加先增加后降低,施氮240 kg/hm2時產(chǎn)量最大。本研究中,施氮量在125 kg/hm2時產(chǎn)量即達到最大,與Zebarth和井濤等[18,42]的馬鈴薯高產(chǎn)施氮量接近,但遠(yuǎn)低于黃繼川等[43]高產(chǎn)施氮量。這主要由于本研究為多年田間定位試驗,N0處理3年未施氮肥,與N1、N2、N3處理間產(chǎn)量差異較大,造成最高產(chǎn)量時施氮量較低。同時,馬鈴薯生育后期大量降雨也造成施氮量差異較大。另外,馬鈴薯種植品種、施肥方式(氮肥60%作基肥,40%于現(xiàn)蕾期施用)及土壤性質(zhì)(有機質(zhì)、速效鉀和pH值)等方面的差異也一定程度影響施氮量。本研究僅針對于特殊氣候和土壤條件,特殊的種植方式以及土壤肥力等因素最終影響馬鈴薯的施氮量及產(chǎn)量關(guān)系,研究結(jié)果尚需在其他區(qū)域、其他種植方式上進一步驗證。因此,確保產(chǎn)量并控制土壤N2O排放的研究應(yīng)該得到更多關(guān)注。
1)施氮增加馬鈴薯產(chǎn)量和土壤N2O累積排放量,當(dāng)施氮125 kg/hm2時產(chǎn)量最大,繼續(xù)增加施氮量,馬鈴薯產(chǎn)量不再增加,過多的氮素將導(dǎo)致土壤N2O排放量急劇增加。
2)土壤N2O排放通量受土壤溫度、濕度和氮素含量等因素影響,不同施氮量下影響N2O排放的理化因子各異。低氮處理,土壤溫度和濕度顯著影響土壤N2O通量,高氮處理,主要受氮素含量影響。
3)施氮增加馬鈴薯產(chǎn)量,但也增加土壤N2O累積排放量。該試驗地施氮量控制在62.5 kg/hm2左右可兼顧試驗區(qū)馬鈴薯產(chǎn)量,同時有效降低N2O排放。
[1] Zhu Z L, Chen D L. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies[J]. Nutrient Cycling in Agroecosystems, 2002, 63(2): 117-127.
[2] 張福鎖,江榮風(fēng),陳清. 我國肥料產(chǎn)業(yè)和科學(xué)施肥戰(zhàn)略研究報告[M]. 北京:中國農(nóng)業(yè)大學(xué)出版社,2008.
[3] Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen Cycle: Recent Trends Questions and potential solutions[J]. Science, 2007, 5878(320): 889-892.
[4] Choi W J, Han G H, Lee S M, et al. Impact of land-use types on nitrate contents ration and15N in unconfined groundwater in rural areas of Korea[J]. Agriculture Ecosystems and Environment, 2007, 120(2/3/4): 259-268.
[5] Kurt M, Walter S, GüNter L. Growth, composition, biological N2fixation and nutrient uptake of a leguminous cover crop mixture and the effect of their removal on field nitrogen balances and nitrate leaching risk[J]. Nutrient Cycling in Agroecosystems, 2008, 82(3): 233-249.
[6] IPCC. Climate change 2001: The scientific Basis[R]. Cambridge, New York: Cambridge University Press, 2001.
[7] Ravishankara A R, Daniel J S, Portmann R W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century.[J]. Science, 2009, 326(5949):123-125.
[8] Liu X, Chen C R, Wang W J, et al. Soil environmental factors rather than denitrification gene abundance control N2O fluxes in a wet sclerophyll forest with different burning frequency[J]. Soil Biology & Biochemistry, 2013, 57(10):292-300.
[9] Kanter D, Davidson E, Alcamo J, et al. Drawing Down N2O to Protect Climate and the Ozone Layer: A UNEP Synthesis Report[J]. 2013.
[10] 國家發(fā)展和改革委員會. 中華人民共和國氣候變化初始國家信息通報[M]. 北京:中國計劃出版社,2004.
[11] 王桂良. 中國三大糧食作物農(nóng)田活性氮損失與氮肥利用率的定量分析[D]. 北京:中國農(nóng)業(yè)大學(xué),2014.
Wang Guiliang. Quantitative Analysis of Reactive Nitrogen Losses and Nitrogen Use Efficiency of Three Major Grain Crops in China[D]. Beijing: China Agricultural University, 2014. (in Chinese with English abstract)
[12] Olander L, Wollenberg E, Tubiello F, et al. Advancing agricultural greenhouse gas quantification[J]. Environmental Research Letters, 2013, 8(1): 011002.
[13] Johnson J M, Franzluebbers A J, Weyers S L, et al. Agricultural opportunities to mitigate greenhouse gas emissions[J]. Environmental Pollution, 2007, 150(1): 107-124.
[14] 趙婷婷,鄭順林,萬年鑫,等. 早期施氮對馬鈴薯苗期抗旱能力的影響[J]. 干旱區(qū)資源與環(huán)境,2016,30(5):185-190.
Zhao Tingting, Zheng Shunlin, Wan Nianxin, et al. Effects of early application of nitrogen on drought-resistance capability of potato (L)[J]. Agricultural Research in the Arid Areas, 2016, 30(5): 185-190. (in Chinese with English abstract)
[15] FAO(Food and Agriculture Organization). FAOSTAT database collections[EB/OL] //http: //f aostat. fao. org/site/422/Desktop_D efault. aspx? PageID=422#ancor, 2010.
[16] 劉潤梅,范茂攀,付云章,等. 云南省馬鈴薯施肥量與化肥偏生產(chǎn)力的關(guān)系研究[J]. 土壤學(xué)報,2014,51(4):753-760.
Liu Runmei, Fan Maopan, Fu Yunzhang, et al. Relationship between fertilization rate and fertilizer partial factor productivity in potato production in Yunnan province[J]. Acta Pedologica Sinica, 2014, 51(4):753-760. (in Chinese with English abstract)
[17] Food and Agriculture Organization of the United Nations. FAOSTAT[DB/OL]. Http: //faostat3. Fao. org /faostat-gateway /go /to /download /Q /QC /E, 2014/2/8.
[18] Zebarth B J, Snowdon E, Burton D L, et al. Controlled release ferilizer product effects on potato crop response and nitrous oxide emissions under rain-fed production on a medium-textured soil[J]. Canadian Journal of Soil Science, 2012, 92(5): 759-769.
[19] Vallejo A, Skiba U M, Garciatorres L, et al. Nitrogen oxides emission from soils bearing a potato crop as influenced by
fertilization with treated pig slurries and composts[J]. Soil Biology & Biochemistry, 2006, 38(9):2782-2793.
[20] Burton D L, Zebarth B J, Gillam K M, et al. Effect of split application of fertilizer nitrogen on N2O emissions from potatoes[J]. Canadian Journal of Soil Science, 2008, 88(2): 229-239.
[21] Gao Xiaopeng, Tenuta Mario, Nelson Alison, et al. Effect of nitrogen fertilizer rate on nitrous oxide emission from irrigated potato on a clay loam soil in Manitoba, Canada[J]. Canadian Journal of Soil Science, 2013, 93(1): 1-11.
[22] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法[M]. 北京:中國農(nóng)業(yè)科技出版社,2000.
[23] 王海云,邢光熹. 不同施氮水平對稻麥輪作農(nóng)田氧化亞氮排放的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué),2009,28(12):2631-2636.
Wang Haiyun, Xing Guangxi. Effect of nitrogen fertilizer rates on nitrous oxide emission from paddy field under rice-wheat rotation[J]. Journal of Agro-Environment Science, 2009, 28(12): 2631-2636. (in Chinese with English abstract)
[24] 張岳芳,周煒,王子臣,等. 氮肥施用方式對油菜生長季氧化亞氮排放的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2013,32(8):1690-1696.
Zhang Yuefang, Zhou wei, Wang Zichen, et al. Effects of nitrogen fertilizer application modes on nitrogen oxide emissions during growing season of oilseed rape ()[J]. Journal of Agro-Environment Science, 2013, 32(8): 1690-1696. (in Chinese with English abstract)
[25] 張婧,夏光利,李虎,等. 一次性施肥技術(shù)對冬小麥/夏玉米輪作系統(tǒng)土壤N2O排放的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2016,35(1):195-204.
Zhang Jing, Xia Guangli, Li Hu, et al. Effect of single basal fertilization on N2O emissions in wheat and maize rotation system[J]. Journal of Agro-Environment Science, 2016, 35(1): 195-204. (in Chinese with English abstract)
[26] Beare M H, Gregorich E G, St-Georges P. Compaction effects on CO2and N2O production during drying and rewetting of soil[J]. Soil Biology and Biochemistry, 2009, 41(3): 611-621.
[27] Ruser R, Flessa H, Russow R, et al. Emission of N2O, N2and CO2from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting[J]. Soil Biology and Biochemistry, 2006, 38(2): 263-274.
[28] Goldberg S D, Gebauer G. N2O and NO fluxes between a Norway spruce forest soil and atmosphere as affected by prolonged summer drought[J]. Soil Biology and Biochemistry, 2009, 41(9): 1986-1995.
[29] Estavillo J M, Merino P, Pinto M, et al. Short term effect of ploughing a permanent pasture on N2O production from nitrification and denitrification[J]. Plant Soil, 2002, 239(2): 253-265.
[30] Kessavalou A, Mosier A R, Doran J W, et al. Fluxes of carbon dioxide, nitrous oxide, and methane in grass sod and winter wheat-fallow tillage management[J]. Journal of Environmental Quality, 1998, 27(5): 1094-1104.
[31] Kristensen H L, Debosz K, McCartye G W. Short-term effects of tillage on mineralization of nitrogen and carbon in soil[J]. Soil Biology and Biochemistry, 2003, 35(7): 979-986.
[32] Austin A T, Yahdjian L, Stark J M, et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems[J]. Oecologia, 2004, 141(2): 221-235.
[33] Ball B C, Scott A, Parker J P, et al. Field N2O, CO2and CH4fluxes in relation to tillage compaction and soil quality in Scotland[J]. Soil and Tillage Research, 1999, 53(1):29-39.
[34] Li Hu, Qiu Jianjun, Wang Ligang, et al. Modelling impacts of alternative farming management practices on greenhouse gas emissions from a winter wheat-maize rotation system in China[J]. Agriculture, Ecosystem and Environment, 2010, 135(1/2): 24-33.
[35] 王改玲,陳德立,李勇. 土壤溫度、水分和NH4+-N濃度對土壤硝化反應(yīng)速度及N2O排放的影響[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報,2010,18(1):1-6.
Wang Gailing, Chen Deli, Li Yong. Effect of soil temperature, moisture and NH4+-N concentration on nitrification and nitrification-induced N2O emission[J]. Chinese Journal of Eco-Agriculture, 2010, 18(1): 1-6. (in Chinese with English abstract)
[36] 焦燕,黃耀,宗良綱,等. 氮肥水平對不同土壤N2O排放的影響[J]. 環(huán)境科學(xué), 2008,29(8):2094-2098.
Jiao Yan, Huang Yao, Zong Lianggang, et al. Impact of Different Levels of Nitrogen Fertilizer on N2O Emission from Different Soils[J]. Environment Science, 2008, 29(8):2094-2098. (in Chinese with English abstract)
[37] 張中杰,朱波,江長勝,等. 川中丘陵區(qū)旱地小麥生態(tài)系統(tǒng)CO2、N2O和CH4排放特征[J]. 生態(tài)學(xué)雜志,2005,24(2):131-135.
Zhang Zhongjie, Zhu Bo, Jiang Changsheng, et al. CO2, N2O and CH4emission from dry-land wheat ecosystem in hilly area of central Sichuan Basin[J]. Chinese Journal of Ecology, 2005, 24(2): 131-135. (in Chinese with English abstract)
[38] 董玉紅,歐陽竹,李運生,等. 肥料施用及環(huán)境因子對農(nóng)田土壤CO2和N2O排放的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2005,24(5):913-918.
Dong Yuhong, Ou Yangzhu, Li Yunsheng, et al.Influence of fertilization and environmental factors on CO2and N2O fluxes from agricultural soil[J]. Journal of Agro-Environment Science, 2005, 24(5):913-918. (in Chinese with English abstract)
[39] Avrahami S, Bohannan B J M. N2O emission rates in a California meadow soil are influenced by fertilizer level, soil moisture and the community structure of ammonia-oxidizing bacteria[J]. Global Change Biology, 2009, 15(3): 643-655.
[40] Snyder C S, Bruulsema T W, Jensen T L, et al. Review of greenhouse gas emissions from crop production systems and fertilizer management effects[J]. Agriculture, Ecosystems and Environment, 2009, 133(3): 247-266.
[41] 熊舞,夏永秋,周偉,等. 菜地氮肥用量與N2O排放的關(guān)系及硝化抑制劑效果[J]. 土壤學(xué)報,2013,50(4):743-751. Xiong Wu, Xia Yongqiu, Zhou Wei, et al. Relationship between nitrogen application rate and nitrous oxide emission and effect of nitrification inhibitor in vegetable farming system[J]. Acta Pedologica Sinica, 2013, 50(4):743-751. (in Chinese with English abstract)
[42] 井濤,樊明壽,周登博,等. 滴灌施氮對高壟覆膜馬鈴薯產(chǎn)量、氮素吸收及土壤硝態(tài)氮累積的影響[J]. 植物營養(yǎng)與肥料學(xué)報,2012,18(3):654-661.
Jing Tao, Fan Mingshou, Zhou Dengbo, et al. Effects of nitrogen fertilization on potato tuber yield,N uptake and soil NO3--N accumulation under plastic mulching with drip irrigation[J]. Journal of Plant Nutrition and Fertilizer Science, 2012, 18(3): 654-661. (in Chinese with English abstract)
[43] 黃繼川,彭智平,于俊紅,等. 不同氮肥用量對冬種馬鈴薯產(chǎn)量品質(zhì)和氮肥利用率的影響[J]. 熱帶作物學(xué)報,2014,35(2):266-270.
Huang Jichuan, Peng Zhiping, Yu Junhong, et al. Effects of nitrogen application rate on yield, quality and nitrogen efficiency of winter potato[J]. Chinese Journal of Tropical Crops, 2014, 35(2): 266-270. (in Chinese with English abstract)
Analysis on N application rates considering yield and N2O emission in potato production
Zhou Long, Long Guangqiang, Tang Li※, Zheng Yi
(650201,)
Agriculture soil is the important source of N2O emission. Fertilization can increase crop yield, but also can enhance emissions of greenhouse gas N2O. There is an important guiding significance to analyze the relationship between yield, soil N2O emissions under varied nitrogen levels for ensuring crop yield and reducing environment impacts. The potato is the fourth largest planting crops in the world, and China is the biggest producer. Effect of N application rates on soil N2O emission and crop yield have been intensively studied in the temperate zone with continental climate, and these studies simply focused on either yield or N2O emission, while it has never been reported in the north subtropical monsoon climate. In this study, field experiment was conducted in the Daheqiao experiment base (23°32′N, 103°13′E) of Yunnan agricultural university, in Xundian County, Yunnan province of China, from April to November in 2015. And four N application levels (unfertilized-N0, 0; low nitrogen application rate -N1, 67.5 kg/hm2; conventional nitrogen application rate-N2, 125 kg/hm2; high nitrogen application rate -N3, 187.5 kg/hm2) with three replications were compared based on potato cultivation of Huize 2. Aiming to study the effect of N application rates on potato yield and soil N2O emission at growing period, soil N2O emission was collected in situ by static chamber and analyzed using gas chronographs technique. Simultaneously, optimizing N application rates to increase yield and minimize N2O emission was analyzed. The results showed that fertilization increased the potato yield and cumulative N2O emission significantly. The soil was a source of atmospheric N2O emissions in whole potato growing season, and an obvious seasonal difference was monitored. Compared with N0, N1, N2, and N3 treatments increased by78.5%, 93.1% and 95.6% in yield. The cumulative N2O emission of N1, N2, and N3 treatments were 2.3, 4.4, and 6.7 times that of N0 treatment, respectively. The potato yield was largest when N application rates 125 kg/hm2, and no longer increased with the increasing N application rate. The first and secondary peaks of N2O emission were observed at the flourishing stage (23 May) and harvest stage (11 August), respectively. Meanwhile, N2O emission factor and yield-scaled N2O intensity significantly improved with the increase of N fertilizer. The proportion of the loss of nitrogen in the form of N2O significantly increased with the increasing N fertilizer. Nitrate intensity could effectively reflect the intensity of soil N2O emission. N2O emission flux was significantly correlated with soil temperature and humidity only at low N levels (N0, N1) .Soil NO3--N content was the key factor for N2O emission at high N levels. Comprehensive considering the average N2O emission coefficient (1%) reported by IPCC as the fertilization standard of nitrogen and potato yield in farmland ecosystem ,therefore, the reasonable N application rates were about 62.5 kg/hm2in potato production.
yield; fertilizers; emission control; potato; N2O emission
10.11975/j.issn.1002-6819.2017.02.021
S1
A
1002-6819(2017)-02-0155-07
2016-03-31
2016-11-20
國家自然科學(xué)基金項目(41361065,41201289,31210103906);云南省科技計劃重點項目(2015FA022)。
周 龍,主要從事施肥與作物養(yǎng)分吸收及生態(tài)效應(yīng)研究。昆明云南農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,650201。Email:zhoulongl.com@qq.com
湯 利,教授,博士生導(dǎo)師,主要從事作物養(yǎng)分高效利用研究。昆明云南農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,650201。Email:ltang@ynau.edu.cn農(nóng)業(yè)工程學(xué)會會員:湯利
周 龍,龍光強,湯 利,鄭 毅. 綜合產(chǎn)量和土壤N2O排放的馬鈴薯施氮量分析[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(2):155-161. doi:10.11975/j.issn.1002-6819.2017.02.021 http://www.tcsae.org
Zhou Long, Long Guangqiang, Tang Li, Zheng Yi. Analysis on N application rates considering yield and N2O emission in potato production[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 155-161. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.02.021 http://www.tcsae.org