国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

連接蛋白43及相關(guān)通道在脊髓損傷中的作用的研究進(jìn)展

2017-09-20 04:41張雙霜胡霽黃錦秀
關(guān)鍵詞:炎性反應(yīng)脊髓損傷

張雙霜+胡霽+黃錦秀

[摘要] 連接蛋白43是廣泛分布于中樞神經(jīng)系統(tǒng)膠質(zhì)細(xì)胞表面的四次跨膜蛋白,可在相鄰細(xì)胞間以及細(xì)胞與外環(huán)境間形成直接物質(zhì)交換通道——半通道和縫隙連接。脊髓損傷后,連接蛋白43的表達(dá)顯著上調(diào),同時(shí)細(xì)胞表面的半通道和縫隙連接大量開(kāi)放,造成胞內(nèi)代謝分子丟失以及胞外物質(zhì)過(guò)量進(jìn)入胞內(nèi),從而介導(dǎo)了損傷后的炎性反應(yīng)、血脊髓屏障損傷以及神經(jīng)元死亡等重要病理過(guò)程的發(fā)生發(fā)展,并在“二次損傷”中扮演重要角色。通過(guò)阻斷劑或其他處理方法調(diào)節(jié)脊髓組織連接蛋白43的表達(dá)水平并抑制其相關(guān)通道開(kāi)放后,對(duì)脊髓損傷有明顯的改善作用。因此,連接蛋白43很可能是治療脊髓損傷的新靶點(diǎn),本文將對(duì)連接蛋白43介導(dǎo)脊髓損傷的相關(guān)機(jī)制以及基于連接蛋白43的脊髓損傷治療方法作一綜述。

[關(guān)鍵詞] 連接蛋白43;脊髓損傷;炎性反應(yīng);血脊髓屏障;神經(jīng)元死亡

[中圖分類號(hào)] R614.2 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-7210(2017)08(c)-0066-04

[Abstract] Connexin 43 are integral membrane proteins which span the plasma membrane four times, and widely distributed in the central nervous system. Connexin 43 can form hemi channels and gap junctions which provides a direct cytoplasmic pathway between contacting cells. In the spinal cord injury, the levels of connexin 43 mRNA and protein obviously up-regulated. Also, the permeability of the hemichannels and gap junctions increased, which form a well-known pathway for the release of intracellularmetabolites and the entry of extracellularsubstances, that can play major roles in the secondary injury by the way of aggravating the inflammatory response, disruption of blood-spinal cord barrier, and neuronal death. In addition, the blockers of connexin 43 channels and other methods which regulate the expression of connexin 43 and the permeability of connexin 43 channels can act obvious protective effects in the spinal cord injury. This review discusses the latent injury mechanisms induced by connexin 43 and connexin 43 channels in the spinal cord injury, and relevant treatments on the basis of it.

[Key words] Connexin 43; Spinal cord injury; Inflammatory response; Blood-spinal cord barrier; Neuronal death

脊髓損傷(spinal cord injury,SCI)是源于脊髓組織的機(jī)械性破壞,不僅導(dǎo)致?lián)p傷節(jié)段的運(yùn)動(dòng)和感覺(jué)功能障礙,還中斷了大腦與脊髓之間的神經(jīng)信號(hào)通路,嚴(yán)重影響患者的神經(jīng)功能。在全球范圍內(nèi),SCI的發(fā)病率高達(dá)236/1000000~1009/1000000,其后長(zhǎng)期的功能障礙以及經(jīng)濟(jì)負(fù)擔(dān)都嚴(yán)重影響患者的生理、心理及生活質(zhì)量,激素治療、脊髓減壓及康復(fù)訓(xùn)練等現(xiàn)有的治療手段對(duì)神經(jīng)功能的改善都極為有限。因此,需要效果確切的治療方法[1-2]。近年發(fā)現(xiàn),連接蛋白(connexins,Cx)及其相關(guān)通道可能作為一個(gè)重要靶點(diǎn),在SCI及神經(jīng)保護(hù)等方面扮演重要角色[3]。

Cx是一種廣泛分布于人體各處的四次跨膜蛋白,6個(gè)Cx在細(xì)胞膜表面形成一個(gè)連接子或半通道,而兩個(gè)相鄰細(xì)胞間的半通道相互對(duì)接,形成了允許相鄰細(xì)胞胞質(zhì)內(nèi)離子和小分子物質(zhì)直接交換的通道——縫隙連接(gap junction,GJ)[4]。Cx家族包括:Cx29、30、32、36、40、43、45等,在中樞神經(jīng)系統(tǒng)(central nervous system,CNS)含量最多的是Cx43[5]。Cx43胞內(nèi)CT結(jié)構(gòu)域包含12種以上的絲氨酸和酪氨酸磷酸化位點(diǎn),而這些位點(diǎn)磷酸化狀態(tài)的改變是調(diào)節(jié)Cx43相關(guān)通道(半通道和GJ)通透性的關(guān)鍵[6-7]。已經(jīng)證實(shí),SCI后Cx43及其mRNA表達(dá)明顯增加[8]。并且,眾多研究發(fā)現(xiàn),降低Cx43的表達(dá)及其相關(guān)通道的開(kāi)放可明顯改善SCI后的神經(jīng)功能[9-11]。提示Cx43及其相關(guān)通道可能通過(guò)某些機(jī)制介導(dǎo)了SCI后的病理發(fā)展過(guò)程,而Cx43則很可能是治療SCI的新靶點(diǎn)。因此,本文將對(duì)Cx43介導(dǎo)SCI的相關(guān)機(jī)制以及基于Cx43的SCI治療方法作一綜述。

1 Cx43在SCI中的作用

1.1 Cx43介導(dǎo)的炎性反應(yīng)

炎癥應(yīng)答是造成脊髓“二次損傷”的重要原因之一,炎細(xì)胞向損傷區(qū)域的募集浸潤(rùn)以及活性物質(zhì)的釋放,導(dǎo)致脊髓組織微血管通透性增高、軸索退化和神經(jīng)細(xì)胞進(jìn)行性死亡。小膠質(zhì)細(xì)胞廣泛分布于中樞神經(jīng)系統(tǒng),可在組織損傷信號(hào)的刺激下發(fā)生增殖活化,釋放IL-1β、TNF-α等前炎癥因子趨化血源性炎癥細(xì)胞向損傷區(qū)域的浸潤(rùn),從而起始和調(diào)節(jié)SCI后的炎癥應(yīng)答[12-13]。正常情況下,小膠質(zhì)細(xì)胞處于靜息狀態(tài)不表達(dá)或表達(dá)極少量的Cx43和GJ,活化后的小膠質(zhì)細(xì)胞顯著上調(diào)Cx43和GJ表達(dá)[14],而Cx43表達(dá)的變化在小膠質(zhì)細(xì)胞的活化過(guò)程中發(fā)揮重要作用。O′Carroll等[10]將Cx43模擬肽(Cx43特異性阻斷劑)用于大鼠脊髓壓迫損傷模型后發(fā)現(xiàn),通過(guò)下調(diào)Cx43的表達(dá)以及維持Cx43的磷酸化狀態(tài),能降低脊髓組織中小膠質(zhì)細(xì)胞的活化以及前炎癥因子IL-1β、TNF-α的釋放,改善SCI后的炎性反應(yīng)和神經(jīng)元功能。在另一項(xiàng)大鼠脊髓壓迫損傷研究中,同樣也證實(shí)通過(guò)阻斷Cx43的表達(dá)能降低小膠質(zhì)細(xì)胞的活化,并且能改善由Cx43介導(dǎo)的血脊髓屏障滲透性變化,從而減少炎癥細(xì)胞向損傷區(qū)域浸潤(rùn)[9]。這些研究結(jié)果說(shuō)明,SCI后Cx43及其相關(guān)通道在由小膠質(zhì)細(xì)胞活化介導(dǎo)的炎癥應(yīng)答過(guò)程中扮演極其關(guān)鍵的角色。endprint

1.2 Cx43介導(dǎo)的血脊髓屏障破壞

血脊髓屏障(blood-spinal cord barrier,BSCB)由脊髓毛細(xì)血管內(nèi)皮細(xì)胞及其間的緊密連接蛋白、基膜、血管周細(xì)胞和星形膠質(zhì)細(xì)胞終足組成,通過(guò)阻礙血液循環(huán)和脊髓組織之間的物質(zhì)擴(kuò)散來(lái)維持脊髓微環(huán)境的穩(wěn)定,從而保證神經(jīng)元的正常功能[15]。BSCB滲透性的改變會(huì)加劇脊髓水腫,增強(qiáng)白細(xì)胞浸潤(rùn)和炎性反應(yīng),在進(jìn)一步導(dǎo)致神經(jīng)細(xì)胞死亡過(guò)程中扮演重要角色[16]。Cronin等[9]研究發(fā)現(xiàn),SCI后出現(xiàn)的Cx43表達(dá)上調(diào)不僅發(fā)生在膠質(zhì)細(xì)胞,而是在損傷早期就同樣顯著上調(diào)表達(dá)在脊髓白質(zhì)的小血管表面,并且通過(guò)注射熒光標(biāo)記的牛血清蛋白評(píng)價(jià)損傷區(qū)域血管滲透性后證實(shí),這些血管滲透性增加,促進(jìn)白蛋白向損傷區(qū)域及其周圍溢出,且這一現(xiàn)象能被Cx43特異性阻斷劑所抑制。該研究說(shuō)明Cx43介導(dǎo)了SCI后的血脊髓屏障破壞過(guò)程。此外,前炎癥因子TNF-α、IL-1β不但可以介導(dǎo)SCI后炎細(xì)胞與內(nèi)皮細(xì)胞之間的黏附,促進(jìn)血液循環(huán)內(nèi)的白細(xì)胞穿過(guò)BSCB破壞屏障結(jié)構(gòu)[17];還被證實(shí)能誘導(dǎo)單核粒細(xì)胞等釋放基質(zhì)金屬蛋白酶類(matrix-metalloproteases,MMPs),降解內(nèi)皮細(xì)胞間緊密連接蛋白以及細(xì)胞外基質(zhì)破環(huán)血腦屏障(blood-brain barrier,BBB)完整性,而這一效應(yīng)能被GJ阻斷劑明顯抑制,說(shuō)明細(xì)胞釋放MMPs破壞BBB,與TNF-α、IL-1β介導(dǎo)細(xì)胞表面Cx43表達(dá)上調(diào)并形成GJ有密切關(guān)聯(lián)[18-20]。

1.3 Cx43介導(dǎo)的神經(jīng)元死亡

SCI后機(jī)體的神經(jīng)運(yùn)動(dòng)功能會(huì)發(fā)生不同程度的喪失,而這取決于脊髓神經(jīng)元的死亡程度。眾所周知,谷氨酸鹽是CNS內(nèi)最主要的興奮性遞質(zhì),通過(guò)星型細(xì)胞表面高親和力興奮性氨基酸轉(zhuǎn)運(yùn)蛋白的攝取和釋放,來(lái)維持其穩(wěn)態(tài)[21]。然而,一旦CNS發(fā)生損傷,這種穩(wěn)態(tài)便不復(fù)存在,谷氨酸鹽將以一種不受控制的方式釋放到胞外介導(dǎo)死亡信號(hào)的傳播以及神經(jīng)元的死亡[22]。SCI后活化的小膠質(zhì)細(xì)胞及其釋放的前炎癥因子IL-1β、TNF-α能促進(jìn)星形膠質(zhì)細(xì)胞表面Cx43半通道的開(kāi)放[23]。而對(duì)體外培養(yǎng)的腦組織進(jìn)行低氧/復(fù)氧處理后發(fā)現(xiàn),星型膠質(zhì)細(xì)胞表面Cx43半通道的開(kāi)放與神經(jīng)元死亡成正相關(guān),并且這種關(guān)聯(lián)能被Cx43模擬肽所阻斷[24]。這是由于星型膠質(zhì)細(xì)胞表面Cx43半通道的開(kāi)放為谷氨酸鹽釋放出胞外提供了通道,而谷氨酸鹽作為死亡信號(hào)分子可通過(guò)NMDA/P2X受體途徑激活神經(jīng)元上的Panx1半通道,觸發(fā)神經(jīng)元內(nèi)Ca2+超載[25-26],從而引起胞內(nèi)Ca2+依賴蛋白酶活化,一氧化氮產(chǎn)物增加,同時(shí)抑制了細(xì)胞線粒體呼吸鏈復(fù)合體Ⅳ的功能,使胞內(nèi)能量丟失,最終導(dǎo)致神經(jīng)元死亡[26]。

2 基于Cx43及Cx43相關(guān)通道的SCI治療方法

2.1 Cx43非特異性或特異性阻斷劑

Cx43的表達(dá)上調(diào)及其相關(guān)通道的開(kāi)放在SCI后的各種病理過(guò)程中都發(fā)揮著重要作用。因此,阻斷Cx43的表達(dá)及其相關(guān)通道的開(kāi)放可能是防治SCI的有效手段。Cx43半通道和縫隙連接阻斷劑分為非特異性和特異性兩種。非特異性Cx43通道阻斷劑屬于小分子阻斷劑,包括甘草次酸及其衍生物、油酸酰胺和大麻素等脂肪酰胺類以及氟烷等[27]。這類阻斷劑不但能通過(guò)一系列信號(hào)通路作用于半通道和縫隙連接,而且還能同時(shí)作用于其他膜表面通道,即其阻斷作用是非專一性的[28]。另一類是以Cx43模擬肽為代表的Cx43通道特異性阻斷劑。Cx43模擬肽是與Cx43胞外結(jié)構(gòu)有著相同序列的小分子肽片段[29],其可作用于Cx43分子胞外區(qū)域,限制半通道的開(kāi)放并阻礙其對(duì)接形成縫隙連接,從而發(fā)揮特異性阻斷作用[30]。Cx43模擬肽的阻斷作用呈劑量依賴,低濃度的模擬肽可阻斷半通道但對(duì)縫隙連接不產(chǎn)生太大影響,而高濃度的模擬肽可同時(shí)顯著阻斷半通道和縫隙連接的開(kāi)放[11,31]。眾多研究已經(jīng)證實(shí),Cx43阻斷劑能提高SCI后的神經(jīng)運(yùn)動(dòng)功能,減輕神經(jīng)細(xì)胞凋亡,減小損傷面積改善預(yù)后[10-11]。

2.2 遠(yuǎn)端缺血預(yù)處理

遠(yuǎn)端缺血預(yù)處理(remote ischemic preconditioning,RIPC)是通過(guò)幾個(gè)預(yù)先的缺血/灌注循環(huán)對(duì)遠(yuǎn)隔臟器即將發(fā)生的致命性缺血損傷產(chǎn)生保護(hù)作用的一種治療策略。許多缺血再灌注損傷的動(dòng)物模型證實(shí),對(duì)動(dòng)物肢體實(shí)施RIPC后,可極大地保護(hù)心、腦、腎、脊髓等重要器官或組織,減輕缺血再灌注損傷[32-33],但RIPC的作用機(jī)制仍不十分清楚。最近,有學(xué)者研究發(fā)現(xiàn),通過(guò)對(duì)大鼠雙下肢實(shí)施4個(gè)循環(huán)的5 min缺血/5 min再灌注的RIPC后,可調(diào)節(jié)Cx43在心肌細(xì)胞的表達(dá)水平并維持其磷酸化狀態(tài),抑制了再灌注損傷后由Cx43去磷酸化導(dǎo)致的半通道和縫隙連接滲透性增高,從而很大程度上減少了心臟缺血再灌注損傷后的心肌梗死面積[34]。Cx43的胞內(nèi)CT結(jié)構(gòu)域存在許多磷酸化位點(diǎn)[6],包括:S325、S328、S330、S365和S262,這些位點(diǎn)可與蛋白激酶C、酪氨酸激酶、絲裂原活化蛋白激酶等蛋白激酶形成信號(hào)復(fù)合體,維持Cx43的磷酸化狀態(tài),降低Cx43通道的滲透性[7]。而RIPC降低缺血導(dǎo)致的心肌細(xì)胞Cx43去磷酸化水平的分子機(jī)制,可能是通過(guò)增強(qiáng)Cx43與蛋白激酶PKC、MAPKs等的相互聯(lián)系和作用[35-36]。這說(shuō)明RIPC是一種能有效調(diào)節(jié)Cx43及其相關(guān)通道的新方法,其對(duì)心、腦、脊髓等重要器官的保護(hù)作用與調(diào)節(jié)Cx43的表達(dá)及其通道滲透性有關(guān)。

3 展望

SCI發(fā)生后伴隨著各種病理事件,包括:初始損傷事件和一系列“二次損傷”事件,這些都大大加重了脊髓損傷程度和損傷面積。而Cx43的表達(dá)水平及其通道開(kāi)放與否在SCI后的炎性反應(yīng)、BSCB破壞及神經(jīng)細(xì)胞死亡等病理過(guò)程中都扮演了非常重要的角色,并且已被多次證實(shí),阻斷Cx43的表達(dá)能對(duì)SCI的預(yù)后產(chǎn)生積極影響。因此,Cx43及其通道很有可能是防治SCI的關(guān)鍵性突破口。如今,雖然多種Cx43的阻斷方法已在動(dòng)物實(shí)驗(yàn)中被發(fā)現(xiàn),但其臨床應(yīng)用標(biāo)準(zhǔn)仍然有待商榷。在未來(lái)的研究工作中,能安全有效運(yùn)用于臨床SCI患者的Cx43阻斷藥物或方法,將應(yīng)該是在防治SCI道路上不懈努力的方向。endprint

[參考文獻(xiàn)]

[1] Singh A,Tetreault L,Kalsi-Ryan S,et al. Global prevalence and incidence of traumatic spinal cord injury [J]. Clin Epidemiol,2014,6:309-331.

[2] Khaing ZZ,Ehsanipour A,Hofstetter CP,et al.Injectable hydrogels for spinalcord repair: afocus on swellingand intraspinal pressure [J]. Cells Tissues Organs,2015,202(1-2):67-84.

[3] Schulz R,Gorge PM,Gorge A,et al. Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection [J]. Pharmacol Therapeut,2015,153:90-106.

[4] Saez JC,Berthoud VM,Branes MC,et al. Plasma membrane channels formed by connexins: their regulation and functions [J]. Physiol Rev,2003,83(4):1359 -1400.

[5] Orellana JA,Saez PJ,Shoji KF,et al. Modulation of brain hemichannels and gap junction channels by pro-inflammatory agents and their possible role in neurodegeneration [J]. Antioxid Redox Sign,2009,11(2):369-399.

[6] Dunn CA,Su V,Lau AF,et al. Activation of Akt,not connexin 43 protein ubiquitination,regulates gap junction stability [J]. J Biol Chem,2012,287(4):2600-2607.

[7] Schulz R,Heusch G. Connexin 43 and ischemic preconditioning [J]. Cardiovasc Res,2004,62(2):335-344.

[8] Lee IH,Lindqvist E,Kiehn O,et al. Glial and neuronal connexin expression patterns in the rat spinal cord during development and following injury [J]. J Comp Neurol,2005, 489(1):1–10.

[9] Cronin M,Anderson PN,Cook JE,et al. Blocking connexin43 expression reduces inflammation and improves functional recovery after spinal cord injury [J]. Mol Cell Neurosci,2008,39(2):152–160.

[10] O′Carroll SJ,Gorrie CA,Velamoor S,et al. Connexin43 mimetic peptide is neuroprotective and improves function following spinal cord injury [J]. J Neurosci Res,2013,75(3):256–267.

[11] O′Carroll SJ,Alkadhi M,Nicholson LF,et al. Connexin43 mimetic peptides reduce swelling,astrogliosis, and neuronal cell death after spinalcord injury [J]. Cell Commun Adhes,2008,15(1):27–42.

[12] Yang L,Jones NR,Blumbergs PC,et al. Severity-dependent expression of pro-inflammatory cytokines in traumatic spinal cord injury in the rat [J]. J Clin Neurosci,2005,12(3):276–284.

[13] Taoka Y,Okajima K. Role of leukocytes in spinal cord injury in rats [J]. J Neurotrauma,2000,17(3):219–229.

[14] Sumi Y,Woehrle T,Chen Y,et al. Plasma ATP is required forneutrophil activation in a mouse sepsis model [J]. Shock,2014,42(2): 142-147.

[15] Ballabh P,Braun A,Nedergaard M. The blood–brain barrier: an overview: structure, regulation, and clinical implications [J]. Neurobiol Dis,2004,16(1):1-13.endprint

[16] Fang B,Li XM,SunXJ,et al. Ischemic preconditioning protects against spinal cordischemia-reperfusion injury in rabbits by attenuatingblood spinal cord barrier disruption [J]. J Mol Sci,2013,14(5):10343-10354.

[17] Taoka YJ,Okajima K. Spinal cord injury in the rat [J]. Prog Neurobiol,1998,56(3):341-358.

[18] De Bock M,Wang N,Decrock E,et al.Intracellular cleavage of the Cx43 C-Terminal domain bymatrix-metalloproteases: anovel contributor to inflammation? [J]. Mediat Inflamm,2015,2015:257471.

[19] Eugenin EA,Branes MC,Berman JW,et al. TNF-αPlus IFN-γinduce connexin43 expression andformation of gap junctions between human monocytes/macrophages that enhance physiologicalresponses [J]. J Immunol,2003,170(3):1320-1328.

[20] Kolomytkin OV,Marino AA,Waddell DD,et al. IL-1-βinduced production of metalloproteinases by synovial cells depends on gap junction conductance [J]. Am J Physiol Cell Physiol,2002,282(6):1254-1260.

[21] Anderson CM,Swanson RA. Astrocyte glutamate transport: review ofproperties, regulation, and physiological functions [J]. Glia,2000,32(1):1-14.

[22] Zipfel GJ,Babcock DJ,Lee JM,et al. Neuronal apoptosis after CNS injury: the roles of glutamate and calcium [J]. J Neurotrauma,2000,17(10):857-869.

[23] Abudara V,Roux L,Dallerac G,et al. Activated microglia impairs neuroglial interaction by opening Cx43 hemichannels in hippocampal astrocytes [J]. Glia,2015,63(5):795-811.

[24] Orellana JA,F(xiàn)roger N,Ezan P,et al. ATP and glutamate released via astroglial connexin43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels [J]. J Neurochem,2011,118(5):826-840.

[25] Orellana JA,Shoji KF,Abudara V,et al. Amyloid β-induced death in neurons involves glial and neuronal hemichannels [J]. J Neurosci,2011,31(13):4962-4977.

[26] Mungrue IN,Bredt DS. nNOS at a glance: implications for brain and brawn [J]. J Cell Sci,2004,117(13):2627-2629.

[27] Bodendiek SB,Raman G. Connexin modulators and their potential targets under the magnifying glass [J]. Curr Med Chem,2010,17(34):4191-4230.

[28] Evans WH,Boitano S. Connexin mimetic peptides: specific inhibitors of gap- junctional intercellular communication [J]. Biochem Soc Trans,2001,29(4):606-612.

[29] Warner A,Clements DK,Parikh S,et al. Speci fic motifs in the external loops of connexin proteins can determine gap junction formation between chick heart myocytes [J]. J Physiol,1995,488(3):721-728.endprint

[30] Braet K,Vandamme W,Martin PE,et al. Photoliberatinginositol-1,4,5-trisphosphate triggers ATP release that is blocked by the connexin mimetic peptide gap 26 [J]. Cell Calcium,2003,33(1):37-48.

[31] Yoon JJ,Green CR,O′Carroll SJ,et al. Dose-dependent protective effect of connexin43 mimetic peptide against neurodegeneration in an ex vivo model of epileptiform lesion [J]. Epilepsy Res,2010,92(2-3):153-162.

[32] Haapanen H,Heraj?覿rvi J,Arvola O,et al. Remote ischemic preconditioning protects the spinal cord against ischemic insult: an experimental study in a pocrin model [J]. J Thorac Cardiovasc Surg,2015,151(3):777-785.

[33] Candilio L,Malik A,Hausenloy DJ. Protection of organs other than the heart by remote ischemic conditioning [J]. J Cardiovasc Med,2013,14(3):193-205.

[34] Brandenburger T,Huhn R,Galas A,et al. Remote ischemic preconditioning preserves Connexin 43 phosphorylation in the rat heart in vivo [J]. J Transl Med,2014,12:228.

[35] Haapanen H,Heraj?覿rvi J,Arvola O,et al. Remote ischemic preconditioning protects the spinal cord against ischemic insult: an experimental study in a pocrin model [J]. J Thorac Cardiovasc Surg,2015,151(3):777-785.

[36] Candilio L,Malik A,Hausenloy DJ. Protection of organs other than the heart by remote ischemic conditioning [J]. J Cardiovasc Med,2013,14(3):193-205.

(收稿日期:2017-05-15 本文編輯:程 銘)endprint

猜你喜歡
炎性反應(yīng)脊髓損傷
平喘固本湯合補(bǔ)肺湯治療COPD穩(wěn)定期患者的臨床觀察
芝麻油對(duì)大鼠腦缺血再灌注損傷的保護(hù)作用及其機(jī)制
梔子苷改善缺氧缺血性腦損傷新生大鼠的運(yùn)動(dòng)功能并抑制炎癥反應(yīng)
溴吡斯的明聯(lián)合巴氯酚對(duì)T6以上脊髓損傷神經(jīng)源性膀胱的臨床觀察
綜合護(hù)理與康復(fù)訓(xùn)練對(duì)胸腰椎骨折合并脊髓損傷患者的應(yīng)用觀察
脊柱創(chuàng)傷合并脊髓損傷患者的治療效果
行動(dòng)學(xué)習(xí)法在脊髓損傷患者實(shí)施自助間歇導(dǎo)尿中的應(yīng)用效果
胸腰段椎體骨折手術(shù)入路的選擇
不同分型腰椎間盤突出癥患者血清IL—1、IL—6的表達(dá)及臨床意義
外散內(nèi)熄法在改善中風(fēng)患者風(fēng)證積分及炎性反應(yīng)中的作用
教育| 柳河县| 九寨沟县| 洪洞县| 淄博市| 南丰县| 绥化市| 蛟河市| 民勤县| 蕉岭县| 涞源县| 蓝山县| 武清区| 齐河县| 怀化市| 剑河县| 成安县| 德兴市| 台山市| 晋宁县| 丽江市| 剑河县| 江陵县| 衡阳县| 兴山县| 青岛市| 额尔古纳市| 自贡市| 丰城市| 容城县| 祁阳县| 彰化县| 古丈县| 尚义县| 且末县| 同德县| 博罗县| 绥江县| 房山区| 卢龙县| 图木舒克市|