任元林, 張 悅, 谷葉童, 曾 倩
(1. 天津工業(yè)大學(xué) 紡織學(xué)院, 天津 300387; 2. 天津工業(yè)大學(xué) 先進(jìn)紡織復(fù)合材料教育部重點(diǎn)實(shí)驗(yàn)室, 天津 300387)
含磷阻燃聚丙烯腈纖維的制備及其性能
任元林1,2, 張 悅1, 谷葉童1, 曾 倩1
(1. 天津工業(yè)大學(xué) 紡織學(xué)院, 天津 300387; 2. 天津工業(yè)大學(xué) 先進(jìn)紡織復(fù)合材料教育部重點(diǎn)實(shí)驗(yàn)室, 天津 300387)
為制備含磷無鹵阻燃聚丙烯腈纖維,利用KOH水溶液對(duì)丙烯腈(AN)-醋酸乙烯酯(VAc)無規(guī)共聚物(P(AN-co-VAc))纖維中的VAc單元進(jìn)行選擇性水解,再與O,O-二乙基磷酰氯進(jìn)行磷?;磻?yīng)制得阻燃聚丙烯腈纖維。采用傅里葉變換紅外光譜、差示掃描量熱和熱重分析法對(duì)阻燃纖維結(jié)構(gòu)及熱性能進(jìn)行表征,利用掃描電子顯微鏡對(duì)阻燃聚丙烯腈纖維的炭殘?jiān)M(jìn)行分析。結(jié)果表明:隨水溶液pH值的升高,聚丙烯腈纖維中VAc單元迅速水解;聚丙烯腈纖維中VAc單元的存在使共聚纖維環(huán)化放熱分解峰值溫度增大,當(dāng)VAc單元的質(zhì)量分?jǐn)?shù)為30%時(shí),可達(dá)287 ℃,而阻燃聚丙烯腈纖維的該溫度高達(dá)340 ℃;阻燃聚丙烯腈纖維在800 ℃時(shí)的炭殘?jiān)扛哌_(dá)48%以上,遠(yuǎn)高于共聚合聚丙烯腈纖維41%的殘?zhí)苛?,具有良好的成炭性?/p>
無鹵阻燃聚丙烯腈纖維; 丙烯腈; 醋酸乙烯酯; 水解; 熱性能
聚丙烯腈(PAN)纖維作為一種類似羊毛的合成纖維,在紡織行業(yè)中受到廣泛的重視[1]。然而,PAN較低的極限氧指數(shù)(LOI值)使其纖維及其制品極易燃燒甚至引發(fā)火災(zāi),從而給人民生命財(cái)產(chǎn)安全帶來重大隱患,因此,PAN纖維的阻燃開發(fā)具有重大的現(xiàn)實(shí)意義。由丙烯腈與氯乙烯或偏氯乙烯共聚后紡制的腈氯綸,成為世界上唯一產(chǎn)業(yè)化的共聚阻燃聚丙烯腈纖維,具有很好的阻燃性能,但是該纖維及其制品在燃燒時(shí)會(huì)釋放有毒的鹵化氫氣體且發(fā)煙量大,從而在某些領(lǐng)域阻礙了腈氯綸的推廣和使用;因此,開發(fā)無鹵阻燃的PAN纖維及其織物顯得尤為迫切[2]。采用共混[3]、共聚[4-5]或接枝[6]等方式對(duì)丙烯腈聚合物、PAN纖維及其織物進(jìn)行無鹵阻燃研究成為國內(nèi)外研究者普遍采用的方法,研究發(fā)現(xiàn)丙烯腈共聚物中含有的酸性基團(tuán)或分解時(shí)產(chǎn)生的酸性基團(tuán)能夠促進(jìn)氰基(—CN)的環(huán)化反應(yīng),提高聚合物的成炭性[7],進(jìn)而使聚丙烯腈纖維的熱穩(wěn)定性及阻燃特性獲得顯著提升[8]。醋酸乙烯酯(VAc)易與丙烯腈(AN)發(fā)生自由基共聚[9-10],且共聚物中醋酸乙烯酯(VAc)單元可水解為乙烯醇[11],進(jìn)而可發(fā)生磷?;磻?yīng)[12]賦予共聚物良好的阻燃性[13]。本文成功制備了側(cè)鏈含磷酸酯基團(tuán)的無鹵阻燃聚丙烯腈纖維,首先利用自制的無規(guī)共聚物P(AN-co-VAc)纖維為原料,將VAc單元選擇性水解,然后對(duì)其水解產(chǎn)物進(jìn)行磷?;磻?yīng)。并對(duì)無鹵阻燃PAN纖維的結(jié)構(gòu)及性能分別進(jìn)行表征、分析。
1.1 原料與儀器
無規(guī)共聚物纖維P(AN-co-VAc),自制,質(zhì)量分?jǐn)?shù)為30%的醋酸乙烯酯(VAc);氫氧化鉀,天津市化學(xué)試劑一廠;無水乙醇,天津化學(xué)試劑三廠;O,O-二乙基磷酰氯,南京天尊澤眾化學(xué)有限公司;四氫呋喃(THF),天津市科密歐化學(xué)試劑有限公司。上述試劑均為分析純。
Bruker Vector22型傅里葉變換紅外光譜分析儀(德國Bruker公司),KBr壓片,分辨率2 cm-1,掃描波數(shù)4 000~400 cm-1;NETZSCH STA 409 PC型熱重分析儀(TGA,德國Netzsch公司),測(cè)試范圍:室溫至800 ℃,升溫速率10 ℃/min,氮?dú)鈿夥?;Perkin-Elmer DSC 7型差示掃描量熱儀(DSC,美國Perkin-Elmer公司),測(cè)試范圍:室溫至500 ℃,升溫速率10 ℃/min,氮?dú)鈿夥?;QUATA200型掃描電子顯微鏡(SEM,荷蘭FEI公司)。
1.2 P(AN-co-VAc)共聚物纖維水解
將1 g真空干燥后的P(AN-co-VAc)纖維加入到500 mL單口燒瓶中,通過加入KOH 水溶液來調(diào)節(jié)體系的pH值,并于室溫下攪拌12 h后取出纖維,用去離子水洗滌至中性,最后將其置于60 ℃的真空烘箱中干燥24 h,從而獲得對(duì)應(yīng)pH值為10,12及14的水解后的P(AN-co-VAc)共聚物纖維[14]。
1.3 無鹵阻燃PAN纖維制備
向裝有恒壓滴液漏斗的500 mL 三口燒瓶中依次加入0.5 g上述于pH=12、水解12 h條件下制備的干燥的P(AN-co-VAc)共聚物纖維的水解產(chǎn)物及20 mL二甲基甲酰胺(DMF),并浸漬1 h后,于室溫并在磁力攪拌的作用下向恒壓滴液漏斗中緩慢滴入5 mL O,O-二乙基磷酰氯,然后升溫至60 ℃,反應(yīng)5 h,將纖維取出后用無水乙醇洗滌2次,再用蒸餾水洗滌3次,干燥后即獲得無鹵阻燃聚丙烯腈纖維,其制備流程如圖1所示。
圖1 無鹵阻燃P(AN-co-VAc)纖維制備流程Fig.1 Preparation of halogen-free flame retardant P(AN-co-VAc)fiber
2.1 共聚物纖維紅外光譜分析
P(AN-co-VAc)共聚物纖維及其水解產(chǎn)物和阻燃P(AN-co-VAc)共聚物纖維的紅外光譜圖如圖2、3所示。
注:a—P(AN-co-VAc)纖維(30% VAc); b—水解P(AN-co-VAc)纖維(pH=10); c—水解P(AN-co-VAc)纖維(pH=12); d—水解P(AN-co-VAc)纖維(pH=14);e—PAN纖維。圖2 水解前后P(AN-co-VAc)纖維的紅外光譜圖Fig.2 FT-IR spectra of P(AN-co-VAc)fiber before after hydrolysis
圖3 阻燃P(AN-co-VAc)纖維的紅外光譜圖Fig.3 FT-IR spectra of flame retardant P(AN-co-VAc)fiber
2.2 共聚物纖維的熱力學(xué)分析
2.2.1 差示掃描量熱分析
圖4示出P(AN-co-VAc)共聚物纖維及其水解產(chǎn)物和阻燃P(AN-co-VAc)纖維的差示掃描量熱(DSC)曲線。
注:a—PAN纖維; b—P(AN-co-VAc)纖維(30% VAc);c—水解P(AN-co-VAc)纖維(pH=14);d—阻燃P(AN-co-VAc)纖維。圖4 不同纖維樣品的DSC曲線Fig.4 DSC curves of different fiber
通過分析DSC曲線探討丙烯腈聚合物環(huán)化反應(yīng)的具體機(jī)制。從圖4可清楚地看出,P(AN-co-VAc)纖維的環(huán)化放熱峰值溫度(Tp)比PAN纖維的要高,這是由于P(AN-co-VAc)纖維中的VAc單元一定程度上可削弱—CN間的相互作用,抑制了 —CN 的分子內(nèi)環(huán)化;但其相對(duì)于VAc質(zhì)量分?jǐn)?shù)為30%的P(AN-co-VAc)纖維,其水解產(chǎn)物的環(huán)化放熱峰起始溫度(Ti)、Tp以及環(huán)化放熱峰終止溫度(Tf)均呈現(xiàn)出較低的趨勢(shì),這可能是P(AN-co-VAc)纖維中VAc單元水解為羥基(—OH)后,分子極性增強(qiáng),增強(qiáng)了—CN間的相互作用,有利于—CN的環(huán)化反應(yīng),使得在較低溫度下即可進(jìn)行環(huán)化放熱反應(yīng)。與VAc質(zhì)量分?jǐn)?shù)為30% 的P(AN-co-VAc)纖維的環(huán)化放熱峰寬(△T=Tf-Ti)相比,其水解產(chǎn)物的△T遠(yuǎn)大于P(AN-co-VAc)纖維的△T,說明水解產(chǎn)物在一定程度上抑制了環(huán)化反應(yīng)的進(jìn)行。
與VAc質(zhì)量分?jǐn)?shù)為30% 的P(AN-co-VAc)纖維的Tp及△T相比,阻燃P(AN-co-VAc)纖維的Tp及△T分別升高了73 ℃和9 ℃。一方面環(huán)化放熱反應(yīng)由于側(cè)鏈中含磷阻燃單元的引入得到抑制,使其速率減慢,放熱峰變寬,另一方面氰基的環(huán)化反應(yīng)又會(huì)得到有效促進(jìn),使得阻燃聚丙烯腈纖維的Tp高于VAc質(zhì)量分?jǐn)?shù)為30% 的P(AN-co-VAc)纖維的Tp[16]。
2.2.2 熱重分析
P(AN-co-VAc)纖維(30% VAc)及阻燃P(AN-co-VAc)纖維的熱重分析(TG)曲線如圖5所示。
注:a—P(AN-co-VAc)纖維(30% VAc);b—阻燃P(AN-co-VAc)纖維。圖5 P(AN-co-VAc)及其阻燃纖維的TG曲線Fig.5 TG curves of fibers
由圖5可知,阻燃P(AN-co-VAc)纖維的熱質(zhì)量損失可分為3個(gè)階段,第1階段熱質(zhì)量損失介于120~175 ℃,質(zhì)量減少約5%,是脫出吸附水的過程;第2階段質(zhì)量損失始于200 ℃左右,質(zhì)量減少緩慢,此階段質(zhì)量損失歸因于氰基環(huán)化反應(yīng)過程中脫氫、HCN以及分子鏈降解;第3個(gè)質(zhì)量損失階段介于370~500 ℃,質(zhì)量損失平緩,是由于氰基進(jìn)一步環(huán)化脫氫、磷酸酯基團(tuán)的脫出以及分子鏈的進(jìn)一步降解所致。與阻燃P(AN-co-VAc)纖維的熱質(zhì)量損失曲線相比,P(AN-co-VAc)纖維(30% VAc)的熱質(zhì)量損失僅2個(gè)階段,第1個(gè)質(zhì)量損失階段介于290~360 ℃,且在316 ℃達(dá)到最大質(zhì)量損失速率,相較于阻燃P(AN-co-VAc)纖維的第2階段質(zhì)量損失最大溫度低 34 ℃,質(zhì)量損失速率較快,質(zhì)量損失原因與阻燃P(AN-co-VAc)纖維第2階段的質(zhì)量損失類似,對(duì)應(yīng)于—CN環(huán)化脫氫、HCN及分子鏈降解。第2階段熱質(zhì)量損失峰值溫度略低于阻燃P(AN-co-VAc)纖維的第3階段熱質(zhì)量損失峰值溫度,質(zhì)量損失速率緩慢。相同溫度下(800 ℃),P(AN-co-VAc)纖維(30% VAc)的殘?zhí)苛繛?1%,而阻燃P(AN-co-VAc)纖維的殘?zhí)苛扛哌_(dá)48%以上,這是由于阻燃P(AN-co-VAc)纖維側(cè)鏈中的磷酸酯基團(tuán)受熱分解生成的磷酸及其脫水生成的偏磷酸與最終聚合生成的聚偏磷酸能夠促進(jìn)—CN環(huán)化成炭,從而在聚合物基體表面生成致密的膨脹炭層,這種炭層能夠起到阻燃屏障的作用,將聚合物受熱分解產(chǎn)生的小分子及自由基包覆在內(nèi),使其難以逸出。最終導(dǎo)致了阻燃P(AN-co-VAc)纖維的殘?zhí)苛扛哂赑(AN-co-VAc)纖維(30% VAc)的殘?zhí)苛?,說明阻燃P(AN-co-VAc)纖維成炭性及阻燃性能較好。
2.3 阻燃P(AN-co-VAc)纖維的形貌分析
阻燃P(AN-co-VAc)纖維炭殘?jiān)腟EM照片如圖6所示。
圖6 阻燃P(AN-co-VAc)纖維炭殘?jiān)膾呙桦婄R照片F(xiàn)ig.6 SEM images of char residue of flame retardant P(AN-co-VAc)fiber.(a)Surface(×600);(b)Cross-section(×300)
由圖6可知,阻燃P(AN-co-VAc)纖維炭殘?jiān)砻嬷旅?、平滑,有隆狀凸起,而橫截面為片狀孔形結(jié)構(gòu)。這是因?yàn)樽枞糚(AN-co-VAc)纖維在受熱分解過程中,一部分氰基可環(huán)化成炭,形成一層炭保護(hù)層;同時(shí)阻燃P(AN-co-VAc)纖維中含磷基團(tuán)受熱分解生成磷酸、焦磷酸、聚磷酸等黏稠物質(zhì),這些酸性物質(zhì)可進(jìn)一步促進(jìn)氰基的環(huán)化成炭反應(yīng),使得成炭量大大增加,進(jìn)而形成致密的炭殘?jiān)W枞季郾╇胬w維分解過程中會(huì)產(chǎn)生如H2、HCN等大量揮發(fā)性物質(zhì)和含磷的不同結(jié)構(gòu)的小分子物質(zhì),隨著分解過程的延續(xù),揮發(fā)性氣態(tài)物質(zhì)的量增大,壓力增大,進(jìn)而對(duì)已形成的致密炭層進(jìn)行沖擊,產(chǎn)生隆狀凸起,并在炭層內(nèi)部空間形成大量孔洞[17-18]。
通過對(duì)自制P(AN-co-VAc)纖維特定水解,獲得了其部分VAc單元水解的產(chǎn)物,進(jìn)而通過磷?;磻?yīng)制備了無鹵阻燃P(AN-co-VAc)纖維,熱性能分析表明P(AN-co-VAc)纖維及其水解產(chǎn)物、阻燃P(AN-co-VAc)纖維三者中P(AN-co-VAc)纖維的環(huán)化溫度最低,阻燃P(AN-co-VAc)纖維的環(huán)化溫度最高。800 ℃時(shí)阻燃P(AN-co-VAc)纖維的殘?zhí)苛勘萈(AN-co-VAc)纖維的高7%,電鏡照片顯示其阻燃機(jī)制符合凝聚相阻燃機(jī)制。
[1] 付正婷, 杜兆芳, 王健, 等. 絲素蛋白改性聚丙烯腈纖維的涂覆法制備[J]. 紡織學(xué)報(bào), 2016, 37(1): 6-10. FU Zhengting, DU Zhaofang, WANG Jian, et al. Preparation of silk fibroin modified polyacrylonitrile fiber by coating method[J]. Journal of Textile Research, 2016, 37(1):6-10.
[2] 徐玲, 程博聞, 任元林, 等. 阻燃聚丙烯腈及其纖維的研究進(jìn)展[J]. 紡織學(xué)報(bào), 2010, 31(8): 146-152. XU Ling, CHENG Bowen, REN Yuanlin, et al. Research process of flame retardant polyacrylonitrile and its fiber[J]. Journal of Textile Research, 2010, 31(8):146-152.
[3] HALL M E Z J, HORROCKS A R. The flammability of polyacrylonitrile and its copolymers, IV: the flame retardant mechanism of ammonium polyphosphate[J]. Fire and Materials, 2010, 18(5): 307-312.
[4] REN Yuanlin, CHENG Bowen, JIANG Aibing, et al. Thermal degradation kinetics of poly(O,O-diethyl-O-allylthiophosphate-co-acrylonitrile) in nitrogen[J]. Journal of Applied Polymer Science, 2010, 115(6): 3705-3709.
[5] REN Yuanlin, CHENG Bowen, XU Ling, et al. Fire-retardant copolymer of acrylonitrile with O,O-diethyl-O-allyl thiophosphate[J]. Journal of Applied Polymer Science, 2009, 115(3): 1489-1494.
[6] AKOVALI G, GUNDOGAN G. Studies on flame retardancy of polyacrylonitrile fiber treated by flame-retardant monomers in cold plasma[J]. Journal of Applied Polymer Science, 2010, 41(9/10): 2011-2019.
[7] CROOK V, EBDON J, HUNT B, et al. The influence of comonomers on the degradation and flammability of polyacrylonitrile: design input for a new generation of flame retardants[J]. Polymer Degradation & Stability, 2010, 95(12): 2260-2268.
[8] QIN Ouyang, LU Cheng, WANG Haojing, et al. Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile[J]. Polymer Degradation & Stability, 2008, 93(8): 1415-1421.
[9] BRYASKOVA R, PENCHEVA D, KYULAVSKA M, et al. Antibacterial activity of poly(vinyl alcohol)-b-poly(acrylonitrile) based micelles loaded with silver nanoparticles[J]. Journal of Colloid & Interface Science, 2010, 344(2): 424-428.
[10] CETINER S, SEN S, ARMAN B, et al. Acrylonitrile/vinyl acetate copolymer nanofibers with different vinylacetate content[J]. Journal of Applied Polymer Science, 2013, 127(5): 3830-3838.
[11] YU Huali, WU Yang, GAO Jinlong, et al. Copper(0)-mediated radical copolymerization of vinyl acetate and acrylonitrile in DMSO at ambient temperature[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2012, 50(23): 4983-4989.
[12] PUPKEVICH V, GLIBIN V, KARAMANEV D. Phosphorylated polyvinyl alcohol membranes for redox Fe3+/H2flow cells[J]. Journal of Power Sources, 2013, 228(11): 300-307.
[13] LIN Jiansheng, CHEN Li, LIU Ya, et al. Flame-retardant and physical properties of poly(vinyl alcohol) chemically modified by diethyl chlorophosphate[J]. Journal of Applied Polymer Science, 2012, 125(5): 3517-3523.
[14] 任元林, 信鵬月, 蘇倩, 等. 無鹵阻燃丙烯腈共聚物的制備及性能[J]. 高等學(xué)?;瘜W(xué)學(xué)報(bào), 2013, 34(9): 2216-2222. REN Yuanlin, XIN Pengyue, SU Qian, et al. Preparation and properties of halogen-free fire retardant acrylonitrile copolymer[J]. Chemical Journal of Chinese Universities, 2013, 34(9): 2216-2222.
[15] RAO M M, LIU J S, LI W S, et al. Performance improvement of poly(acrylonitrile-vinyl acetate) by activation of poly(methyl methacrylate)[J]. Journal of Power Sources, 2009, 189(1): 711-715.
[16] WYMAN P, CROOK V, EBDON J, et al. Flame-retarding effects of dialkyl-p-vinylbenzyl phosphonates in copolymers with acrylonitrile[J]. Polymer International, 2006, 55(7): 764-771.
[17] CHOU C S, LIN S H, WANG C I, et al. A hybrid intumescent fire retardant coating from cake-and eggshell-type IFRC[J]. Powder Technology, 2010, 198(1): 149-156.
[18] DU Xiaohua, YU Haiou, WANG Zhe, et al. Effect of anionic organoclay with special aggregate structure on the flame retardancy of acrylonitrile-butadiene-styrene/clay composites[J]. Polymer Degradation & Stability, 2010, 95(4): 587-592.
Preparation and properties of phosphorus-containing flame retardant polyacrylonitrile fiber
REN Yuanlin1,2, ZHANG Yue1, GU Yetong1, ZENG Qian1
(1.SchoolofTextiles,TianjinPolytechnicUniversity,Tianjin300387,China; 2.KeyLaboratoryofAdvancedTextileComposite,MinistryofEducation,TianjinPolytechnicUniversity,Tianjin300387,China)
In order to prepare halogen-free flame retardant polyacrylonitrile (PAN) fibers, the vinyl acetate (VAc) unit in P(AN-co-VAc) fiber was selectively hydrolyzed with KOH aqueous solution at different pH values. The phosphorus-containing flame retardant P(AN-co-VAc) fibers were prepared by the phosphorylation reaction of O,O-diethylphosphoryl chloride with the hydrolyzed P(AN-co-VAc) fibers. The structure of P(AN-co-VAc) fibers was characterized by Fourier transform infrared spectroscope, and the thermal properties of the fibers were studied by differential scanning calorimetry(DSC) and thermogravimetric analysis(TGA). The carbon residue of the phosphorus-containing flame retardant P(AN-co-VAc) fiber was analyzed by scanning electron microscope. The results show that the VAc unit is quickly hydrolyzed with the increase of pH. DSC analysis indicat that the presence of VAc increases the temperature of cyclic exothermic peak, and reaches to 287 ℃ with the mass fraction of VAc of 30%, while the temperature of the flame retardant polyacrylonitrile fiber can be up to 340 ℃. TGA demonstrates that the carbon residue of the flame retardant fibers at 800 ℃ is over 48%, which is higher than that of the control fiber (41%), fully proving that the flame retardant P(AN-co-VAc) fiber has good carbon forming capability.
halogen-free flame retardant polyacrylo nitrile fiber; acrylonitrile; vinyl acetate; hydrolysis; thermal property
10.13475/j.fzxb.20170104905
2017-01-25
2017-05-05
國家自然科學(xué)基金面上項(xiàng)目(51573134)
任元林(1971—),男,教授,博士。主要研究方向?yàn)楣δ芨叻肿硬牧?。E-mail:yuanlinr@163.com。
TS 342.31
A