劉 媛,王妮婭,張 雯,余 佳,魏 虹*
(1.三峽庫區(qū)生態(tài)環(huán)境教育部重點實驗室/重慶市三峽庫區(qū)植物生態(tài)與資源重點實驗室/西南大學(xué)生命科學(xué)學(xué)院,重慶400715;
2.盤龍區(qū)盤龍小學(xué),昆明650051)
鎘脅迫對秋華柳植物螯合肽含量的影響
劉 媛1,王妮婭1,張 雯2,余 佳1,魏 虹1*1
(1.三峽庫區(qū)生態(tài)環(huán)境教育部重點實驗室/重慶市三峽庫區(qū)植物生態(tài)與資源重點實驗室/西南大學(xué)生命科學(xué)學(xué)院,重慶400715;
2.盤龍區(qū)盤龍小學(xué),昆明650051)
以秋華柳為試驗對象,采用水培法,設(shè)置0 mg/L Cd2+(CK)、2 mg/L Cd2+(T1)、10 mg/L Cd2+(T2)、20 mg/L Cd2+(T3)、50 mg/L Cd2+(T4)5種鎘處理水平,通過對不同時間、不同質(zhì)量濃度Cd2+處理下秋華柳葉片和根系中鎘含量和各巰基肽含量的測定,研究Cd脅迫下秋華柳植物體內(nèi)巰基肽的螯合解毒機制。結(jié)果表明:1)在Cd脅迫下,葉片誘導(dǎo)生成4種植物螯合肽(PC2、PC3、PC4和PC5),根系誘導(dǎo)生成2種植物螯合肽(PC2和PC3)。2)各處理組秋華柳葉片和根系中的巰基肽總量明顯高于對照,且隨著處理時間的延長和Cd脅迫程度的增加而升高。秋華柳葉片和根系中的谷胱甘肽含量均高于對照,且在一定質(zhì)量濃度的Cd2+處理水平下差異有統(tǒng)計學(xué)意義;在秋華柳葉片中,各處理組的PCs含量均顯著高于對照,且隨著Cd脅迫程度的增加而升高;在秋華柳根系中,各處理組的PC2含量均顯著高于對照,T4處理組的PC3含量顯著高于對照。秋華柳葉片和根系中各巰基肽含量與其對應(yīng)的Cd積累量之間均呈顯著正相關(guān)。3)各處理組秋華柳葉片和根系中的PC2為含量最高的巰基肽,且根系中PC2占的比例更大。綜上表明:在Cd脅迫下,秋華柳葉片和根系中的巰基肽含量隨Cd積累量的增加而增加,從而增強其對Cd的螯合作用,提高對Cd的耐受和解毒能力;且秋華柳細(xì)胞內(nèi)的PC2對Cd的螯合作用最強,尤其是在根部。
鎘;秋華柳;巰基;谷胱甘肽;植物螯合肽
Summary With rapid development of industrialization and urbanization in China,large amounts of heavy metals have been directly or indirectly released into the soilenvironmentthrough solid wastes,waste air,and waste water from industrialactivities over the recent decades.In particular,cadmium(Cd)is one of the most toxic pollutants causing environmental problems.With excellentwater solubility,Cd can be absorbed by plants easily and transferred to human body,eventually threatening the healthof human beings.Lots of herb plants have tolerance for Cd and can accumulate to eliminate the Cd pollution in soils.However, with relative low biomass,the accumulation capacity of herb plants is limited.Little is known about the phytoremediation application of woody plants,which have large biomass and fast growth rate.Salix variegata has strong bioaccumulation on Cd and exceptionally high tolerance to Cd stress,especially planted along the sloping banks,thus it has the potential for phytoremediation of Cd polluted environments.However,the mechanism oftolerance and detoxification for Cd stillneeds further study.Metal binding ligands are effective for detoxification of heavy metals,mainly phytochelatins(PCs)and metallothioneins (MTs).
In this study,in order to explore the detoxification mechanism of S.variegata,and improve the potential enrichment and detoxification ability of S.variegata,hydroponic experiments were conducted underdifferentCd2+concentrations,including 0 mg/ L Cd2+(CK),2 mg/L Cd2+(T1),10 mg/L Cd2+(T2),20 mg/L Cd2+(T3)and 50 mg/L Cd2+(T4),and the Cd2+and thiol-peptide contents in leaves and roots of S.variegata were determined.
The results showed that under the Cd stress,four kinds of thiol-peptides(PC2,PC3,PC4 and PC5)were detected in the leaves,and two kinds ofthiol-peptides(PC2 and PC3)were detected in the roots.The totalcontentofthiol-peptides in the leaves and roots of S.variegata increased with the Cd concentration and treatmenttime.The contents ofglutathione(GSH)in the leaves and roots of S.variegata under differentlevels of Cd stress were significantly higher than thatofthe controltreatment.Besides, the content of thiol-peptides in the leaves of S.variegata also increased significantly than the control.The increase of thiolpeptides was proportional related to the increase of Cd concentration.Meanwhile,the PC2 and PC3 contents ofthe T4group in the roots of S.variegata were significantly higher than the control.Significantpositive correlations between thiol-peptide content and Cd accumulation were observed in the leaves and roots of S.variegata.Altogether,these results indicated that the thiolpeptide contentincreased with the Cd accumulation in the leaves and roots of S.variegata.
In conclusion,with intensified Cd stress,the chelating ability of phytochelatin to Cd increased significantly,and the tolerance and the detoxification ability of S.variegata to Cd stress were substantially improved.The PC2 content of each Cd concentration treatmentin the leaves and roots of S.variegata was the highestamong the thiol-peptides,especially in the roots of S.variegata.Therefore,the chelating ability of PC2 to Cd in S.variegata is the best among the thiol-peptides,especially the chelating ability of PC2 to Cd in the root.
近年來,土壤重金屬污染被廣泛關(guān)注,已成為國內(nèi)外環(huán)境生態(tài)研究的熱點。我國土壤污染調(diào)查公報顯示,全國土壤污染以無機型為主,其超標(biāo)點位占全部超標(biāo)點位的82.8%,鎘的點位超標(biāo)率高達(dá)7.0%[1]。鎘(Cd)為毒性最強的重金屬元素之一,由于其水溶性強和極易被植物吸收等特點,更容易在土壤-動植物-人體間富集轉(zhuǎn)移,最終危害人體健康[2-4]。植物修復(fù)可通過植物將環(huán)境中的重金屬吸收富集于體內(nèi),并使其轉(zhuǎn)化為毒性較小的形式,再運輸至地上部分儲存,從而降低環(huán)境中的重金屬污染,提高其安全性[5]?,F(xiàn)已發(fā)現(xiàn)了大量的超富集植物,如黑麥草(Lolium perenne)、蜈蚣草(Pteris vittata)、天藍(lán)遏藍(lán)菜(Thlaspi caerulescens)、孔雀草(Tagetes patula)等,但大多為草本植物,其絕對生物量小,總體富集能力相對較弱,且主根不發(fā)達(dá),根系較淺,不能對深層受污染土壤進(jìn)行修復(fù)[6]。而木本植物根系發(fā)達(dá),吸收面積大,生物量大[7],其在重金屬污染土壤上的修復(fù)應(yīng)用值得重視。已有研究表明,柳屬(Salix L.)和楊屬(Populus L.)植物對重金屬有較高的富集能力,在重金屬污染土壤的植物修復(fù)中有相當(dāng)可觀的潛力[8]。
秋華柳(Salix variegata)為柳屬多年生灌木[9],生物量大,生長快,是坡岸地帶進(jìn)行植被構(gòu)建的優(yōu)良物種[10]。相關(guān)研究表明,秋華柳地上部分積累鎘和轉(zhuǎn)移鎘的能力強,基于生長和生物量參數(shù)的耐受指數(shù)高,且具有較強的光合耐受性,適用于鎘污染區(qū)域的植物修復(fù)[11-12];但目前尚缺乏其對Cd耐受和解毒機制的進(jìn)一步研究。
金屬結(jié)合配體對降低重金屬的毒性有重要作用。目前研究發(fā)現(xiàn),多種金屬結(jié)合配體對重金屬脅迫下植物的生存適應(yīng)性有重要意義[13]。有機酸、氨基酸等小分子有機化合物可與重金屬形成穩(wěn)定的螯合物,促進(jìn)重金屬在體內(nèi)的運輸,降低細(xì)胞中重金屬離子的生理活性[14-15]。植物螯合肽(phytochelatins, PCs)和金屬硫蛋白(metallothioneins,MTs)等巰基(—SH)多肽鏈配體對重金屬有很強的親和力,在維持植物細(xì)胞內(nèi)穩(wěn)態(tài)和重金屬解毒方面具有重要意義[16],其中PCs是植物體內(nèi)最重要的一種螯合劑。PCs是以谷胱甘肽(glutathione,GSH)為前體[17],在外界重金屬誘導(dǎo)脅迫和多種酶促反應(yīng)下,在細(xì)胞質(zhì)內(nèi)合成的一類低分子質(zhì)量、富含巰基(—SH)的多肽鏈,其結(jié)構(gòu)通式為(γ-Glu-Cys)n-Gly(n=2~11)[18]。鎘(Cd)、銅(Cu)、鋅(Zn)、銀(Ag)、金(Au)、汞(Hg)和鉛(Pb)脅迫都會引起植物體迅速合成PCs,其中,Cd誘導(dǎo)形成PCs的速度最快,數(shù)量最多,被認(rèn)為是形成PCs的最強誘導(dǎo)劑[19-20]。PCs可與Cd形成無毒、低分子質(zhì)量的Cd-S-PC化合物,通過液泡膜的Cd/H+逆向轉(zhuǎn)運蛋白及三磷酸腺苷結(jié)合盒轉(zhuǎn)運體(ATP binding cassette,ABC)進(jìn)入液泡中,形成高分子質(zhì)量化合物進(jìn)行儲存[21-22],避免游離重金屬離子對植物細(xì)胞造成氧化傷害。而且,有研究表明,Cd脅迫使多種植物的GSH和PCs相關(guān)基因和蛋白表達(dá)上調(diào)[23-25]。
巰基肽螯合解毒作用的大小因物種而異。為探究Cd富集植物秋華柳的巰基肽在其耐受解毒中的作用,本文對不同程度Cd脅迫下秋華柳葉片和根系中生成的巰基肽種類和含量進(jìn)行研究,以闡明秋華柳的螯合解毒機制。
1.1 試驗材料
2015年3月,于重慶市嘉陵江同興街河岸段(29°41′2″N,106°26′56″E)剪取長15~17 cm、莖徑0.7~1 cm的秋華柳枝條,帶回實驗室用超純水洗凈后,將其2/3處固定于1/2 Hoagland改良營養(yǎng)液中,置于光照培養(yǎng)箱中培養(yǎng);每盆5株,每3天更換1次培養(yǎng)液。光照培養(yǎng)箱參數(shù)設(shè)置如下:溫度25/20℃,相對濕度60%,光照強度10 000/0 lx,光照/黑暗時間16 h/8 h。
1.2 試驗設(shè)計
待秋華柳扦插苗長成完整植株后(約55 d,萌條約40 cm),于2015年8月選取生長基本一致的幼苗進(jìn)行隨機分組,以CdCl2·2.5H2O的形式添加,分別設(shè)置0 mg/L Cd2+(CK)、2 mg/L Cd2+(T1)、10 mg/L Cd2+(T2)、20 mg/L Cd2+(T3)、50 mg/L Cd2+(T4)共5個Cd處理水平,每個處理4次重復(fù)。
1.3 測試方法
1.3.1 植株巰基肽含量測定
分別在試驗0、6、12、18 d對秋華柳葉片及根系進(jìn)行取樣,用2 mmol/LEDTA-Na2浸泡5 min后,去除植物表面吸附的Cd2+,用高效液相色譜法(high performance liquid chromatography,HPLC)測定谷胱甘肽(GSH)和植物螯合肽2~6(PC2~6)等巰基肽含量[26]。測試儀器為安捷倫(Agilent)1200高效液相色譜系統(tǒng),采用Agilent Zorbax Eclipse XDB-C18色譜柱(4.6 mm×30 mm,粒徑1.8μm)。
1.3.2 植株鎘含量測定
收獲植物根系和葉片,用2 mmol/L EDTA-Na2浸泡5 min后,烘干至恒量。稱取碾磨后的植物樣0.050 0 g,消解定容,然后用電感耦合等離子體發(fā)射光譜儀(ICP-OES,Thermo Fisher iCAP 6300,英國)測定其Cd含量。
1.4 數(shù)據(jù)分析
利用SPSS 20.0軟件進(jìn)行數(shù)據(jù)統(tǒng)計分析:用重復(fù)度量(repeated measures)分析不同時間、不同Cd2+質(zhì)量濃度及兩者交互作用對秋華柳葉片及根系中巰基肽含量的影響;用單因素方差分析(one-way ANOVA)研究相同時間、不同Cd2+質(zhì)量濃度對秋華柳葉片及根系中總巰基肽含量的影響;用鄧肯多重比較(Duncan’s multiple range test)分析不同處理間的差異;用相關(guān)分析探究秋華柳葉片和根系中各巰基肽含量與Cd積累量的相關(guān)性。采用Origin 8.5軟件作圖。
2.1 秋華柳葉片中巰基肽含量的變化特征
由表1可知,秋華柳葉片中存在GSH及PC2~5共5種巰基肽。0 d時,各處理組間秋華柳葉片中5種巰基肽含量在統(tǒng)計學(xué)上均無顯著差異。6 d時,隨著Cd2+處理量的增加,秋華柳葉片中5種巰基肽含量均增加,除GSH含量從T2水平開始顯著高于對照外,其余4種巰基肽含量均在T1水平時即顯著高于對照;其中,不同處理組間PC4和PC5的含量在統(tǒng)計學(xué)上均有顯著差異,與對照相比,4個處理組的PC4含量依次增加了5.88、7.72、8.41和9.14倍,PC5含量依次增加了8.25、11.33、12.48和15.44倍。12 d時,T1(2 mg/L Cd2+)處理的GSH含量與CK相比無顯著差異,其余各處理組的GSH含量均顯著高于對照;與CK相比,不同處理組的PC2~5含量均顯著增高,其中PC5含量的增幅最大,T1~T4處理分別增加了8.45、11.26、12.18和20.60倍,其次為PC4,分別增加了6.24、8.33、9.08和9.80倍;與6 d相比,所有處理組的巰基肽含量均增加,其中GSH含量的增幅最大,依次增加了2.31、4.14、3.92、5.56倍。18 d時,各處理組秋華柳葉片中5種巰基肽含量均顯著高于對照,其中PC5含量的增幅最大,分別增加了9.29、14.23、14.75和28.01倍。6、12和18 d時,不同處理組秋華柳葉片中巰基肽含量均為PC2>PC5>PC4>PC3>GSH。時間對4個Cd2+處理水平下的各巰基肽含量具有極顯著性效應(yīng),不同Cd2+處理量和時間的交互效應(yīng)對秋華柳葉片中各巰基肽含量有極顯著影響。
表1 不同處理時間、不同Cd2+質(zhì)量濃度下秋華柳葉片中巰基肽的質(zhì)量分?jǐn)?shù)Table1 Thiol-peptide contentin the leaves of Salix variegata atdifferent Cd2+concentrations and treatmenttime mg/kg
由圖1可知,秋華柳葉片中巰基肽總量隨著Cd脅迫程度的增加和脅迫時間的延長而增加。在相同時間處理下,與對照相比,不同處理組秋華柳葉片中巰基肽的總量均顯著增加,其中18 d時,T4處理組的巰基肽總量增幅最大,增加了39.33%。在相同質(zhì)量濃度Cd2+處理下,T4組巰基肽總量隨時間的延長增幅最大,與0 d相比,分別增加了5.90、9.34和13.40倍。
圖1 秋華柳葉片中巰基肽的總質(zhì)量分?jǐn)?shù)Fig.1 Totalthiol-peptide contentin the leaves of S.variegata
2.2 秋華柳根系中巰基肽含量的變化特征
由表2可知,在秋華柳根系中只檢測到了GSH、PC2和PC3。0 d時,各處理組間秋華柳根系中3種巰基肽含量在統(tǒng)計學(xué)上均無顯著差異。6 d時,不同處理組秋華柳根系中3種巰基肽含量均顯著高于對照,其中PC2含量的增幅最大,與對照相比,4個處理組的PC2含量依次增加了6.56、5.86、6.66、7.56倍。12 d時,不同處理組秋華柳根系中3種巰基肽含量均高于對照,其中各處理組的PC2含量均顯著高于對照,且增幅大于GSH和PC3;與對照相比,除T1處理的GSH含量在統(tǒng)計學(xué)上無顯著差異外,其余3個不同質(zhì)量濃度Cd2+處理的GSH含量差異均有統(tǒng)計學(xué)意義;PC3含量在T4水平下顯著高于對照,其余各處理與對照間差異均無統(tǒng)計學(xué)意義。18 d時,除PC3含量在T4水平下顯著高于對照外,GSH和PC2含量均在T1水平時即顯著高于對照,其中PC2含量的增幅最大,與CK相比,分別增加了2.39、2.59、2.41和2.51倍。6、12和18 d時,各處理組秋華柳根系中3種巰基肽含量均為PC2>PC3>GSH。時間對4個Cd2+處理水平下的各巰基肽含量具有極顯著性效應(yīng),不同Cd2+處理量和時間的交互效應(yīng)對秋華柳根系中各巰基肽含量有極顯著影響。
表2 不同處理時間、不同Cd2+質(zhì)量濃度下秋華柳根系中巰基肽的質(zhì)量分?jǐn)?shù)Table2 Thiol-peptide contentin the roots of Salix variegata atdifferentCd2+concentrations and treatmenttime mg/kg
由圖2可知:在相同處理時間下,與對照(CK)相比,不同處理組秋華柳根系中的巰基肽總量均顯著增加,其中6 d時,各處理組的巰基肽總量增加幅度最大,分別增加了3.82、3.58、4.40和5.18倍;在相同質(zhì)量濃度的Cd2+處理下,4個處理組的秋華柳根系中的巰基肽總量隨時間的延長呈先增后降再增的趨勢,其中T4組在各時間處理下的巰基肽總量均顯著高于CK。
2.3 秋華柳葉片和根系中各巰基肽含量與鎘積累量的相關(guān)性
由表3可以看出:在秋華柳葉片中,各巰基肽含量與Cd積累量以及各巰基肽含量之間均呈極顯著正相關(guān),且相關(guān)系數(shù)高達(dá)0.78以上;在秋華柳根系中,除PC2含量與Cd積累量、PC3含量之間呈顯著正相關(guān)外,其余各巰基肽含量與Cd積累量以及各巰基肽含量之間均呈極顯著正相關(guān);秋華柳葉片和根系之間各巰基肽含量均呈極顯著正相關(guān),且相關(guān)系數(shù)較大。
圖2 秋華柳根系中巰基肽的總質(zhì)量分?jǐn)?shù)Fig.2 Totalthiol-peptide contentin the roots of Salix variegata
表3 秋華柳葉片和根系中各巰基肽含量與鎘積累量的相關(guān)性Table3 Correlation between thiol-peptide contents and Cd accumulation in the leaves and roots of S.variegata
植物螯合作用是植物體內(nèi)重要的耐受解毒機制,其中GSH和PCs的濃度大小直接決定其解毒作用的強弱。植物體內(nèi)巰基與Cd有很強的親合力,二者結(jié)合是Cd解毒的基本機制[27]。GSH和PCs都是植物體內(nèi)普遍存在的巰基化合物,可與Cd形成無毒的絡(luò)合物并存在于細(xì)胞溶膠或運輸?shù)揭号葜?,既解除了Cd的毒性,又阻斷了Cd向其他細(xì)胞器的遷移[28-29]。在本試驗中,相同時間的各Cd2+處理組及相同Cd2+處理的各時間處理組秋華柳葉片和根系中的巰基肽總量均顯著高于對照組。表明在Cd脅迫下,秋華柳能有效地進(jìn)行植物螯合作用,迅速合成的大量巰基化合物GSH和PCs對進(jìn)入細(xì)胞內(nèi)的Cd進(jìn)行螯合,使其形成無毒化合物,再轉(zhuǎn)運至液泡內(nèi)區(qū)室化儲存,降低Cd對秋華柳細(xì)胞質(zhì)基質(zhì)和細(xì)胞器的損害,從而提高植株對Cd的耐受和解毒能力。
GSH是由谷氨酸、半胱氨酸和甘氨酸組成的巰基三肽,它不僅是PCs合成的底物,還是細(xì)胞內(nèi)一種較強的抗氧化劑,通過抗壞血酸-谷胱甘肽(ascorbic-glutathione,AsA-GSH)循環(huán)代謝參與H2O2的清除[30-31]。在本試驗中,6 d和12 d時,秋華柳葉片和根系中除了T1組GSH含量與對照差異無統(tǒng)計學(xué)意義外,其他處理組的GSH含量均顯著高于對照;18 d時,秋華柳葉片和根系中各處理組的GSH含量均顯著高于對照;這與前人的研究結(jié)果[32-33]一致。這是由于隨著Cd2+質(zhì)量濃度的增加,產(chǎn)生的氧化脅迫激活了秋華柳體內(nèi)的抗氧化機制,不斷誘導(dǎo)秋華柳生成較多的GSH,而秋華柳合成PCs對GSH的消耗量低于其更新量[34],導(dǎo)致了秋華柳葉片和根系中的GSH含量均高于對照,且在一定質(zhì)量濃度的Cd2+水平下差異顯著。秋華柳葉片中的巰基肽含量與根系中的巰基肽含量呈極顯著正相關(guān),這是由于巰基肽可以在根系和葉片之間長距離運輸[35-36]。許多相似的研究結(jié)果也表明,GSH在植物地上部分合成[37-39],再通過韌皮部長距離運輸?shù)礁縖40-41]。但本研究發(fā)現(xiàn),在不同處理時間、不同質(zhì)量濃度Cd2+處理下秋華柳根系中的GSH含量明顯高于葉片,這可能是由于囤積于秋華柳根系中的Cd含量遠(yuǎn)高于葉片中的Cd含量[42],根系為了清除Cd毒害產(chǎn)生的自由基,驅(qū)使地上部分運輸更多的GSH到根部,以增強其抗氧化脅迫的能力。
在相同時間處理下,不同質(zhì)量濃度Cd2+處理的秋華柳葉片和根系中的各種PCs含量均高于對照,且12 d和18 d時,秋華柳根系中的PC3含量在T4處理水平下顯著高于對照,其余4個處理組葉片和根系中的PCs含量在各時間下均顯著高于對照。而且,秋華柳葉片和根系中的各巰基肽含量與其對應(yīng)的Cd積累量之間均呈顯著正相關(guān)。表明隨著Cd脅迫程度的增加,不斷進(jìn)入秋華柳體內(nèi)的Cd誘導(dǎo)產(chǎn)生大量的巰基肽,使其螯合Cd的能力顯著增強,胞質(zhì)溶膠中游離Cd的濃度迅速下降,從而避免了Cd的毒害。在Cd脅迫下,葉片誘導(dǎo)生成4種植物螯合肽(PC2、PC3、PC4和PC5),根系生成2種植物螯合肽(PC2和PC3),這一結(jié)果與植物體內(nèi)PCs的基本結(jié)構(gòu)(γ-Glu-Cys)n-Gly中,n通常為2~5相一致[43]。然而,葉片中產(chǎn)生的PCs鏈長于根部,這可能與葉片和根部產(chǎn)生PCs的酶促反應(yīng)相關(guān)。本研究中秋華柳葉片和根系的各種巰基肽含量之間均呈極顯著正相關(guān),這進(jìn)一步證實了不同長度的PCs是以GSH為底物的酶促反應(yīng)結(jié)果。秋華柳體內(nèi)一部分GSH釋放甘氨酸生成γ-谷氨酰半胱氨酸(γ-glutamylcysteine, EC)后,在PCs合成酶的催化下與另一部分GSH合成不同長度的PCs分子[44],而PCs合成酶作為PCs合成過程中重要的反饋調(diào)節(jié)酶,其活性與巰基肽和金屬離子的活性密切相關(guān)[16]。因此,秋華柳體內(nèi)PCs的長度可能與巰基肽和Cd的濃度相關(guān),但其具體關(guān)系仍有待進(jìn)一步研究。在以后的研究中,可考慮運用分子技術(shù),通過上調(diào)或?qū)胂嚓P(guān)酶基因來提高相關(guān)酶的活性,增加巰基化合物在秋華柳體內(nèi)的合成與轉(zhuǎn)化,從而進(jìn)一步增強秋華柳的螯合解毒能力。
綜上所述,隨著Cd脅迫程度的增加和處理時間的延長,秋華柳螯合Cd的能力明顯增強,降低了胞質(zhì)溶膠中Cd2+對細(xì)胞器的損害,從而提高了其對Cd的耐受和解毒能力。各處理組秋華柳葉片中的5種巰基肽含量均為PC2>PC5>PC4>PC3>GSH,根系中3種巰基肽含量均為PC2>PC3>GSH,且根系中的PC2含量明顯高于其他巰基肽:表明在Cd脅迫下,秋華柳細(xì)胞內(nèi)PC2對Cd的螯合作用明顯高于其他巰基肽,尤其是在根部。
[1]環(huán)境保護(hù)部,國土資源部.全國土壤污染狀況調(diào)查公報.(2014-04-18)[2016-05-08].http://www.mlr.gov.cn/xwdt/jrxw/201404/ P020140417573876167417.pdf
Ministry of Environmental Protection,Ministry of Land and Resources.Survey Bulletin of National Soil Pollution.(2014-04-18)[2016-05-08].http://www.gtzyb.com/yaowen/20140418_ 62262.shtml.(in Chinese)
[2]JANSSEN C R,HEIJERICK D G,DE SCHAMPHELAERE K A C,et al.Environmental risk assessment of metal:Tools for incorporating bioavailability.Environmental International,2003, 28(8):793-800.
[3]DALCORSO G,FARINATI S,FURINI A.Regulatory networks of cadmium stress in plants.Plant Signaling and Behavior,2010,5 (6):663-667.
[4]王振中,張友梅,鄧?yán)^福,等.重金屬在土壤生態(tài)系統(tǒng)中的富集及毒性效應(yīng).應(yīng)用生態(tài)學(xué)報,2006,17(10):1948-1952.
WANG Z Z,ZHANG Y M,DENG J F,et al.Enrichment and toxicity effect of heavy metals in soilecosystem.Chinese Journal of Applied Ecology,2006,17(10):1948-1952.(in Chinese with English abstract)
[5]CHERIAN S,OLIVEIRA M M.Transgenic plants in phytoremediation recent advances and new possibilities. Environmental Science and Technology,2005,39(24):9377-9390.
[6]COOK R L,HESTERBERG D.Comparison of trees and grasses for rhizoremediation of petroleum hydrocarbons.International Journal of Phytoremediation,2013,15(9):844-860.
[7]CANADELL J,JACKSON R B,EHLERINGER J B,et al. Maximum rooting depth of vegetation types at the global scale. Oecologia,1996,108(4):583-595.
[8]SEBASTIANI L,SCEBBA F,TOGNETTI R.Heavy metal accumulation and growth responses in poplar clones Eridano (Populus deltoides×maximowiczii)and I-214(P.×euramericana) exposed to industrial waste.Environmental and Experimental Botany,2004,52(1):79-88.
[9]中國科學(xué)院植物研究所.中國高等植物圖鑒Ⅰ.北京:科學(xué)出版社,2001:372-379.
Botany Institute of Chinese Academy of Sciences.Iconographia Cormophytorum Sinicorum.TomusⅠ.Beijing:Science Press,2001: 372-379.(in Chinese)
[10]李婭,曾波,葉小齊,等.水淹對三峽庫區(qū)岸生植物秋華柳(Salix variegata Franch.)存活和恢復(fù)生長的影響.生態(tài)學(xué)報,2008,28 (5):1923-1930.
LIY,ZENG B,YE X Q,et al.The effect offlooding on survival and recovery growth of the riparian plant Salix variegata Franch. in Three Gorges Reservoir region.Acta Ecologica Sinica,2008,28 (5):1923-1930.(in Chinese with English abstract)
[11]孫曉燦,魏虹,謝小紅,等.水培條件下秋華柳對重金屬Cd的富集特性及光合響應(yīng).環(huán)境科學(xué)研究,2012,25(2):220-225.
SUN X C,WEI H,XIE X H,et al.Bioaccumulation and photosynthesis response of Salix variegata to cadmium under hydroponic culture.Research of Environmental Sciences,2012,25 (2):220-225.(in Chinese with English abstract)
[12]賈中民,魏虹,孫曉燦,等.秋華柳和楓楊幼苗對鎘的積累和耐受性.生態(tài)學(xué)報,2011,31(1):107-114.
JIA Z M,WEI H,SUN X C,et al.Accumulation and tolerance of Salix variegata and Pterocarya stenoptera seedlings to cadmium. Acta Ecologica Sinica,2011,31(1):107-114.(in Chinese with English abstract)
[13]CALLAHAN D L,BAKER A J M,KOLEV S D,et al.Metal ion ligands in hyperaccumulating plants.Journal of Biological Inorganic Chemistry,2006,11(1):2-12.
[14]孫琴,倪吾鐘,楊肖娥.超積累植物體內(nèi)的小分子螯合物質(zhì)及其生理作用.廣東微量元素科學(xué),2001,8(5):1-8.
SUN Q,NI W Z,YANG X E.Low molecular weight chelating compounds and their physiologicalfunction in hyperaccumulator. Guangdong Trace Elements Science,2001,8(5):1-8.(in Chinese with English abstract)
[15]RAUSER W E.Structure and function of metal chelators produced by plants:The case for organic acids,amino acids, phytin,and metallothioneins.Cell Biochemistry and Biophysics, 1999,31(1):19-48.
[16]RAUSER W E.Phytochelatins and related peptides.Structure, biosynthesis,and function.Plant Physiology,1995,109(4):1141-1149.
[17]YADAV S K.Heavy metals toxicity in plants:An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants.South African Journal of Botany,2010,76(2): 167-179.
[18]COBBETT C,GOLDSBROUGH P.Phytochelatins and metallothioenins:Roles in heavy metal detoxification and homeostasis.Annual Review of Plant Biology,2002,53:159-182.
[19]REDDY G N,PRASAD M N V.Heavy metal-binding proteins/ peptides:Occurrence,structure,synthesis and functions.A review.Environmentaland Experimental Botany,1990,30(3):251-264.
[20]COBBETT C S.Phytochelatin biosynthesis and function in heavymetaldetoxification.Current Opinion in Plant Biology,2000,3(3): 211-216.
[21]SALT D E,RAUSER W E.MgATP-dependent transport of phytochelatins across the tonoplast of oat roots.Plant Physiology, 1995,107(4):1293-1301.
[22]SALT D E,THURMAN D A,TOMSETT A B,et al.Copper phytochelatins of Mimulus guttatus.Proceedings of the Royal Society of London,1989,236(1282):79-89.
[23]SARRY J E,KUHN L,DUCRUIX C,et al.The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses.Proteomics,2006,6(7): 2180-2198.
[24]OGAWA I,NAKANISHI H,MORI S,et al.Time course analysis of gene regulation under cadmium stress in rice.Plant and Soil, 2009,325(1):97-108.
[25]FAGIONI M,ZOLLA L.Does the different proteomic profile found in apical and basal leaves of spinach reveal a strategy of this plant toward cadmium pollution response?Journal of Proteome Research,2009,8(5):2519-2529.
[26]JU X H,TANG S,JIA Y,et al.Determination and characterization ofcysteine,glutathione and phytochelatins(PC2-6)in Lolium perenne L.exposed to Cd stress under ambientand elevated carbon dioxide using HPLC with fluorescence detection. Journal of Chromatography B:Analytical Technologies in the Biomedicaland Life Sciences,2011,879(20):1717-1724.
[27]MORELLI E,CRUZ B H,SOMOVIGO S,et al.Speciation of cadmium-γ-glutamyl peptides complexes in cells of the marine microalga Phaeodactylum tricornutum.Plant Science,2002,163 (4):807-813.
[28]LI T,DI Z,ISLAM E,et al.Rhizosphere characteristics of zinc hyperaccumulator Sedum alfredii,involved in zinc accumulation. Journal of Hazardous Materials,2011,185(2/3):818-823.
[29]SARWAR N,ISHAQ W,FARID G,et al.Zinc-cadmium interactions:Impacton wheatphysiology and mineralacquisition. Ecotoxicology and Environmental Safety,2015,122:528-536.
[30]MAY M J,VERNOUX T,LEAVER C,et al.Glutathione homeostasis in plants:Implications for environmentalsensing and plant development.Journal of Experimental Botany,1998,49 (321):649-667.
[31]JOZEFCZAK M,KEUNEN E,SCHAT H,et al.Differential response of Arabidopsis,leaves and roots to cadmium: Glutathione-related chelating capacity vs antioxidant capacity. Plant Physiology and Biochemistry,2014,83:1-9.
[32]MASERTI B E,FERRILLO V,AVDIS O,et al.Relationship of non-protein thiol pools and accumulated Cd or Hg in the marine macrophyte Posidonia oceanica(L.)Delile.Aquatic Toxicology, 2005,75(3):288-292.
[33]ALVAREZ-LEGORRETA T,MENDOZA-COZATL D,MORENOSANCHEZ R,et al.Thiol peptides induction in the seagrass Thalassia testudinum(Banks ex K?nig)in response to cadmium exposure.Aquatic Toxicology,2008,86(1):12-19.
[34]謝彬林,金婷婷,劉鵬,等.鋁脅迫下大豆根和葉中植物螯合肽和類金屬硫蛋白的變化.中國油料作物學(xué)報,2008,30(2): 191-197.
XIE B L,JIN T T,LIU P,et al.The change ofphytochelatins and metallothioneins-like in soybean roots and leaves under Alstress. Chinese Journal of Oil Crop Sciences,2008,30(2):191-197.(in Chinese with English abstract)
[35]CHEN A,KOMIVES E A,SCHROEDER J I.An improved grafting technique for mature Arabidopsis plants demonstrates long-distance shoot-to-root transport of phytochelatins in Arabidopsis.Plant Physiology,2006,141(1):108-120.
[36]GONG J M,LEE D A,SCHROEDER J I.Long-distance root-toshoot transport of phytochelatins and cadmium in Arabidopsis. Proceedings of the National Academy of Sciences of the USA,2003, 100(17):10118-10123.
[37]KOPRIVA S,RENNENGERG H.Controlofsulphate assimilation and glutathione synthesis:Interaction with N and C metabolism. JournalofExperimentalBotany,2004,55(404):1831-1842.
[38]SOBRINO-PLATA J,ORTEGA-VILLASANTE C,FLORESCACERES M L,et al.Differential alterations of antioxidant defenses as bioindicators of mercury and cadmium toxicity in alfalfa.Chemosphere,2009,77(7):946-954.
[39]DAGO A,ARINO C,DIAZ-CRUZ J M,et al.Analysis of phytochelatins and Hg-phytochelatin complexes in Hordeum vulgare plants stressed with Hg and Cd:HPLC study with amperometric detection.International Journal of Environmental Analytical Chemistry,2014,94(7):668-678.
[40]LI Y,DANKHER O P,CARREIRA L,et al.The shoot-specific expression ofgamma-glutamylcysteine synthetase directs the longdistance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic.Plant Physiology,2006,141(1):288-298.
[41]MENDOZA-COZATL D G,BUTKO E,SPRINGER F,et al. Identification of high levels of phytochelatins,glutathione and cadmium in the phloem sap of Brassica napus.A role for thiolpeptides in the long-distance transport of cadmium and the effect ofcadmium on iron translocation.Plant Journal,2008,54(2):249-259.
[42]劉媛,馬文超,張雯,等.鎘脅迫對秋華柳根系活力及其Ca、Mg、Mn、Zn、Fe積累的影響.應(yīng)用生態(tài)學(xué)報,2016,27(4):1109-1115.
LIU Y,MA W C,ZHANG W,et al.Effect of cadmium stress on root vigor and accumulation ofelements of Ca,Mg,Mn,Zn,Fe in Salix variegata.Chinese Journal of Applied Ecology,2016,27(4): 1109-1115.(in Chinese with English abstract)
[43]GONZALEZ-MENDOZA D,MORENO A Q,ZAPATA-PRREZ O. Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove,Avicennia germinans, exposed to cadmium and copper.Aquatic Toxicology,2007,83(4): 306-314.
[44]安志裝,王校常,嚴(yán)蔚東,等.植物螯合肽及其在重金屬脅迫下的適應(yīng)機制.植物生理學(xué)通訊,2001,37(5):463-467.
AN Z Z,WANG X C,YAN W D,et al.Phytochelatins and its adaptive mechanism under heavy metal stress.Plant Physiology Communications,2001,37(5):463-467.(in Chinese with English abstract)
Effect of cadmium stress on the content of phytochelatins in Salix variegata.Journal of Zhejiang University (Agric.&Life Sci.),2017,43(3):298-306
LIU Yuan1,WANG Niya1,ZHANG Wen2,YU Jia1,WEIHong1*
(1.Key Laboratory of Eco-environments in Three Gorges Reservoir Region of the Ministry of Education/Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region/School of Life Sciences,Southwest University,Chongqing 400715,China;2.Panlong Primary School in Panlong District,Kunming 650051,China)
cadmium;Salix variegata;thiol-peptide;glutathione;phytochelation
Q 945.78
A
10.3785/j.issn.1008-9209.2016.08.231
國家國際科技合作專項(2015DFA90900);三峽后續(xù)工作庫區(qū)生態(tài)與生物多樣性保護(hù)專項(5000002013BB5200002);重慶市林業(yè)重點科技攻關(guān)項目(渝林科研2015-6);中央財政林業(yè)科技推廣示范項目(渝林科推[2014-10]);西南大學(xué)“國家級大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計劃”項目(201210635070)。
*通信作者(Corresponding author):魏虹(http://orcid.org/0000-0001-9073-0928),E-mail:weihong@swu.edu.cn
劉媛(http://orcid.org/0000-0001-5409-8064),E-mail:liuyuan20100901@163.com
2016-08-23;接受日期(Accepted):2016-11-23