沈嘉昕 王承黨
福建醫(yī)科大學(xué)附屬第一醫(yī)院消化內(nèi)科 消化內(nèi)鏡中心 消化系病研究室(350005)
?
·綜 述·
同型半胱氨酸與炎癥性腸病及其癌變的關(guān)系
沈嘉昕 王承黨*
福建醫(yī)科大學(xué)附屬第一醫(yī)院消化內(nèi)科 消化內(nèi)鏡中心 消化系病研究室(350005)
炎癥性腸病(IBD)是一組非特異性腸道慢性炎癥性疾病,結(jié)腸炎相關(guān)結(jié)腸癌(CACC)是其主要并發(fā)癥之一。同型半胱氨酸作為甲硫氨酸循環(huán)的重要中間代謝產(chǎn)物,其水平升高與IBD和CACC的發(fā)生、發(fā)展密切相關(guān)。本文就同型半胱氨酸與IBD及其癌變關(guān)系的研究進(jìn)展作一綜述。
高半胱氨酸; 炎癥性腸??; 結(jié)腸炎,潰瘍性; Crohn??; 結(jié)腸腫瘤
同型半胱氨酸(homocysteine, Hcy)是一種含硫氨基酸,其血漿水平主要受葉酸、維生素(Vit)B12、Vit B6水平以及相關(guān)代謝酶的遺傳多態(tài)性影響。目前認(rèn)為高Hcy血癥是心血管疾病的獨(dú)立危險(xiǎn)因素[1],臨床上將防治高Hcy血癥作為心血管疾病的一級(jí)預(yù)防措施。
炎癥性腸病(inflammatory bowel disease, IBD)是一組非特 異性腸道慢性炎癥性疾病,主要包括潰瘍性結(jié)腸炎(ulcerative colitis, UC)和克羅恩病(Crohn’s disease, CD),結(jié)腸炎相關(guān)結(jié)腸癌(colitis-associated colon cancer, CACC)是其主要并發(fā)癥之一。近年研究[2-4]表明, IBD和CACC患者的血漿Hcy水平明顯升高。本文就Hcy與IBD及其癌變關(guān)系的研究進(jìn)展作一綜述。
Hcy作為一種具有細(xì)胞毒性的非必需四碳含硫氨基酸,是飲食中攝取的甲硫氨酸去甲基后形成的重要中間代謝產(chǎn)物。甲硫氨酸在甲硫氨酸腺苷轉(zhuǎn)移酶的作用下轉(zhuǎn)化為S-腺苷甲硫氨酸(S-adenosyl-L-methionine, SAM),后者作為主要甲基供體,脫甲基后生成S-腺苷同型半胱氨酸(S-adenosyl-homocysteine, SAH),再水解生成Hcy。Hcy的主要生理功能是維持體內(nèi)含硫氨基酸平衡,其體內(nèi)代謝途徑主要有3條[5-6]:①再甲基化途徑:甲硫氨酸負(fù)平衡或甲基需求過(guò)多時(shí),體內(nèi)大部分Hcy在以Vit B12為輔酶的甲硫氨酸合成酶(methionine synthase, MS)和5,10-亞甲基四氫葉酸還原酶(methylene tetrahydrofolate reductase, MTHFR)催化下,以甲基四氫葉酸為甲基供體重新甲基化形成甲硫氨酸。甲硫氨酸經(jīng)SAM、SAH生成Hcy,Hcy再甲基化重新生成甲硫氨酸,此循環(huán)過(guò)程稱為甲硫氨酸循環(huán)。少部分在肝臟、腎臟中的Hcy以甜菜堿為甲基供體,在甜菜堿同型半胱氨酸甲基轉(zhuǎn)移酶的作用下生成甲硫氨酸。②轉(zhuǎn)硫化途徑:甲硫氨酸過(guò)?;蚣谆枨鬁p少時(shí),Hcy在Vit B6依賴的胱硫醚β-合成酶(cystathionine β-synthase, CBS)催化下,與絲氨酸發(fā)生不可逆縮合反應(yīng),生成胱硫醚,并進(jìn)一步分解成半胱氨酸和α-丁酮酸,前者可轉(zhuǎn)變?yōu)楣入赘孰?、?;撬峄虼x為硫酸鹽經(jīng)尿液排出。③直接釋放:體內(nèi)僅極少部分Hcy被直接釋放至細(xì)胞外基質(zhì)(ECM)中,故正常人血漿Hcy水平極低。
正常成年人血漿Hcy水平為5~15 μmol/L,血漿水平大于 15 μmol/L 即為高Hcy血癥。引起高Hcy血癥的可能因素包括[5]:①遺傳因素:編碼CBS、MTHFR、MS等Hcy代謝關(guān)鍵酶的基因發(fā)生突變,引起酶缺陷或活性降低。②營(yíng)養(yǎng)因素:對(duì)血漿Hcy水平影響最大,如葉酸、Vit B6、Vit B12等缺乏可導(dǎo)致Hcy代謝通路受阻,使血漿Hcy水平升高,其中葉酸缺乏是高Hcy血癥的獨(dú)立危險(xiǎn)因素[7]。③性別和年齡:雌激素可降低血漿Hcy水平,故男性血漿Hcy水平高于女性;女性血漿Hcy水平在妊娠期降低,在絕經(jīng)后升高。由于Hcy可經(jīng)腎臟代謝,而腎臟代謝功能隨年齡增長(zhǎng)而降低,故血漿Hcy水平隨年齡增長(zhǎng)而升高。④藥物:異煙肼、二甲雙胍等藥物可致血漿Hcy水平升高。⑤生活方式:吸煙、飲酒、肥胖等因素易導(dǎo)致高Hcy血癥。
國(guó)內(nèi)外對(duì)伴高Hcy血癥的結(jié)腸炎動(dòng)物模型的研究[8-9]發(fā)現(xiàn),與單純結(jié)腸炎大鼠相比,皮下注射Hcy的結(jié)腸炎大鼠疾病活動(dòng)指數(shù)(DAI)、結(jié)腸大體損傷指數(shù)(CMDI)、組織學(xué)指數(shù)(HI)和腸壁纖維化評(píng)分均顯著升高,反映結(jié)腸炎癥程度的血漿和腸黏膜組織中的髓過(guò)氧化物酶(MPO)活性亦升高。該結(jié)果表明高Hcy血癥可能加重結(jié)腸炎大鼠的結(jié)腸組織氧化和炎癥損傷,促進(jìn)其腸壁纖維化。
臨床研究[2-4]同樣發(fā)現(xiàn)IBD患者血漿Hcy水平明顯升高。Drzewoski等[10]發(fā)現(xiàn)活動(dòng)期UC患者血漿Hcy水平顯著高于緩解期,且與疾病持續(xù)時(shí)間呈正相關(guān)(r=0.663 2,P<0.05)。但亦有學(xué)者認(rèn)為血漿Hcy水平與UC和CD患者的病程、疾病嚴(yán)重程度、病變累及范圍等均無(wú)相關(guān)性[11-13]。以上研究結(jié)果不一致可能與各研究納入的總樣本量和(或)緩解期患者樣本量不同有關(guān)。
IBD患者尤其是UC患者癌變率較高,而血漿Hcy水平升高是CACC發(fā)生的危險(xiǎn)因素之一[14]。Chiang等[15]在一項(xiàng)病例對(duì)照研究中指出,Hcy與CACC的發(fā)生、發(fā)展有關(guān),高Hcy血癥可顯著增加CACC的發(fā)生風(fēng)險(xiǎn)。Phelip等[16]發(fā)現(xiàn),當(dāng)高Hcy血癥是由葉酸缺乏所致時(shí),CACC發(fā)生風(fēng)險(xiǎn)將顯著增加(OR=16.9, 95% CI: 2.3~126.7);而在葉酸缺乏但血漿Hcy水平正常的患者中,CACC發(fā)生風(fēng)險(xiǎn)未見(jiàn)明顯改變。上述結(jié)果表明單純?nèi)~酸缺乏并不影響CACC的發(fā)生,這與Akoglu等[17]的研究結(jié)果一致。
1. 促進(jìn)氧化應(yīng)激:活性氧簇(ROS)誘發(fā)的氧化應(yīng)激能直接損傷腸上皮細(xì)胞,加重腸道炎癥,此為IBD的重要發(fā)病機(jī)制之一[18]。研究表明Hcy在過(guò)渡金屬催化劑和分子氧的參與下,通過(guò)誘導(dǎo)脂質(zhì)過(guò)氧化物和含硝基化合物合成,發(fā)生自氧化反應(yīng),形成ROS,誘發(fā)氧化應(yīng)激,導(dǎo)致腸道炎癥[19]。且高Hcy血癥可通過(guò)降低抗氧化酶如超氧化物歧化酶、谷胱甘肽過(guò)氧化物酶等的表達(dá)和活性,降低腸道清除ROS的能力,從而加重腸道氧化應(yīng)激[20]。
2. 上調(diào)促炎因子表達(dá):免疫細(xì)胞和上皮細(xì)胞產(chǎn)生的促炎細(xì)胞因子導(dǎo)致輔助性T細(xì)胞(Th細(xì)胞)與調(diào)節(jié)性T細(xì)胞(Treg細(xì)胞)失衡,在IBD發(fā)生、發(fā)展中起重要作用。研究表明UC發(fā)病與白細(xì)胞介素-6/信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子3/細(xì)胞因子信號(hào)轉(zhuǎn)導(dǎo)抑制因子3(IL-6/STAT3/SOCS3)信號(hào)通路激活有關(guān)[21];IL-6、IL-8可誘導(dǎo)Th17細(xì)胞分化,抑制Treg細(xì)胞分化,導(dǎo)致兩者失衡,從而促進(jìn)腸道炎癥,并刺激炎癥細(xì)胞持續(xù)分泌IL-17,形成惡性循環(huán)[22]。體外研究[23]發(fā)現(xiàn),Hcy可通過(guò)誘導(dǎo)血管內(nèi)皮細(xì)胞、平滑肌細(xì)胞和單核細(xì)胞分泌多種趨化因子和炎性因子,如單核細(xì)胞趨化蛋白-1(MCP-1)、IL-8、IL-6、IL-1β等,加重腸道局部免疫異常,促進(jìn)腸道炎癥。Hcy還可通過(guò)激活轉(zhuǎn)錄因子核因子-κB(NF-κB)誘導(dǎo)血管細(xì)胞黏附分子-1(VCAM-1)、細(xì)胞間黏附分子-1(ICAM-1)、纖溶酶原激活物抑制劑-1(PAI-1)、腫瘤壞死因子-α(TNF-α)等表達(dá)并介導(dǎo)細(xì)胞毒反應(yīng),引發(fā)腸道慢性炎癥。
3. 抑制DNA甲基化:甲基轉(zhuǎn)移酶催化的DNA甲基化能調(diào)節(jié)多種活性分子表達(dá)。在甲硫氨酸循環(huán)中,Hcy可轉(zhuǎn)變?yōu)镾AM,而后者是甲基轉(zhuǎn)移酶強(qiáng)效抑制劑。血漿Hcy水平升高時(shí),SAM生成增多,使甲基化反應(yīng)受抑制,而DNA特定區(qū)域低甲基化可激活促炎因子表達(dá),介導(dǎo)炎癥反應(yīng)[24]。因此,IBD患者的高Hcy血癥可能通過(guò)抑制相關(guān)基因DNA甲基化水平引起炎癥、凋亡相關(guān)因子高表達(dá),參與疾病進(jìn)展。
5. 誘導(dǎo)內(nèi)質(zhì)網(wǎng)應(yīng)激:Hcy作為公認(rèn)的內(nèi)質(zhì)網(wǎng)應(yīng)激誘導(dǎo)劑,可通過(guò)改變特定基因的甲基化水平、誘導(dǎo)腸道氧化應(yīng)激等途徑影響內(nèi)質(zhì)網(wǎng)內(nèi)的蛋白質(zhì)折疊,導(dǎo)致腸道細(xì)胞發(fā)生內(nèi)質(zhì)網(wǎng)應(yīng)激,從而觸發(fā)未折疊蛋白反應(yīng),再通過(guò)蛋白激酶R樣內(nèi)質(zhì)網(wǎng)激酶(PERK)、活化轉(zhuǎn)錄因子6(ATF6)和Ⅰ型內(nèi)質(zhì)網(wǎng)轉(zhuǎn)膜蛋白激酶(IRE1)這三種內(nèi)質(zhì)網(wǎng)固有分子介導(dǎo)細(xì)胞凋亡[27]。
6. 促進(jìn)腸壁纖維化:長(zhǎng)期慢性炎癥導(dǎo)致腸道間質(zhì)細(xì)胞過(guò)度增殖、腸壁ECM沉積和腸道肌層過(guò)度生長(zhǎng),促使腸壁纖維化,引發(fā)腸腔狹窄,故ECM代謝失衡是腸壁纖維化的主要原因[28]?;|(zhì)金屬蛋白酶(MMPs)可介導(dǎo)ECM 降解,而金屬蛋白酶組織抑制劑(TIMPs)可抑制MMPs,維持兩者間的平衡是保證ECM正常代謝的關(guān)鍵。Abreu等[29]利用2,4,6-三硝基苯磺酸(TNBS)誘導(dǎo)大鼠結(jié)腸炎的研究發(fā)現(xiàn),血漿高Hcy水平可促進(jìn)轉(zhuǎn)化生長(zhǎng)因子-β1(TGF-β1)、結(jié)締組織生長(zhǎng)因子(CTGF)等促纖維化因子表達(dá),影響MMPs/TIMPs平衡,加重大鼠腸壁纖維化。
7. 增加腸黏膜通透性:高Hcy血癥可誘發(fā)IBD患者腸黏膜炎癥,釋放的炎癥介質(zhì)破壞腸上皮完整性,導(dǎo)致其通透性增加。Munjal等[30]的研究發(fā)現(xiàn),Hcy可激活MMP-2和MMP-9,下調(diào)鈣黏蛋白以及閉合小環(huán)蛋白-1(ZO-1)等細(xì)胞間緊密連接蛋白表達(dá),開(kāi)放上皮細(xì)胞間緊密連接,增加腸黏膜通透性。
目前廣為接受的CACC發(fā)生途徑為:長(zhǎng)病程IBD→慢性炎癥→異型增生→癌變。除誘導(dǎo)氧化應(yīng)激外,高Hcy血癥還可能通過(guò)以下機(jī)制參與CACC發(fā)病。
1. 基因水平:DNA甲基化可調(diào)節(jié)基因轉(zhuǎn)錄水平,低甲基化可致相關(guān)基因表達(dá)上調(diào)?;蚪M(包括編碼區(qū)和非編碼區(qū))DNA低甲基化可影響DNA整合,使其修復(fù)受損,導(dǎo)致染色體不穩(wěn)定、基因突變等,從而激活原癌基因、改變抑癌基因表達(dá),導(dǎo)致腫瘤發(fā)生[31]。如前文所述,高Hcy血癥可使DNA發(fā)生異常甲基化,而基因組和癌基因的低甲基化可導(dǎo)致CACC發(fā)生。
2. 細(xì)胞水平:Hcy硫內(nèi)酯可引起腸壁纖維化、血管生成、膠原性炎癥、鈣化、鱗狀上皮化生、角質(zhì)化、腸上皮異型增生等細(xì)胞增殖性改變,誘發(fā)CACC[32]。高Hcy血癥誘導(dǎo)產(chǎn)生的過(guò)氧化氫可抑制內(nèi)皮細(xì)胞呼吸而導(dǎo)致其損傷,并可刺激平滑肌細(xì)胞增殖[33],從而參與CACC發(fā)病。此外,Hcy還可破壞IBD患者體內(nèi)的凝血-纖溶平衡,促進(jìn)血栓形成,繼而可能誘發(fā)腫瘤生長(zhǎng)和浸潤(rùn)。
3. 細(xì)胞因子水平:Hcy能刺激腸黏膜組織產(chǎn)生細(xì)胞黏附分子、趨化因子、細(xì)胞因子,進(jìn)而誘發(fā)腸道癌變。尤其是在IBD活動(dòng)期,腸黏膜固有層IL-6、TNF-α等促炎細(xì)胞因子表達(dá)上調(diào),介導(dǎo)細(xì)胞毒反應(yīng)[34]。動(dòng)物實(shí)驗(yàn)表明,IL-6可激活下游STAT3信號(hào)通路,誘導(dǎo)腸上皮細(xì)胞增殖和癌變,而腸道黏膜固有層巨噬細(xì)胞來(lái)源的IL-6/gp130/STAT3信號(hào)通路激活與CD癌變有關(guān)。此外,TNF-α可觸發(fā)炎癥級(jí)聯(lián)反應(yīng),誘發(fā)癌變[35]。
高Hcy血癥與IBD和CACC之間的密切聯(lián)系對(duì)IBD的臨床治療和CACC的預(yù)防具有重要指導(dǎo)意義。首先,對(duì)于IBD患者,可將血漿Hcy水平檢測(cè)作為常規(guī)實(shí)驗(yàn)室檢查項(xiàng)目;對(duì)伴有高Hcy血癥的高危IBD患者應(yīng)實(shí)施結(jié)腸鏡篩查,這是目前早期發(fā)現(xiàn)CACC的最佳初級(jí)管理策略[36]。其次,對(duì)于存在高Hcy血癥的UC和CD患者,應(yīng)查明其血漿Hcy水平升高的原因,糾正營(yíng)養(yǎng)不良,補(bǔ)充葉酸和Vit B[37],葉酸可作為CACC的化學(xué)預(yù)防藥物[13]。
綜上所述,目前研究認(rèn)為高Hcy血癥與IBD有關(guān),并可誘發(fā)CACC。糾正高Hcy血癥可能有助于IBD的恢復(fù),并能有效預(yù)防CACC,但確切機(jī)制尚不明確,有待深入研究。
1 Fournier P, Fourcade J, Roncalli J, et al. Homocysteine in chronic heart failure[J]. Clin Lab, 2015, 61 (9): 1137-1145.
2 Kallel L, Feki M, Sekri W, et al. Prevalence and risk factors of hyperhomocysteinemia in Tunisian patients with Crohn’s disease[J]. J Crohns Colitis, 2011, 5 (2): 110-114.
3 Dagli N, Poyrazoglu OK, Dagli AF, et al. Is inflammatory bowel disease a risk factor for early atherosclerosis?[J]. Angiology, 2010, 61 (2): 198-204.
4 Chen M, Mei Q, Xu J, et al. Detection of melatonin and homocysteine simultaneously in ulcerative colitis[J]. Clin Chim Acta, 2012, 413 (1-2): 30-33.
5 Sharma M, Tiwari M, Tiwari RK. Hyperhomocysteinemia: impact on neurodegenerative diseases[J]. Basic Clin Pharmacol Toxicol, 2015, 117 (5): 287-296.
6 Selhub J. Homocysteine metabolism[J]. Annu Rev Nutr, 1999, 19: 217-246.
7 Hamatani R, Otsu M, Chikamoto H, et al. Plasma homocysteine and folate levels and dietary folate intake in adolescents and young adults who underwent kidney transplantation during childhood[J]. Clin Exp Nephrol, 2014, 18 (1): 151-156.
8 丁浩,梅俏,李穎,等. 同型半胱氨酸對(duì)實(shí)驗(yàn)性結(jié)腸炎大鼠腸纖維化的影響及其機(jī)制[J]. 中華消化雜志, 2014, 34 (9): 624-626.
9 Scherer EB, da Cunha AA, Kolling J, et al. Development of an animal model for chronic mild hyperhomocysteinemia and its response to oxidative damage[J]. Int J Dev Neurosci, 2011, 29 (7): 693-699.
10 Drzewoski J, Gasiorowska A, Maecka-Panas E, et al. Plasma total homocysteine in the active stage of ulcerative colitis[J]. J Gastroenterol Hepatol, 2006, 21 (4): 739-743.
11 Vagianos K, Bernstein CN. Homocysteinemia and B vitamin status among adult patients with inflammatory bowel disease: a one-year prospective follow-up study[J]. Inflamm Bowel Dis, 2012, 18 (4): 718-724.
12 陳茉莉, 梅俏, 許建明, 等. 潰瘍性結(jié)腸炎患者血漿同型半胱氨酸和葉酸及維生素B12的檢測(cè)水平及其臨床意義[J]. 中華胃腸外科雜志, 2011, 14 (3): 185-187.
13 Owczarek D, Cibor D, Saapa K, et al. Homocysteine in patients with inflammatory bowel diseases[J]. Przegl Lek, 2014, 71 (4): 189-192.
14 Miller JW, Beresford SA, Neuhouser ML, et al. Homocysteine, cysteine, and risk of incident colorectal cancer in the Women’s Health Initiative observational cohort[J]. Am J Clin Nutr, 2013, 97 (4): 827-834.
15 Chiang FF, Wang HM, Lan YC, et al. High homocysteine is associated with increased risk of colorectal cancer independently of oxidative stress and antioxidant capacities[J]. Clin Nutr, 2014, 33 (6): 1054-1060.
16 Phelip JM, Ducros V, Faucheron JL, et al. Association of hyperhomocysteinemia and folate deficiency with colon tumors in patients with inflammatory bowel disease[J]. Inflamm Bowel Dis, 2008, 14 (2): 242-248.
17 Akoglu B, Milovic V, Caspary WF, et al. Hyperproliferation of homocysteine-treated colon cancer cells is reversed by folate and 5-methyltetrahydrofolate[J]. Eur J Nutr, 2004, 43 (2): 93-99.
18 Zhu H, Li YR. Oxidative stress and redox signaling mechanisms of inflammatory bowel disease: updated experimental and clinical evidence[J]. Exp Biol Med (Maywood), 2012, 237 (5): 474-480.
19 Loscalzo J. The oxidant stress of hyperhomocyst(e)inemia[J]. J Clin Invest, 1996, 98 (1): 5-7.
20 Kruidenier L, Kuiper I, Van Duijn W, et al. Imbalanced secondary mucosal antioxidant response in inflammatory bowel disease[J]. J Pathol, 2003, 201 (1): 17-27.
21 Ke X, Hu G, Fang W, et al. Qing Hua Chang Yin inhibits the LPS-induced activation of the IL-6/STAT3 signaling pathway in human intestinal Caco-2 cells[J]. Int J Mol Med, 2015, 35 (4): 1133-1137.
22 Ueno A, Jijon H, Chan R, et al. Increased prevalence of circulating novel IL-17 secreting Foxp3 expressing CD4+ T cells and defective suppressive function of circulating Foxp3+ regulatory cells support plasticity between Th17 and regulatory T cells in inflammatory bowel disease patients[J]. Inflamm Bowel Dis, 2013, 19 (12): 2522-2534.
23 Danese S, Sgambato A, Papa A, et al. Homocysteine triggers mucosal microvascular activation in inflammatory bowel disease[J]. Am J Gastroenterol, 2005, 100 (4): 886-895.
24 Kato S, Lindholm B, Stenvinkel P, et al. DNA hypermethylation and inflammatory markers in incident Japanese dialysis patients[J]. Nephron Extra, 2012, 2 (1): 159-168.
25 Rosenfeld G, Bressler B.Mycobacteriumaviumparatuberculosisand the etiology of Crohn’s disease: a review of the controversy from the clinician’s perspective[J]. Can J Gastroenterol, 2010, 24 (10): 619-624.
26 Fang FC. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies[J]. Nat Rev Microbiol, 2004, 2 (10): 820-832.
27 Yang X, Xu H, Hao Y, et al. Endoplasmic reticulum oxidoreductin 1α mediates hepatic endoplasmic reticulum stress in homocysteine-induced atherosclerosis[J]. Acta Biochim Biophys Sin (Shanghai), 2014, 46 (10): 902-910.
28 Shelley-Fraser G, Borley NR, Warren BF, et al. The connective tissue changes of Crohn’s disease[J]. Histopathology, 2012, 60 (7): 1034-1044.
29 Abreu JG, Ketpura NI, Reversade B, et al. Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta[J]. Nat Cell Biol, 2002, 4 (8): 599-604.
30 Munjal C, Tyagi N, Lominadze D, et al. Matrix metalloproteinase-9 in homocysteine-induced intestinal microvascular endothelial paracellular and transcellular permeability[J]. J Cell Biochem, 2012, 113 (4): 1159-1169.
31 李新, 羅鵬, 劉莉. DNA甲基化與結(jié)腸癌[J]. 國(guó)際消化病雜志, 2009, 29 (1): 29-32.
32 朱凡, 王毓明, 張勤英. 血漿同型半胱氨酸、血清葉酸及亞甲基四氫葉酸還原酶基因多態(tài)性與結(jié)、直腸癌發(fā)病關(guān)系的研究[J]. 東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2010, 29 (1): 88-92.
33 王崴, 楊龍, 張霽. 高同型半胱氨酸血癥與TIA及腦梗死的相關(guān)性研究[J]. 中外健康文摘, 2011, 8 (9): 109-110.
34 Ferroni P, Palmirotta R, Martini F, et al. Determinants of homocysteine levels in colorectal and breast cancer patients[J]. Anticancer Res, 2009, 29 (10): 4131-4138.
35 Wu Y, Zhou BP. TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion[J]. Br J Cancer, 2010, 102 (4): 639-644.
36 Velayos F. Managing risks of neoplasia in inflammatory bowel disease[J]. Curr Gastroenterol Rep, 2012, 14 (2): 174-180.
37 Akbulut S, Altiparmak E, Topal F, et al. Increased levels of homocysteine in patients with ulcerative colitis[J]. World J Gastroenterol, 2010, 16 (19): 2411-2416.
(2016-08-28收稿;2016-09-27修回)
Correlation of Homocysteine with Inflammatory Bowel Disease and Colitis-associated Colon Cancer
SHENJiaxin,WANGChengdang.
DepartmentofGastroenterology,DigestiveEndoscopyCenter,InstituteofDigestiveDiseases,theFirstAffiliatedHospitalofFujianMedicalUniversity,Fuzhou(350005)
Correspondence to: WANG Chengdang, Email: wangcdhl@sina.com
Inflammatory bowel disease (IBD) is a group of chronic, non-specific inflammatory intestinal diseases. Patients with IBD predispose to the development of colitis-associated colon cancer (CACC). Homocysteine is an important intermediate metabolite in methionine cycle, increased level of homocysteine is closely correlated with the development and progression of IBD and CACC. This paper reviewed the advances in study on correlation of homocysteine with IBD and CACC.
Homocysteine; Inflammatory Bowel Disease; Colitis, Ulcerative; Crohn Disease; Colonic Neoplasms
10.3969/j.issn.1008-7125.2017.06.010
*本文通信作者,Email: wangcdhl@sina.com