侯凱+李亞斌+錢會(huì)+楊咪
摘要:黃河是寧夏地區(qū)最重要的地表水資源,所以整個(gè)黃河寧夏段水環(huán)境質(zhì)量的優(yōu)劣將影響寧夏社會(huì)經(jīng)濟(jì)的發(fā)展?;?010年-2014年寧夏環(huán)境監(jiān)測(cè)站的統(tǒng)計(jì)資料,以污染最嚴(yán)重的指標(biāo)COD、氨氮、總磷的監(jiān)測(cè)資料為基礎(chǔ),采取物元分析法、模糊聚類法及WASP模型對(duì)黃河干流寧夏段水質(zhì)監(jiān)測(cè)斷面的布設(shè)進(jìn)行優(yōu)化。結(jié)果表明:現(xiàn)有的6個(gè)國控監(jiān)測(cè)斷面對(duì)黃河干流水質(zhì)變化狀況的監(jiān)測(cè)不完善,須增設(shè)2個(gè)監(jiān)測(cè)斷面,分別位于下河沿與金沙灣國控?cái)嗝骈g及葉盛公路橋與銀古公路橋國控?cái)嗝骈g,地理位置分別處于石空鎮(zhèn)與臨河鎮(zhèn),即105°40′31″E,37°34′04″N與106°18′36″E,38°16′11″N。
關(guān)鍵詞:水質(zhì)監(jiān)測(cè);斷面優(yōu)化;物元分析;模糊聚類;WASP模型
中圖分類號(hào):X832 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1672-1683(2017)03-0100-08
Abstract:The Yellow River is the most important surface water resource in Ningxia,so the water environment quality will directly affect the social and economic development of Ningxia.Based on the statistical data from the environmental monitoring station in Ningxia from 2010 to 2014,using the monitoring data of the main pollutants such as chemical oxygen demand,ammonia nitrogen,and total phosphorus,we employed matter-element analysis,fuzzy clustering,and WASP model to optimize the layout of the Yellow River water quality monitoring cross-sections in Ningxia section.The results showed that the present six national monitoring cross-sections could not provide sufficient monitoring of the water quality variation of Yellow River,and two additional monitoring cross-sections should be added.One should be between Xiaheyan and Jinshawan national monitoring cross-sections,and the other should be between Yesheng Road Bridge and Yingu Road Bridge national monitoring cross-sections.They are respectively at Shikong county (105°40′31″E,37°34′04″N) and Linhe county (106°18′36″E,38°16′11″N).
Key words: water quality monitoring;cross-section optimization;matter-element analysis;fuzzy clustering;WASP model
隨著現(xiàn)代社會(huì)經(jīng)濟(jì)、工業(yè)的迅速發(fā)展,水環(huán)境保護(hù)已經(jīng)成為社會(huì)高度關(guān)注的問題,其中江河作為重要的地表水資源,它的污染問題倍受關(guān)注。為了解我國河流水質(zhì)的變化規(guī)律及污染物空間分布,需要對(duì)河流水質(zhì)的監(jiān)測(cè)斷面進(jìn)行合理布置,使水質(zhì)監(jiān)測(cè)狀況更加合理有效,保證河流水環(huán)境的健康發(fā)展[1]。蔣艷君等[3]運(yùn)用改進(jìn)TOPSIS法對(duì)浦陽江干流水質(zhì)監(jiān)測(cè)斷面進(jìn)行優(yōu)化,將原來9個(gè)斷面優(yōu)化為7個(gè),證明此方法成立且計(jì)算結(jié)果準(zhǔn)確有效。王輝等[4]運(yùn)用改進(jìn)的貼近度法對(duì)渾河干流水質(zhì)監(jiān)測(cè)斷面進(jìn)行優(yōu)化,其中引入重心距離算法對(duì)貼近度法進(jìn)行改進(jìn),優(yōu)化結(jié)果科學(xué)準(zhǔn)確。蔣艷君等[5]也將改進(jìn)的物元分析法應(yīng)用到水質(zhì)監(jiān)測(cè)斷面的優(yōu)化中,對(duì)浦陽江干流斷面進(jìn)行優(yōu)化。目前國內(nèi)水系干流水質(zhì)監(jiān)測(cè)斷面優(yōu)化的研究主要采用實(shí)測(cè)數(shù)據(jù)進(jìn)行優(yōu)化計(jì)算,由于個(gè)別監(jiān)測(cè)斷面間距離過大,污染物在河流中遷移輸運(yùn)規(guī)律復(fù)雜多變,不能了解其真實(shí)情況。故本文采用WASP模型對(duì)黃河寧夏段干流進(jìn)行細(xì)分概化處理,對(duì)概化后的斷面進(jìn)行優(yōu)化研究,使結(jié)果更加準(zhǔn)確合理,從而為寧夏水環(huán)境的監(jiān)測(cè)、控制及水網(wǎng)建設(shè)提供更科學(xué)的保障,同時(shí)為寧夏的農(nóng)業(yè)發(fā)展提供建設(shè)性的指導(dǎo)意義。
1 研究區(qū)概況
黃河寧夏段是從中衛(wèi)縣南長灘開始,沿程至石嘴山市頭道坎,整個(gè)流程距離為397 km。由于工業(yè)廢水、生活污水和農(nóng)田退水持續(xù)排入黃河,對(duì)沿河水環(huán)境造成極大污染。流域內(nèi)河流TDS高、含沙量大,TDS一般為0.5~7.0 g/L,最高可達(dá)19 g/L,黃土丘陵區(qū)河流年均含沙量為100~380 kg/m3,年輸沙模數(shù)達(dá)到2 000~12 000 t/km2[2]。根據(jù)《2014年寧夏回族自治區(qū)環(huán)境狀況公報(bào)》,黃河干流寧夏段Ⅱ類水質(zhì)斷面比例為66.7%,Ⅲ類水質(zhì)斷面比例為33.3%,良好以上水質(zhì)斷面達(dá)100%。
黃河寧夏段現(xiàn)有六個(gè)國控監(jiān)測(cè)斷面,監(jiān)控中衛(wèi)、吳忠、銀川及石嘴山四市境內(nèi)黃河水質(zhì)狀況。其中中衛(wèi)市境內(nèi)黃河河道長度占總體35.8%,下河沿至金沙灣斷面間距較其他斷面間距離過大,監(jiān)測(cè)數(shù)據(jù)不能反映其間水質(zhì)真實(shí)情況;銀川市境內(nèi)存在9條入黃排水溝(中干溝、永二干溝及第二排水溝等)及多個(gè)工業(yè)園區(qū)(寧東能源化工基地、望遠(yuǎn)工業(yè)園區(qū)及銀川經(jīng)濟(jì)開發(fā)區(qū)等),僅有一個(gè)監(jiān)測(cè)斷面不能全面反映水質(zhì)變化情況(見表1及圖1)。因此,對(duì)黃河寧夏段水質(zhì)監(jiān)測(cè)斷面的優(yōu)化具有重要的實(shí)際意義。
2 研究方法與原理
2.1 模糊聚類法
聚類分析是采用數(shù)學(xué)方法判斷樣品之間的關(guān)系,客觀的對(duì)其進(jìn)行分類,是數(shù)理統(tǒng)計(jì)中“物以類聚之”的多元分析方法[6-7]。由于水環(huán)境本身就是灰色系統(tǒng),存在極大的模糊性,故將模糊數(shù)學(xué)的方法引入到聚類分析中,使分類更符合實(shí)際[8]。該方法在很多文獻(xiàn)中均有詳細(xì)介紹,這里不再贅述。
2.2 物元分析法
物元分析法是解決矛盾問題的方法,可將復(fù)雜問題抽象為形象化模型,并應(yīng)用這些模型進(jìn)行研究,提出相應(yīng)的應(yīng)用方法[9]。通過建立各點(diǎn)位物元模型和節(jié)域分析模型,計(jì)算各點(diǎn)位的線性關(guān)聯(lián)函數(shù)和綜合關(guān)聯(lián)函數(shù),根據(jù)計(jì)算結(jié)果繪制點(diǎn)聚圖,根據(jù)圖中點(diǎn)位分布確定優(yōu)化的點(diǎn)位。
2.2.1 確立各監(jiān)測(cè)斷面物元模型
對(duì)全部監(jiān)測(cè)斷面的污染指標(biāo)進(jìn)行對(duì)比,選出每項(xiàng)指標(biāo)的最優(yōu)值A(chǔ)、最差值B及期望值C,然后選擇各監(jiān)測(cè)指標(biāo)的最大值、最小值和平均值,用每一項(xiàng)指標(biāo)的最優(yōu)值A(chǔ)、最差值B及期望值C構(gòu)造出2個(gè)物元矩陣:
3 WASP水質(zhì)模型構(gòu)建
基于黃河干流寧夏段地形特征、水環(huán)境特征及水動(dòng)力學(xué)條件可知:黃河河道屬于寬淺型,水深遠(yuǎn)小于河寬,且干流流量與污水流量之比遠(yuǎn)大于10~20,可認(rèn)為污染物短時(shí)間內(nèi)在河道中混合均勻,其垂向和橫向濃度梯度變化可忽略不計(jì),主要靠斷面縱向混合作用向前輸移,河流水力要素和水質(zhì)狀況均可采用斷面平均值。綜合考慮以上水質(zhì)模型適用性和可行性,選取WASP模型建立黃河干流水質(zhì)模型。
3.1 模型概化
為保證研究的科學(xué)準(zhǔn)確性,運(yùn)用WASP水質(zhì)模型將黃河干流寧夏段概化為兩部分,即衛(wèi)寧段(WN)與青石段(QS):衛(wèi)寧段為下河沿至青銅峽段,劃分為27個(gè)斷面,各斷面間的距離約為4 km;青石段為青銅峽至石嘴山河段,劃分為44個(gè)斷面,各斷面間的距離約為4 km(其中將衛(wèi)寧段最后一個(gè)斷面數(shù)據(jù)作為青石段初始條件輸入模型)。為增加模型精度,運(yùn)用差值法對(duì)部分河段進(jìn)行適當(dāng)加密,分別計(jì)算出每段水體體積、相鄰分區(qū)間的特征距離及分區(qū)間剖面面積,作為模型輸入條件。圖2和圖3分別為衛(wèi)寧段與青石段WASP模型概化后的劃分情況,其中由下河沿至金沙灣依次為WN1、WN2、…、WN27,青銅峽至石嘴山依次為QS1、QS2、…、QS44。
3.2 模型建立及參數(shù)率定
以2014年黃河干流水環(huán)境為基礎(chǔ)建立水質(zhì)模型,模型選用EUTRO模塊,時(shí)間步長設(shè)為1,模擬指標(biāo)為COD、氨氮、總磷,依次輸入河段初始濃度、邊界濃度、含氧量及水溫等相關(guān)參數(shù)。模型部分參數(shù)參考WASP用戶手冊(cè)進(jìn)行設(shè)定,COD、氨氮、總磷自凈系數(shù)根據(jù)黃河上、中、下游水樣的室內(nèi)降解實(shí)驗(yàn)求得,分別為0.05/d、0.015/d和0.025/d,污染物縱向離散系數(shù)取50 m2/s,衛(wèi)寧段與青石段河道綜合粗糙率分別為0.045和0.036。
3.3 相關(guān)性檢驗(yàn)
通過MATLAB中corrcoef函數(shù)對(duì)實(shí)測(cè)數(shù)據(jù)與模擬數(shù)據(jù)進(jìn)行相關(guān)性分析,表3為三種污染物的實(shí)測(cè)數(shù)據(jù)與模擬數(shù)據(jù)進(jìn)行相關(guān)性分析后所得r值與p值,其中3種水質(zhì)指標(biāo)在6個(gè)監(jiān)測(cè)斷面監(jiān)測(cè)頻率均為每月一次,監(jiān)測(cè)時(shí)間為上午9點(diǎn)至12點(diǎn)之內(nèi),采用水質(zhì)自動(dòng)監(jiān)測(cè)技術(shù)。由表3可知:三種污染物實(shí)測(cè)數(shù)據(jù)與模擬數(shù)據(jù)的r值分別為0.978 9、0.993 1、0.986 9,均通過了95%的置信水平。圖4、圖5、圖6分別為COD、氨氮、總磷的實(shí)測(cè)數(shù)據(jù)與模擬數(shù)據(jù)對(duì)比,三幅圖中橫坐標(biāo)序號(hào)(1至6)依次代表6個(gè)水質(zhì)監(jiān)測(cè)斷面,即下河沿、金沙灣、葉盛公路橋、銀古公路橋、平羅黃河大橋與麻黃溝監(jiān)測(cè)斷面。由圖4-圖6可知:WASP水質(zhì)模型的模擬結(jié)果與實(shí)際較符合,證明運(yùn)用WASP水質(zhì)模型對(duì)黃河干流的概化分段是科學(xué)的,能夠有效模擬河流水質(zhì)的變化規(guī)律。
4 水質(zhì)監(jiān)測(cè)斷面優(yōu)化過程
4.1 衛(wèi)寧段斷面優(yōu)化
4.1.1 衛(wèi)寧段物元分析法
根據(jù)《地表水環(huán)境質(zhì)量標(biāo)準(zhǔn)》(GB 3838-2002)中污染指標(biāo)的標(biāo)準(zhǔn)值,運(yùn)用指數(shù)超標(biāo)法可得污染指標(biāo)的權(quán)值Wj,經(jīng)計(jì)算最后得歸一化權(quán)值的結(jié)果,表4為各污染指標(biāo)的分級(jí)標(biāo)準(zhǔn)及歸一化權(quán)值,由表4可知:污染指標(biāo)COD、氨氮、總磷的歸一化權(quán)值分別為0.100、0.425、0.475。將Wj代入式(7)、式(8),可得各斷面的綜合關(guān)聯(lián)函數(shù),表5為代入公式后的各斷面綜合關(guān)聯(lián)函數(shù)。
在以KA為橫坐標(biāo)、KB為縱坐標(biāo)的平面上,繪制27個(gè)監(jiān)測(cè)斷面綜合關(guān)聯(lián)函數(shù)的點(diǎn)聚圖,所有點(diǎn)均分布于第II、IV象限內(nèi)。圖7(a)為第II象限內(nèi)散點(diǎn)圖,由圖7(a)可知:在第II象限內(nèi)KA>0,符合最佳斷面,斷面從左到右依次為WN1至WN10,其中WN2、WN10符合程度最高,選為最優(yōu)斷面。圖7(b)為第IV象限內(nèi)散點(diǎn)圖,由圖7(b)可知:在第IV象限內(nèi)KB>0,符合最差斷面,斷面從左到右依次為WN11至WN27,其中WN11至WN15與WN24最為符合,是斷面中條件最優(yōu)化的點(diǎn),由于WN27有青銅峽斷面作為監(jiān)測(cè)斷面,故可舍去。綜上所述,采用物元分析法將衛(wèi)寧段優(yōu)化為以下8個(gè)監(jiān)測(cè)斷面:WN2、WN10、WN11、WN12、WN13、WN14、WN15、WN24。
4.1.2 衛(wèi)寧段模糊聚類法
采用MATLAB進(jìn)行模糊聚類分析,判斷各監(jiān)測(cè)斷面的相關(guān)性。運(yùn)用聚類函數(shù)分析法,對(duì)各監(jiān)測(cè)斷面進(jìn)行聚類分析,得到聚類樹圖(圖8),由圖8可知:衛(wèi)寧段水質(zhì)監(jiān)測(cè)斷面總體上分為三部分。第一部分中的WN1至WN8八個(gè)斷面看作一類,WN9看作一類;第二部分中,WN10、WN11看作一類,WN12、作為一類,WN14至WN19看作一類;第三部分中,WN20至WN22、WN27作為一類,WN24至WN26劃為一類,WN23屬于單獨(dú)一類。4.1.3 綜合對(duì)比
表6為綜合物元分析法與模糊聚類法得到的優(yōu)化結(jié)果,綜合兩種方法最終得到的優(yōu)化后斷面為WN2、WN11、WN13、WN15、WN24。
4.2 青石段斷面優(yōu)化
青石段水質(zhì)監(jiān)測(cè)斷面優(yōu)化方法與衛(wèi)寧段一致。表7為最后所得到的優(yōu)化結(jié)果,綜合兩種方法最終得到的優(yōu)化后斷面為QS5、QS7、QS10、QS25、QS30、QS44。4.3 優(yōu)化結(jié)果
依據(jù)寧夏區(qū)域的地形地貌及沿河主要入黃排水溝、支流的分布情況,布置與優(yōu)化監(jiān)測(cè)斷面需考慮如下因素:(1)城鎮(zhèn)密集或工業(yè)園區(qū)流域內(nèi),需布設(shè)對(duì)照斷面、控制斷面和消減斷面;(2)污染嚴(yán)重河段可
根據(jù)主要入黃排污口分布及排污狀況,連續(xù)設(shè)置幾個(gè)控制斷面;(3)若河段內(nèi)有較大支流匯入,須在交點(diǎn)上游與干流下游處設(shè)監(jiān)測(cè)斷面;四、流入或流出行政區(qū)邊界處應(yīng)設(shè)置監(jiān)測(cè)斷面。
對(duì)于衛(wèi)寧段,由于WN2距下河沿監(jiān)測(cè)斷面過近,考慮去掉WN2,保留下河沿?cái)嗝?;因WN11、WN13、WN15相鄰,且在它們之前有第一、第四排水溝及清水河匯入,考慮選擇其中一個(gè)斷面,鑒于監(jiān)測(cè)的方便,最終選擇WN13,即石空鎮(zhèn)處設(shè)置監(jiān)測(cè)斷面;WN24距金沙灣監(jiān)測(cè)斷面過近,考慮去掉WN24,保留金沙灣斷面。對(duì)于青石段,由于QS5、QS7距葉盛公路橋斷面過近,考慮去掉它們,保留葉盛公路橋斷面;鑒于QS10處于臨河鎮(zhèn)上游,斷面之前聚集較多城鎮(zhèn)及羅家河排水溝的匯入,為了解此處水質(zhì)受污染狀況,需在此設(shè)立監(jiān)測(cè)斷面,即QS10(臨河鎮(zhèn)上游)處設(shè)置監(jiān)測(cè)斷面;鑒于QS25、QS30距平羅黃河大橋較近,考慮去掉QS25、QS30,保留平羅黃河大橋斷面;因QS44距麻黃溝監(jiān)測(cè)斷面較近,考慮去掉QS44,保留麻黃溝斷面。
綜合上述物元分析法、模糊聚類法、地理因素等,最終確定水質(zhì)監(jiān)測(cè)斷面為8個(gè),較原來增設(shè)2個(gè)。表8為水質(zhì)監(jiān)測(cè)斷面最終優(yōu)化結(jié)果,增設(shè)斷面分別位于石空鎮(zhèn)(靠近下河沿)與臨河鎮(zhèn),其地理位置分別為105°40′31″E,37°34′04″N與106°18′36″E,38°16′11″N(見圖9)。對(duì)于增設(shè)的石空鎮(zhèn)監(jiān)測(cè)斷面,可彌補(bǔ)因下河沿與金沙灣兩監(jiān)測(cè)斷面之間距離過大,且兩斷面間有清水河及一系列入黃排水溝匯入,而造成對(duì)其間水質(zhì)真實(shí)變化情況監(jiān)測(cè)的空白;增設(shè)的臨河鎮(zhèn)監(jiān)測(cè)斷面,可彌補(bǔ)因此段較多的城鎮(zhèn)及入黃排水溝匯入,而造成對(duì)其間水質(zhì)真實(shí)變化情況掌握的空白。
5 結(jié)論
對(duì)黃河干流寧夏段國控水質(zhì)監(jiān)測(cè)斷面進(jìn)行優(yōu)化設(shè)置,可為寧夏水環(huán)境監(jiān)測(cè)控制及水網(wǎng)建設(shè)提供建設(shè)性意見,且優(yōu)化后監(jiān)測(cè)斷面能更加科學(xué)合理的監(jiān)測(cè)水質(zhì)變化,為寧夏農(nóng)業(yè)的發(fā)展提供保障。本文運(yùn)用物元分析法、模糊聚類法及WASP水質(zhì)模型對(duì)現(xiàn)有監(jiān)測(cè)斷面進(jìn)行優(yōu)化布置,得以下結(jié)論。
(1)采用WASP水質(zhì)模型對(duì)黃河寧夏段干流進(jìn)行概化,將污染物的實(shí)測(cè)數(shù)據(jù)與模擬數(shù)據(jù)進(jìn)行對(duì)比,得到其相關(guān)性檢驗(yàn)的r值分別為0.978 9、0.993 1、0.986 9,均通過95%的置信水平,證明運(yùn)用WASP水質(zhì)模型對(duì)黃河干流寧夏段概化分段是合理有效的。
(2)為全面了解干流流域水質(zhì)變化情況,監(jiān)測(cè)斷面最終優(yōu)化結(jié)果為:將原來6個(gè)國控水質(zhì)監(jiān)測(cè)斷面增加為8個(gè),增設(shè)的水質(zhì)監(jiān)測(cè)斷面分別位于石空鎮(zhèn)與臨河鎮(zhèn),其地理位置分別為105°40′31″E,37°34′04″N與106°18′36″E,38°16′11″N。
參考文獻(xiàn)(References):
[1] 李瑞杰,王迪,張穎.河流水質(zhì)監(jiān)測(cè)控制斷面設(shè)置探討[J].內(nèi)蒙古環(huán)境科學(xué),2008,20(2):41-42.(LI Rui-jie,WANG Di,ZHANG Ying.Approach on establishment of control section of river water quality monitoring[J].Inner Mongolian Environmental Sciences,2008,20(2):41-42.(in Chinese))
[2] 寧夏回族自治區(qū)環(huán)境保護(hù)局.環(huán)境狀況公報(bào)[R].銀川:寧夏回族自治區(qū)環(huán)境保護(hù)局,2001-2003.(The environmental protection bureau of ningxia hui autonomous region.Environmental bulletin[R].Yinchuan:The environmental protection bureau of ningxia hui autonomous region,2001-2003.(in Chinese))
[3] 蔣艷君,謝悅波,黃旻.基于改進(jìn)TOPSIS法的水質(zhì)監(jiān)測(cè)斷面優(yōu)化研究[J].南水北調(diào)與水利科技,2016(5):78-82.(JIANG Yan-jun,XIE Yue-bo,HUANG Min.Optimization of water quality monitoring sections based on improved TOPSIS method[J].South-to-North Water Transfers and Water Science & Technology,2016(5):78-82.(in Chinese))
[4] 王輝,孫家君,孫麗娜,等.貼進(jìn)度法的改進(jìn)及在渾河干流水質(zhì)監(jiān)測(cè)斷面優(yōu)化中應(yīng)用[J].生態(tài)學(xué)雜志,2014(12):3470-3474.(WANG Hui,SUN Jia-jun,SUN Li-na,et al.Modification of similarity method and its application in optimization design of river quality monitoring section in the mainstream of Hun River[J].Chinese Journal of Ecology,2014(12):3470-3474.(in Chinese))
[5] 蔣艷君,謝悅波,黃旻.改進(jìn)的物元分析法在水質(zhì)監(jiān)測(cè)斷面布設(shè)優(yōu)化中的應(yīng)用[J].水資源保護(hù),2016,32(4):136-141.(JIANG Yan-jun,XIE Yue-bo,HUANG Min.Application of improved matter element analysis method to optimization of water quality monitoring sections[J].Water Resources Protection,2016,32(4):136-141.(in Chinese))
[6] 杜艷君,孫慶華,李湉湉.不同通勤方式下PM2.5個(gè)體暴露與固定站點(diǎn)監(jiān)測(cè)的相關(guān)性研究[J].環(huán)境與健康雜志,2015(04):319-323.(DU Yan-jun,SUN Qing-hua,LI Tian-tian.Relationship between personal exposure levels in different commuting patterns and corresponding air monitoring data of PM2.5[J].Journal of Environment and Health,2015(04):319-323.(in Chinese))
[7] 安貝貝,蔣昌潭,劉蘭玉,等.水質(zhì)監(jiān)測(cè)斷面優(yōu)化技術(shù)研究[J].環(huán)境科學(xué)與技術(shù),2015(04):107-111.(AN Bei-bei,JIANG Chang-tan,LIU Yu-lan,et al.Optimized approach to setting up water quality monitoring crosssections[J].Environmental Science & Technology,2015(04):107-111.(in Chinese))
[8] 吳文強(qiáng),陳求穩(wěn),李基明,等.江河水質(zhì)監(jiān)測(cè)斷面優(yōu)化布設(shè)方法[J].環(huán)境科學(xué)學(xué)報(bào),2010(08):1537-1542.(WU Wen-qiang,CHEN Qiu-wen,LI Ji-ming,et al.Optimization of river water quality monitoring sections[J].Acta Scientiae Circumstantiae,2010(08):1537-1542.(in Chinese))
[9] 袁正鋒.常見環(huán)境質(zhì)量評(píng)價(jià)數(shù)學(xué)模型討論[J].生物技術(shù)世界,2012(02):90-91.(YUAN Zheng-feng.Common environmental quality evaluation mathematical model for discussion[J].Biotech World,2012(02):90-91.(in Chinese))
[10] 張荔,孫程,林金輝,等.WASP6水質(zhì)模型在渭河流域水環(huán)境容量解析中的應(yīng)用[J].水資源與水工程學(xué)報(bào),2006,17(06):12-14.(ZHANG Li,SUN Cheng,LIN Jin-hui,et al.Application of WASP6 model to water environmental capacity in Weihe River basin[J].Journal of Water Resources and Water Engineering,2006,17(06):12-14.(in Chinese))
[11] 韋興荷.邕江南寧市區(qū)段水質(zhì)時(shí)空變化規(guī)律分析[J].水資源保護(hù),2005(06):49-52.(WEI Xing-he.Analysis of the space-time variation rule of the water quality in Nanning section of the Yongjiang River[J].Water Resources Protection,2005(06):49-52.(in Chinese))
[12] 王福偉.我國環(huán)境監(jiān)測(cè)的現(xiàn)狀與發(fā)展[J].黑龍江科技信息,2016(24).(WANG Fu-wei.Present situation and the development of our country′s environmental monitoring[J].Heilongjiang Science and Technology Information,2016(24).(in Chinese))
[13] George Yu-zhu FU.Integration of USEPA WASP model in a GIS platform[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering).2010(12).
[14] 左其亭,李可任.最嚴(yán)格水資源管理制度理論體系探討[J].南水北調(diào)與水利科技,2013,11(1):34-38.(ZUO Qi-ting,LI Ke-ren.Discussion on theoretical system of the strictest water resources management system[J].South-to-North Water Transfers and Water Science & Technology,2013,11(1):34-38.(in Chinese))
[15] 張志強(qiáng),左其亭,馬軍霞.最嚴(yán)格水資源管理制度的和諧論解讀[J].南水北調(diào)與水利科技,2013,11(6):133-137.(ZHANG Zhi-qiang,ZUO Qi-ting,MA Jun-xia.Harmony theory interpretation for the strictest water resources management syste[J].South-to-North Water tansfcrs and Water Scicnace &Tachnology,2013,11(6):133-137.(in Chinese))
[16] 田靜宜,王新軍.基于熵權(quán)模糊物元模型的干旱區(qū)水資源承載力研究:以甘肅民勤縣為例[J].復(fù)旦學(xué)報(bào):自然科學(xué)版,2013,52(1):86-93.(TIAN Jing-yi,WANG Xin-jun.Assessment of the carrying capacity of water resources in arid areas based on an entropy fuzzy matter element model-A case study in Minqin county,Gansu province[J].Journal of Fudan University(Natural Science),2013,52(1):86-93.(in Chinese))
[17] 王亞尼,周序協(xié),張桂蓉,等.大茶湖浮游藻類調(diào)查與水質(zhì)初步評(píng)價(jià)[J].華中農(nóng)業(yè)大學(xué)學(xué)報(bào),2013,32(03):118-123.(WANG Ya-ni,ZHOU Xu-xie,ZHANG Gui-rong,et al.Investigation of phytoplankton and preliminary evaluationof water quality in Dacha Lake[J].Journal of Huazhong Agricultural University,2013,32(03):118-123.(in Chinese))
[18] 富天乙,鄒志紅,王曉靜.基于多元統(tǒng)計(jì)和水質(zhì)標(biāo)識(shí)指數(shù)的遼陽太子河水質(zhì)評(píng)價(jià)研究[J].環(huán)境科學(xué)學(xué)報(bào),2014,34(02):473-480.(FU Tian-yi,ZHOU Zhi-hong,WANG Xiao.Water quality assessment for Taizi River watershed in Liaoyang section based on multivariate statistical analysis and water quality identification index[J].Acta Scientiae Circumstantiae,2014,34(02):473-480.(in Chinese))
[19] 崔芳.基于均值化的灰色關(guān)聯(lián)法在渭河寶雞段水質(zhì)評(píng)價(jià)中的應(yīng)用[J].中國農(nóng)學(xué)通報(bào),2016,32(25):138-141.(CUI Fang.Water quality assessment of Weihe River Baoji section based on equalized grey correlation analysis[J].Chinese Agricultural Science Bulletin,2016,32(25):138-141.(in Chinese))
[20] 王維,紀(jì)枚,蘇亞楠.水質(zhì)評(píng)價(jià)研究進(jìn)展及水質(zhì)評(píng)價(jià)方法綜述[J].科技情報(bào)開發(fā)與經(jīng)濟(jì),2012,22(13):129-131.(WANG Wei,JI Mei,SU Ya-nan.Reviews of the progress in the research of water quality evaluation and the methods for water quality evaluation[J].Ci-tech Information Development & Economy.2012,22(13):129-131.(in Chinese))
[21] 章新,賀石磊,張雍照,等.水質(zhì)評(píng)價(jià)的灰色關(guān)聯(lián)分析方法研究[J].水資源與水工程學(xué)報(bào),2010,21(05):117-119(ZHANG Xin,HE Shi-lei,ZHANG Yong-zhao,et al.Study on grey relational analysismethod for water quality assessment[J].Journal of Water Resouces & Water Engineering.2010,21(05):117-119.(in Chinese))
[22] 弓曉峰,陳春麗,趙晉,等.鄱陽湖樂安河流域水質(zhì)監(jiān)測(cè)優(yōu)化布點(diǎn)[J].湖泊科學(xué),2006,18(05):545-549.(GONG Xiao-feng,CHEN Chun-li,ZHAO Jin,et al.Optimized points selection of the water quality monitoring in the Le′an River basin of Lake Poyang[J].J.Lake Sci,2006,18(05):545-549.(in Chinese))
[23] 翁建中,李繼影,梁柱,等.太湖藍(lán)藻水華時(shí)空分布與預(yù)警監(jiān)測(cè)響應(yīng)的分析[J].環(huán)境監(jiān)控與預(yù)警,2010,02(03):1-4.(WENG Jian-zhong,LI Jiying,LIANG Zhu,et al.Spatial and tanporal d istribution of cyanobacteria bloom in Taihu Lake and analysis of the response to early warning monitoring[J].Envirormental Monitoring and Forewarning,2010,02(03):1-4.(in Chinese))
[24] 李茜,張建輝,羅海江.區(qū)域地表水監(jiān)測(cè)斷面優(yōu)化調(diào)整的技術(shù)方法[J].環(huán)境監(jiān)控與預(yù)警,2012,04(01):34-37.(LI Qian,ZHANG Jian-hui,LUO Hai-jiang.The study on the optimization and adjustment of regional surface water environment monitoring sections[J].Environmental Monitoring and Forewarning,2012,04(01):34-37.(in Chinese))