曹輝慶 蔣勝理 黃誠梅 鄧智年 吳凱朝 徐林 陸珍 陳麗君 李秋鳳 魏源文
摘要:【目的】克隆甘蔗鈣依賴蛋白激酶基因(ScCDPK1),為其功能解析和育種利用打下基礎(chǔ)。【方法】根據(jù)甘蔗cDNA文庫中的CDPK基因序列信息設(shè)計引物,利用RT-PCR克隆ScCDPK1基因,并采用在線生物信息學(xué)分析軟件對其推導(dǎo)蛋白的理化性質(zhì)、跨膜結(jié)構(gòu)、信號肽及保守結(jié)構(gòu)域等進(jìn)行預(yù)測分析?!窘Y(jié)果】克隆獲得的ScCDPK1基因完整編碼區(qū)大小1650 bp,編碼549個氨基酸,相對分子量61.971 kD,等電點(pI)6.78,不穩(wěn)定指數(shù)35.63。同源性和遺傳進(jìn)化樹分析結(jié)果顯示,ScCDPK1基因與小麥TaCPK7基因親緣關(guān)系最近,同源性達(dá)88%;ScCDPK1蛋白與其他已知CDPK蛋白一致,具有CDPKs家族特有的4個保守區(qū)域(可變區(qū)、蛋白激酶區(qū)、自抑制區(qū)和鈣離子結(jié)合區(qū)),其二級結(jié)構(gòu)主要由α螺旋(42.80%)和無規(guī)則卷曲(32.97%)構(gòu)成;蛋白功能分類預(yù)測結(jié)果顯示,ScCDPK1蛋白是一種陽離子通道蛋白,可能參與植物脅迫應(yīng)答、信號轉(zhuǎn)導(dǎo)和翻譯調(diào)控等生物反應(yīng)。【結(jié)論】ScCDPK1基因編碼的蛋白與其他已知CDPK蛋白一致,具有CDPKs家族特有的4個保守區(qū)域,是一種陽離子通道蛋白。
關(guān)鍵詞: 甘蔗;鈣依賴蛋白激酶基因(CDPK);克?。恍蛄蟹治?;生物信息學(xué)預(yù)測
中圖分類號: S566.1 文獻(xiàn)標(biāo)志碼:A 文章編號:2095-1191(2017)04-0574-07
Abstract:【Objective】The calcium-dependent protein kinase gene in sugarcane(ScCDPK1) was cloned to provide re-
ferences for revealing its biological functions and further utilization in breeding. 【Method】The specific primers were designed according to known CDPK gene sequence from sugarcane cDNA library. ScCDPK1 gene was cloned using RT-PCR. The physical and chemical properties, transmembrane domain, signal peptide, and conserved domains were analyzed using online bioinformatics algorithms. 【Result】The full coding sequence of ScCDPK1 gene was cloned, which included 1650 bp in length and encoded 549 amino acid residues. Its relative molecular weight was 61.971 kD, isoelectric point(pI) 6.78 and instability index 35.63. Homology and phylogenetic tree analysis showed that ScCDPK1 of sugarcane shared the closest genetic relationship with TaCPK7 of wheat and had 88% similarity. Like other known CDPK proteins, ScCDPK1 protein contained four conserved domains(variable domain, protein kinase domain, self-inhibition domain and calcium binding domain). Its protein secondary structure mainly consisted of alpha helix(42.80%) and random coil(32.97%). Protein functional analysis showed that ScCDPK1 protein was a kind of cation channel protein which play important roles in many biology processes such as plant stress response, signal transduction and translation. 【Conclusion】Like other known CDPK proteins, the protein encoded by ScCDPK1 gene contains four conserved domains which is peculiar to CDPKs family. And it is a cation channel protein.
Key words: sugarcane; calcium-dependent protein kinase(CDPK); cloning; sequence analysis; bioinformatic prediction
0 引言
【研究意義】甘蔗(Saccharum spp. hybrids)是重要的糖料和能源作物,主要栽培于熱帶及亞熱帶地區(qū)。廣西是我國甘蔗主產(chǎn)區(qū),但蔗區(qū)主要分布在缺乏灌溉條件的旱坡地上,干旱是影響廣西甘蔗生產(chǎn)的主要因素之一,嚴(yán)重制約了蔗糖產(chǎn)業(yè)的可持續(xù)發(fā)展(李楊瑞等,2011;劉鵬飛等,2015;譚芳等,2016)。鈣依賴蛋白激酶(Calcium-dependent protein kinases,CDPK)是一類廣泛存在于植物細(xì)胞中的鈣傳感蛋白,具有Ca2+結(jié)合功能和絲氨酸/蘇氨酸(Ser/Thr)蛋白激酶活性,通過參與細(xì)胞Ca2+信號傳導(dǎo)調(diào)控下游基因表達(dá),在植物應(yīng)答脅迫反應(yīng)中發(fā)揮重要作用(Harmon et al.,2001)。因此,克隆甘蔗鈣依賴蛋白激酶基因(ScCDPK1)并進(jìn)行生物學(xué)功能分析,有助于探明甘蔗應(yīng)答干旱脅迫的分子機制,為甘蔗抗旱育種提供參考依據(jù)?!厩叭搜芯窟M(jìn)展】CDPK為分子量40~90 kD的單肽鏈蛋白,主要包含4個保守結(jié)構(gòu)域,即可變區(qū)、蛋白激酶區(qū)、自抑制區(qū)和鈣離子結(jié)合區(qū)(Cheng et al.,2002)。CDPK在植物中為多基因家族,目前已鑒定擬南芥中存在34個成員(Cheng et al.,2002;Harper et al.,2004;Harper and Harmon,2005)、水稻中存在31個成員(Asano et al.,2005;Ray et al.,2007)、小麥中存在20個成員(Li et al.,2008)、玉米中存在40個成員(Kong et al.,2013)、棉花中存在41個成員(Liu et al.,2014)。此外,在蘋果(Battey and Venis,1988)、芒果(Frylinck and Dubery,1998)、煙草(Yoon et al.,1999)和馬鈴薯(Kobayashi et al.,2007)等植物中也陸續(xù)克隆鑒定出CDPK基因。CDPK基因受赤霉素、生長素、干旱、高鹽、低溫、病原菌入侵和機械損傷等外界刺激誘導(dǎo)表達(dá)(Romeis et al.,2001;Wan et al.,2007;Boudsocq and Sheen,2013;Schulz et al.,2013)。Saijo等(2000)研究表明,超表達(dá)OsCDPK7和OsCPK13基因可增強轉(zhuǎn)基因水稻植株抵御低溫干旱和鹽分脅迫的能力;Wan等(2007)研究發(fā)現(xiàn),稻瘟病菌可誘導(dǎo)水稻OsCPK2、OsCPK9、OsCPK15和OsCPK17基因上調(diào)表達(dá);Coca和San Segundo(2010)發(fā)現(xiàn)AtCDPK1通過正調(diào)控水楊酸(SA)信號傳導(dǎo)途徑而提高擬南芥的抗病性?!颈狙芯壳腥朦c】至今,有關(guān)ScCDPK1基因的序列及結(jié)構(gòu)等分子生物學(xué)特性尚未明確,且這方面的研究報道甚少?!緮M解決的關(guān)鍵問題】從水分脅迫處理的甘蔗cDNA文庫(羅海斌等,2012)中克隆獲得ScCDPK1基因,對其序列同源性、遺傳進(jìn)化、推導(dǎo)蛋白理化性質(zhì)、結(jié)構(gòu)與功能進(jìn)行預(yù)測分析,旨在為ScCDPK1基因的功能解析和育種利用打下基礎(chǔ)。
1 材料與方法
1. 1 試驗材料
供試甘蔗品種為新臺糖22號(ROC22),由廣西作物遺傳改良生物技術(shù)重點開放實驗室提供。苗期取+1葉葉片迅速進(jìn)行液氮固定,-80 ℃保存?zhèn)溆谩MD18-T載體、Ex Taq DNA聚合酶、DL2000 DNA Marker購自寶生物工程(大連)有限公司,RNA提取試劑盒(RNAprep Pure Plant Kit)購自天根生化科技(北京)有限公司,cDNA合成試劑盒(TransScript One-Step gDNA Removal and cDNA Synthesis SuperMix)購自北京全式金生物技術(shù)有限公司。
1. 2 甘蔗總RNA提取及cDNA合成
參照RNAprep Pure Plant Kit試劑盒說明提取甘蔗葉片總RNA,用紫外分光光度計和1.0%瓊脂糖凝膠電泳檢測RNA的濃度、純度及完整性。參照Trans-
Script One-Step gDNA Removal and cDNA Synthesis SuperMix試劑盒說明合成cDNA第一鏈。
1. 3 引物設(shè)計及目的基因克隆
根據(jù)從甘蔗cDNA文庫中獲得的ScCDPK1基因序列,設(shè)計1對特異性引物(CDPK-F:5'-ATGGGCAACT
GCTGCGTGA-3',CDPK-R:5'-CTACCGTGTACTCGT
CATCTGC-3')。引物由北京奧科鼎盛生物科技有限公司合成。
PCR反應(yīng)體系25.0 μL:10×Buffer(Mg2+ Plus) 2.5 μL,dNTP Mixture(2.5 mmol/L) 2.0 μL,CDPK-F (10 μmol/L) 0.5 μL,CDPK-R(10 μmol/L) 0.5 μL,Ex Taq DNA聚合酶(5 U/μL) 0.2 μL,cDNA模板2.0 μL,ddH2O 17.3 μL。擴增程序:94 ℃預(yù)變性4 min;94 ℃ 30 s,56 ℃ 30 s,72 ℃ 1 min,進(jìn)行30個循環(huán);最后72 ℃延伸10 min。PCR擴增產(chǎn)物用1.5%瓊脂糖凝膠電泳進(jìn)行檢測,并用瓊脂糖凝膠回收試劑盒回收目的條帶。回收產(chǎn)物連接pMD18-T載體后轉(zhuǎn)化大腸桿菌DH5α感受態(tài)細(xì)胞,37 ℃培養(yǎng)過夜,篩選陽性克隆送至北京奧科鼎盛生物科技有限公司測序。
1. 4 目的基因序列分析
運用NCBI在線程序BLAST對目的基因進(jìn)行同源比對分析;以MEGA 6.06中的鄰接法(Neighbor-joining,NJ)構(gòu)建目的基因的系統(tǒng)發(fā)育進(jìn)化樹;利用ProtParam(http://web.expasy.org/protparam/)預(yù)測推導(dǎo)蛋白的理化性質(zhì);利用ProtScale(http://web.expasy.org/
cgi-bin/protscale/protscale.pl)計算推導(dǎo)蛋白的疏水性圖譜;利用TMHMM Server v.2.0(http://www.cbs.dtu.dk/
services/TMHMM/)預(yù)測推導(dǎo)蛋白的跨膜結(jié)構(gòu);利用SignalP 4.1 Server(http://www.cbs.dtu.dk/services/
SignalP/)預(yù)測推導(dǎo)蛋白是否含有信號肽;采用Clustal X對目的基因與同源基因推導(dǎo)的氨基酸序列進(jìn)行多序列比對;使用SMART(http://smart.embl-heidelberg.de/)預(yù)測目的基因推導(dǎo)蛋白的功能域;利用SOPMA(https://npsa-prabi.ibcp.fr/cgi-bin/secpred_sopm.pl)預(yù)測推導(dǎo)蛋白的二級結(jié)構(gòu);利用SWISS-MODEL(https://
swissmodel.expasy.org/)預(yù)測推導(dǎo)蛋白的三級結(jié)構(gòu);利用Softberry(http://www.softberry.com/berry.phtml?topic=protcom-ppl&group=programs&subgroup=proloc)網(wǎng)站完成亞細(xì)胞定位預(yù)測;利用ProtFun 2.2 Server(http://www.cbs.dtu.dk/services/ProtFun/)對目的基因推導(dǎo)蛋白進(jìn)行功能分類。
2 結(jié)果與分析
2. 1 ScCDPK1基因的克隆
以甘蔗新臺糖22號的葉片總RNA為模板,通過RT-PCR擴增獲得約1700 bp的單一條帶(圖1),其序列分析結(jié)果顯示,該片段大小1650 bp,包含一個基因的完整編碼區(qū)(圖2)。將克隆獲得的基因序列提交至GenBank進(jìn)行BLAST比對分析,結(jié)果顯示,該序列與小麥的TaCPK7基因同源性最高,達(dá)88%,與水稻、玉米、香蕉、煙草和擬南芥等植物CDPK基因的同源性在66%~76%(表1)。因此,確定克隆獲得的基因序列為甘蔗CDPK基因,命名為ScCDPK1(登錄號KX908136)。
2. 2 ScCDPK1基因遺傳進(jìn)化樹分析結(jié)果
采用MEGA 6.06中的鄰接法(NJ)構(gòu)建基于CDPK基因的系統(tǒng)發(fā)育進(jìn)化樹(圖3),結(jié)果顯示,ScCDPK1基因與小麥的TaCPK7基因親緣關(guān)系最近,與同源性比對分析結(jié)果一致。
2. 3 ScCDPK1蛋白的理化性質(zhì)及親/疏水性預(yù)測結(jié)果
由ProtParam在線分析結(jié)果可知,ScCDPK1基因編碼549個氨基酸,分子式為C2736H4343N781O816S23,相對分子量61.971 kD,等電點(pI)6.78,不穩(wěn)定指數(shù)35.63,推定該蛋白屬于穩(wěn)定蛋白,平均親水系數(shù)(GRAVY)-0.519,預(yù)測該蛋白為親水性蛋白。ScCDPK1蛋白含丙氨酸(Ala,8.7%)、亮氨酸(Leu,8.6%)、賴氨酸(Lys,7.8%)、谷氨酸(Glu,7.7%)和天冬氨酸(Asp,7.5%)。這5種氨基酸所占比例達(dá)40.3%,而色氨酸(Trp)所占比例最低,僅0.9%。
利用ProtScale計算ScCDPK1蛋白的疏水性圖譜,結(jié)果(圖4)顯示,ScCDPK1蛋白中親水性氨基酸占71.04%,疏水性氨基酸占27.50%,親水區(qū)域均勻地分布在整個肽鏈中,分值較高;疏水區(qū)域較少,分值較低。因此推測ScCDPK1蛋白為親水性蛋白。
2. 4 ScCDPK1蛋白的跨膜區(qū)域與信號肽預(yù)測分析結(jié)果
利用TMHMM Server v.2.0和SignalP 4.1 Server分析發(fā)現(xiàn),ScCDPK1蛋白不具備跨膜結(jié)構(gòu)和信號肽,是一種在細(xì)胞內(nèi)發(fā)揮生理作用的非分泌蛋白。
2. 5 ScCDPK1同源蛋白的多序列比對分析結(jié)果
采用Clustal X對ScCDPK1同源蛋白進(jìn)行多序列比對分析,結(jié)果(圖5)表明,ScCDPK1蛋白與其他已知的CDPK蛋白一樣,具有CDPKs家族所特有的4個保守區(qū)域(可變區(qū)、蛋白激酶區(qū)、自抑制區(qū)和鈣離子結(jié)合區(qū))。其中,N端可變區(qū)起始序列為MGNCCVT,是豆蔻酰化、棕櫚?;饔盟璧谋J匦蛄蠱GxxCxT(Stael et al.,2011);激酶區(qū)含有11個高度保守的催化結(jié)構(gòu)域;鈣離子結(jié)合區(qū)含有4個EF手型結(jié)構(gòu)域。
2. 6 ScCDPK1蛋白功能域的預(yù)測結(jié)果
利用SMART預(yù)測ScCDPK1蛋白的功能域,結(jié)果表明,該蛋白位于10~36 aa的區(qū)域為1個低復(fù)雜度區(qū)域(Low complexity region),位于67~332 aa的區(qū)域為Ser/Thr蛋白激酶催化區(qū),在位于379~407、415~443、451~479和487~515 aa的區(qū)域分別存在4個EF手型基序,每個基序由30個左右的氨基酸殘基組成(圖6 )。
2. 7 ScCDPK1蛋白的二級結(jié)構(gòu)及三級結(jié)構(gòu)預(yù)測結(jié)果
采用SOPMA預(yù)測ScCDPK1蛋白二級結(jié)構(gòu),結(jié)果(圖7)表明,ScCDPK1蛋白由42.80%的α螺旋(235個氨基酸殘基)、32.97%的無規(guī)則卷曲(181個氨基酸殘基)、14.21%的延伸鏈(78個氨基酸殘基)和10.02%的β轉(zhuǎn)角(55個氨基酸殘基)構(gòu)成,即α螺旋和無規(guī)則卷曲是ScCDPK1蛋白二級結(jié)構(gòu)的主要構(gòu)成元件。采用SWISS-MODEL同源建模方式得到ScCDPK1蛋白的三維預(yù)測模型(圖8),發(fā)現(xiàn)該蛋白質(zhì)主要由α螺旋和無規(guī)則卷曲構(gòu)成,與二級結(jié)構(gòu)預(yù)測結(jié)果基本一致。
2. 8 ScCDPK1蛋白的亞細(xì)胞定位和功能分類
采用ProtComp 9.0對ScCDPK1蛋白進(jìn)行亞細(xì)胞定位預(yù)測,結(jié)果表明ScCDPK1蛋白定位在細(xì)胞質(zhì)膜上。利用ProtFun 2.2 Server對ScCDPK1蛋白進(jìn)行功能分類(表2),其基因功能分類結(jié)果顯示該蛋白可能是翻譯調(diào)控蛋白,而基因本體分類進(jìn)一步預(yù)測該蛋白是一種陽離子通道蛋白,可能參與脅迫應(yīng)答、信號轉(zhuǎn)導(dǎo)、免疫應(yīng)答等生物反應(yīng)。
3 討論
CDPK通過磷酸化作用將逆境脅迫引發(fā)的Ca2+信號向下游級聯(lián)傳遞,進(jìn)而引起相關(guān)基因表達(dá)量的變化,提高植物對不良環(huán)境脅迫的耐受性(Ludwig et al.,2005;Xie et al.,2014)。CDPK在擬南芥、水稻和玉米等作物中已得到系統(tǒng)研究,但有關(guān)甘蔗CDPK基因序列及其功能結(jié)構(gòu)等分子生物學(xué)特性尚未明確。本研究根據(jù)甘蔗cDNA文庫中CDPK基因序列設(shè)計引物進(jìn)行ScCDPK1基因克隆,并將克隆獲得的目的基因進(jìn)行同源性比對和遺傳進(jìn)化樹分析,結(jié)果表明,ScCDPK1基因與其他植物CDPK基因的同源性在66%以上。同時,采用在線生物信息學(xué)分析軟件對ScCDPK1基因編碼蛋白的理化性質(zhì)、跨膜結(jié)構(gòu)、信號肽及保守結(jié)構(gòu)域等進(jìn)行預(yù)測分析,結(jié)果發(fā)現(xiàn)ScCDPK1蛋白存在1個Ser/Thr蛋白激酶亞結(jié)構(gòu)域和4個促進(jìn)Ca2+結(jié)合的EF手型結(jié)構(gòu),符合CDPK的典型特征(Stone and Walker,1995),說明已成功克隆獲得甘蔗CDPK基因。多數(shù)CDPK在N端含有與膜定位相關(guān)的豆蔻酰化、棕櫚酰化位點MGxxCxT(Stael et al.,2011),ScCDPK1蛋白N端可變區(qū)起始序列為MGNCCVT,具有定位于細(xì)胞膜上的特征。
植物中CDPK以多基因家族形式存在,廣泛參與植物逆境脅迫的分子響應(yīng)。如Urao等(1994)研究發(fā)現(xiàn),擬南芥在受到干旱和鹽分脅迫后,植株中CDPK基因的表達(dá)量急劇增加。CDPK基因的表達(dá)還與植物應(yīng)答病原微生物入侵相關(guān),如稻瘟病菌可誘導(dǎo)水稻OsCPK2、OsCPK9、OsCPK15和OsCPK17基因上調(diào)表達(dá)(Wan et al.,2007)。此外,有研究發(fā)現(xiàn)CDPK與植物體內(nèi)蔗糖積累存在負(fù)相關(guān),通過磷酸化作用調(diào)節(jié)蔗糖合成酶和蔗糖磷酸合成酶的活性,進(jìn)而調(diào)控植物體內(nèi)蔗糖代謝(Hardin et al.,2004;Papini-Terzi et al.,2009),但有關(guān)ScCDPK1蛋白在甘蔗中的確切功能有待進(jìn)一步研究驗證。
4 結(jié)論
ScCDPK1基因編碼的蛋白與其他已知CDPK蛋白一致,具有CDPKs家族特有的4個保守區(qū)域,是一種陽離子通道蛋白。
參考文獻(xiàn):
李楊瑞,方鋒學(xué),吳建明,李翔,張榮華,劉昔輝,何紅,楊榮仲,楊麗濤,陳趕林,蘇樹權(quán),謝金蘭,劉曉燕,黃偉華,段維興,何為中,汪淼. 2011. 2010/2011榨季廣西甘蔗生產(chǎn)凍害調(diào)查及防御對策[J]. 南方農(nóng)業(yè)學(xué)報,42(1):37-42.
Li Y R,F(xiàn)ang F X,Wu J M,Li X,Zhang R H,Liu X H,He H,Yang R Z,Yang L T,Chen G L,Su S Q,Xie J L,Liu X Y,Huang W H,Duan W X,He W Z,Wang M. 2011. Survey of frost and cold damage on sugarcane production in Guangxi in 2010/2011 milling season and countermeasures[J]. Journal of Southern Agriculture,42(1):37-42.
劉鵬飛,李向勇,張正學(xué),羅凱,雷朝云. 2015. 綠肥壓青對甘蔗產(chǎn)量及抗旱性的影響[J]. 貴州農(nóng)業(yè)科學(xué),43(9):35-37.
Liu P F,Li X Y,Zhang Z X,Luo K,Lei C Y. 2015. Effects of green manures on sugarcane yield and drought resistance[J]. Guizhou Agricultural Sciences,43(9):35-37.
羅海斌,曹輝慶,魏源文,鄧智年,潘有強,郭元元,何海波,李楊瑞. 2012. 干旱脅迫下甘蔗苗期根系全長cDNA文庫構(gòu)建及EST序列分析[J]. 南方農(nóng)業(yè)學(xué)報,43(6):733-737.
Luo H B,Cao H Q,Wei Y W,Deng Z N,Pan Y Q,Guo Y Y,He H B,Li Y R. 2012. Construction of full-length cDNA library and its EST sequence analysis in sugarcane root at seedling stage under drought stress[J]. Journal of Southern Agriculture,43(6):733-737.
譚芳,經(jīng)艷,王倫旺,鄧宇馳,李廷化. 2016. 不同施肥量和種植密度對桂糖32號甘蔗蔗糖分和產(chǎn)量的影響[J]. 江蘇農(nóng)業(yè)學(xué)報,32(5):1055-1059.
Tan F,Jing Y,Wang L W,Deng Y C,Li T H. 2016. Yield and sucrose content of sugar cane Guitang 32 influenced by fertilizerapplication rates and planting densities[J]. Jiangsu Journal of Agricultural Sciences,32(5):1055-1059.
Asano T,Tanaka N,Yang G,Hayashi N,Komatsu S. 2005. Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families:Comprehensive analysis of the CDPKs gene family in rice[J]. Plant & Cell Physiology,46(2):356-366.
Battey N H,Venis M A. 1988. Calcium-dependent protein kinase from apple fruit membranes is calmodulin-independent but has calmodulin-like properties[J]. Planta,176(1):91-97.
Boudsocq M,Sheen J. 2013. CDPKs in immune and stress signaling[J]. Trends in Plant Science,18(1):30-40.
Cheng S H,Willmann M R,Chen H C,Sheen J. 2002. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family[J]. Plant Physiology,129(2):469-485.
Coca M,San Segundo B. 2010. AtCPK1 calcium-dependent protein kinase mediates pathogen resistance in Arabidopsis[J]. The Plant Journal,63(3):526-540.
Frylinck L,Dubery I A. 1998. Protein kinase activities in ripening mango,Mangifera indica L.,fruit tissue. I:Purification and characterization of a calcium-stimulated casein kinase-I[J]. Biochimica et Biophysica Acta,1382(1):65-79.
Hardin S C,Winter H,Huber S C. 2004. Phosphorylation of the amino terminus of maize sucrose synthase in relation to membrane association and enzyme activity[J]. Plant Physio-
logy,134(4):1427-1438.
Harmon A C,Gribskov M,Gubrium E,Harper J F. 2001. The CDPK superfamily of protein kinases[J]. New Phytologist,151(1):175-183.
Harper J F,Breton G,Harmon A. 2004. Decoding Ca2+ signals through plant protein kinases[J]. Annual Review of Plant Biology,55(1):263-288.
Harper J F,Harmon A. 2005. Plants,symbiosis and parasites:A calcium signaling connection[J]. Nature Reviews. Molecular Cell Biology,6(7):555-566.
Kobayashi M,Ohura I,Kawakita K,Yokota N,F(xiàn)ujiwara M,Shimamoto K,Doke N,Yoshioka H. 2007. Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase[J]. The Plant Cell,19(3):1065-1080.
Kong X P,Lv W,Jiang S S,Zhang D,Cai G H,Pan J W,Li D Q. 2013. Genome-wide identification and expression analysis of calcium-dependent protein kinase in maize[J]. BMC Genomics,14(1):447-450.
Li A L,Zhu Y F,Tan X M,Wang X,Wei B,Guo H Z,Zhang Z L,Chen X B,Zhao G Y,Kong X Y,Jia J Z,Mao L. 2008. Evolutionary and functional study of the CDPK gene family in wheat(Triticum aestivum L.)[J]. Plant Molecular Biology,66(4):429-443.
Liu W,Li W,He Q,Daud M K,Chen J,Zhu S. 2014. Genome-wide survey and expression analysis of calcium-dependent protein kinase in Gossypium raimondii[J]. PloS One,9(6):e98189.
Ludwig A A,Saitoh H,F(xiàn)elix G,F(xiàn)reymark G,Miersch O,Wasternack C,Boller T,Jones J D G,Romeis T. 2005. Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants[J]. Proceedings of the National Academy of Sciences of the United States of America,102(30):10736-10741.
Papini-Terzi F S,Rocha F R,Vêncio R Z,F(xiàn)elix J M,Branco D S,Waclawovsky A J,Del Bem L E,Lembke C G,Costa M D,Nishiyama M Y Jr,Vicentini R,Vincentz M G,Ulian E C,Menossi M,Souza G M. 2009. Sugarcane genes associa-
ted with sucrose content[J]. BMC Genomics,10(1):1-21.
Ray S,Agarwal P,Arora R,Kapoor S,Tyagi A K. 2007. Expre-
ssion analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice(Oryza sativa L. ssp. Indica)[J]. Molecular Genetics and Genomics,278(5):493-505.
Romeis T,Ludwig A A,Martin R,Jones J D. 2001. Calcium-dependent protein kinases play an essential role in a plant defenceresponse[J]. The EMBO Journal,20(20):5556-5567.
Saijo Y,Hata S,Kyozuka J,Shimamoto K,Izui K. 2000. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants[J]. The Plant Journal,23(3):319-327.
Schulz P,Herde M,Romeis T. 2013. Calcium-dependent protein kinases:Hubs in plant stress signaling and development[J]. Plant Physiology,163(2):523-530.
Stael S,Bayer R G,Mehlmer N,Teige M. 2011. Protein N-acylation overrides differing targeting signals[J]. FEBS Letters,585(3):517-522.
Stone J M,Walker J C. 1995. Plant protein kinase families and signal transduction[J]. Plant Physiology,108(2):451-457.
Urao T, Katagiri T, Mizoguchi T, Yamaguchi-Shinozaki K,Hayashida N,Shinozaki K. 1994. Two genes that encode Ca2+-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana[J]. Molecular & General Genetics,244(4):331-340.
Wan B L,Lin Y J,Mou T M. 2007. Expression of rice Ca2+-dependent protein kinases(CDPKs) genes under different environmental stresses[J]. FEBS Letters,581(6):1179-1189.
Xie K,Chen J,Wang Q,Yang Y. 2014. Direct phosphorylation and activation of a mitogen-activated protein kinase by a calcium-dependent protein kinase in rice[J]. The Plant Cell,26(7):3077-3089.
Yoon G M,Cho H S,Ha H J,Liu J R,Lee H S. 1999. Characterization of NtCDPK1,a calcium-dependent protein kinase gene in Nicotiana tabacum,and the activity of its encoded protein[J]. Plant Molecular Biology,39(5):991-1001.
(責(zé)任編輯 蘭宗寶)