李婭妮, 梁柳丹, 陳燕瓊, 宋向群, 周韶璋△
(廣西醫(yī)科大學(xué) 1研究生院, 2附屬腫瘤醫(yī)院呼吸腫瘤內(nèi)科,廣西 南寧 530021)
·論 著·
旁路信號(hào)通路激活介導(dǎo)的EML4-ALK融合基因陽性肺癌細(xì)胞株H3122對(duì)alectinib繼發(fā)耐藥的研究*
李婭妮1, 梁柳丹1, 陳燕瓊1, 宋向群2, 周韶璋2△
(廣西醫(yī)科大學(xué)1研究生院,2附屬腫瘤醫(yī)院呼吸腫瘤內(nèi)科,廣西 南寧 530021)
目的: 本研究旨在探討肝細(xì)胞生長因子(HGF)、表皮生長因子(EGF)及轉(zhuǎn)化生長因子α(TGF-α)是否以旁路激活的方式誘導(dǎo)EML4-ALK融合基因陽性肺癌細(xì)胞株H3122對(duì)alectinib的耐藥,并進(jìn)一步探討旁路信號(hào)激活在alectinib耐藥中的作用。方法: 用不同濃度的alectinib、克唑替尼(crizotinib)、17-DMAG或(和)HGF(50 μg/L)、EGF(100 μg/L)、TGF-α(100 μg/L)處理EML4-ALK陽性肺癌細(xì)胞株H3122,采用CCK-8法檢測(cè)細(xì)胞活力,流式細(xì)胞術(shù)檢測(cè)細(xì)胞凋亡,應(yīng)用Western blot技術(shù)檢測(cè)細(xì)胞中ALK、c-Met、EGFR及相應(yīng)磷酸化蛋白的表達(dá),觀察其下游通路關(guān)鍵蛋白AKT、ERK、p-AKT和p-ERK水平。結(jié)果: Alectinib作用72 h后,H3122細(xì)胞株的活力隨著alectinib藥物濃度的增加而逐漸下降,呈劑量依賴性。HGF、EGF和TGF-α誘導(dǎo)后,alectinib抑制H3122細(xì)胞的生長曲線往右移,HGF、EGF和TGF-α處理能夠降低alectinib對(duì)肺癌細(xì)胞活力的抑制作用。0.05 μmol/L alectinib作用H3122細(xì)胞株48 h后的凋亡率為(20.12±1.36)%,而alectinib聯(lián)合HGF、EGF和TGF-α后的凋亡率分別為(7.85±1.03)%、(5.60±0.79)%和(4.58±1.00)%,顯著低于alectinib單藥處理(P<0.05)。Alectinib單藥成功抑制p-ALK及其下游信號(hào)通路,HGF明顯增加細(xì)胞中p-Met及其下游p-AKT、p-ERK的蛋白水平,EGF和TGF-α明顯增加細(xì)胞中p-EGFR及其下游p-AKT、p-ERK的表達(dá),alectinib抑制p-ALK,但不能抑制HGF、EGF和TGF-α誘導(dǎo)的p-AKT和p-ERK的蛋白表達(dá)。此外,聯(lián)合應(yīng)用crizotinib和17-DMAG可以抑制因HGF和EGFR配體而導(dǎo)致的H3122耐藥細(xì)胞的活力。結(jié)論: HGF、EGF和TGF-α可通過旁路激活的方式誘導(dǎo)EML4-ALK陽性肺癌細(xì)胞H3122對(duì)alectinib耐藥,其機(jī)制可能與HGF激活c-Met磷酸化、EGF和TGF-α激活EGFR磷酸化有關(guān)。
EML4-ALK融合基因; Alectinib; 肝細(xì)胞生長因子; 表皮生長因子受體; 耐藥性
棘皮動(dòng)物微管相關(guān)蛋白樣蛋白4-間變性淋巴瘤激酶(echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase,EML4-ALK)融合基因是非小細(xì)胞肺癌(non-small cell lung cancer,NSCLC)領(lǐng)域中一個(gè)重要的治療靶點(diǎn)。ALK包含許多重要的生物學(xué)信號(hào)通路,影響腫瘤細(xì)胞的增殖、分化與凋亡[1]。 Alectinib是一種強(qiáng)效、選擇性的二代ALK抑制劑,其對(duì)EML4-ALK陽性NSCLC有強(qiáng)的抑制作用,不僅抑制大多數(shù)與克唑替尼(crizotinib)耐藥相關(guān)的ALK突變,并且對(duì)有中樞神經(jīng)系統(tǒng)轉(zhuǎn)移的患者有顯著療效[2],目前已被FDA批準(zhǔn)用于克唑替尼耐藥的ALK陽性NSCLC的治療。然而最近在一些基礎(chǔ)實(shí)驗(yàn)及ALK陽性患者中發(fā)現(xiàn)alectinib的耐藥,目前已知的alectinib耐藥機(jī)制中,ALK繼發(fā)耐藥突變[3]、小細(xì)胞肺癌的轉(zhuǎn)變[4-5]以及上皮間質(zhì)轉(zhuǎn)化[6]等耐藥方式都有了相應(yīng)的解決方案,而旁路信號(hào)激活在alectinib耐藥中的作用復(fù)雜多樣,有待進(jìn)一步研究。肝細(xì)胞生長因子(hepatocyte growth factor,HGF)是原癌基因c-Met的唯一配體,表皮生長因子(epidermal growth factor,EGF)及轉(zhuǎn)化生長因子α(transforming growth factor-α,TGF-α)是表皮生長因子受體(epidermal growth factor receptor, EGFR)的配體,它們?cè)谂c其相應(yīng)的受體特異性結(jié)合后可激活一系列的跨膜信號(hào)通路(包括PI3K/AKT、MEK/ERK及STAT3),從而促進(jìn)腫瘤的生長、侵襲和轉(zhuǎn)移,常與臨床預(yù)后差及耐藥有關(guān)[7-8]。已有研究證實(shí)HGF通過激活c-Met信號(hào)通路誘導(dǎo)EGFR突變患者對(duì)EGFR-TKI耐藥[9],不同于克唑替尼(為ALK及c-Met的雙靶點(diǎn)抑制劑),alectinib對(duì)c-Met并沒有抑制作用,c-Met信號(hào)通路可能是alectinib的耐藥機(jī)制之一。另有研究報(bào)道EGFR信號(hào)旁路與克唑替尼耐藥相關(guān)[10],但是它在alectinib耐藥中的作用目前研究有待明確。本研究擬通過外源性加入HGF、EGF及TGF-α,比較和分析其對(duì)alectinib作用下肺癌細(xì)胞的生長和凋亡的影響,觀察ALK、c-Met和EGFR信號(hào)通路的變化,旨在研究HGF、EGF及TGF-α旁路激活方式在誘導(dǎo)EMA4-ALK陽性NSCLC對(duì)alectinib耐藥中的作用,并探索alectinib聯(lián)合應(yīng)用crizotinib和17-DMAG對(duì)H3122細(xì)胞活力的影響。
1 材料
1.1 細(xì)胞EML4-ALK融合基因陽性肺癌細(xì)胞株H3122購自科佰生物科技有限公司,含EML4-ALK融合基因變體1。
1.2 主要試劑與儀器 Alectinib和17-DMAG購于Selleckchem;crizotinib粉末制劑購于Cell Signaling Technology;胎牛血清和RPMI-1640培養(yǎng)基均購自BI;胰酶替代物購自Gibco;CCK-8細(xì)胞活力檢測(cè)試劑盒購自Dojindo;Annexin V-PE/7-AAD細(xì)胞凋亡檢測(cè)試劑盒購自BD;HGF、EGF和TGF-α購自PeproTech;抗GAPDH、ALK、p-ALK、c-Met、p-Met (Tyr1234/1235)、EGFR、p-EGFR(Tyr1068)、AKT、p-AKT(Ser473)、ERK、p-ERK(Thr202/Tyr204)單克隆抗體以及兔源和鼠源 II 抗均購自Cell Signaling Technology;Western blot實(shí)驗(yàn)儀器設(shè)備購自Bio-Rad。
2 方法
2.1 細(xì)胞培養(yǎng)及藥物配制 將H3122細(xì)胞使用含10%滅活新生牛血清的RPMI-1640培養(yǎng)液,5% CO2、37 ℃的條件下培養(yǎng),每3~4 d傳代1次。Alectinib、crizotinib和17-DMAG原料用DMSO溶解制成106nmol/L的母液儲(chǔ)存于-80 ℃冰箱,用藥時(shí)用新鮮的RPMI-1640培養(yǎng)基稀釋,并使DMSO的終濃度小于0.1%。HGF、EGF和TGF-α用無菌雙離子水稀釋成10 mg/L、20 mg/L和20 mg/L,分裝儲(chǔ)存于-20 ℃冰箱。
2.2 CCK-8實(shí)驗(yàn)檢測(cè)細(xì)胞活力 取生長良好的對(duì)數(shù)期H3122細(xì)胞,每100 μL含細(xì)胞數(shù)為4×103個(gè)的細(xì)胞懸液接種于96孔板。待細(xì)胞貼壁后,吸去培養(yǎng)基,加入不同濃度的alectinib、crizotinib、17-DMAG或(和)50 μg/L HGF、100 μg/L EGF、100 μg/L TGF-α,以不加藥孔為空白對(duì)照孔,以不含細(xì)胞,只含對(duì)應(yīng)濃度藥物培養(yǎng)基的孔為空白調(diào)零孔,設(shè)置4個(gè)復(fù)孔。作用72 h后,吸去培養(yǎng)基,加入100 μL含1/10體積的CCK-8溶液的培養(yǎng)基,繼續(xù)孵育2~3 h后,用酶標(biāo)儀測(cè)量波長450 nm處吸光度(A)值。細(xì)胞存活率(%)=(處理組平均A值-空白調(diào)零組平均A值)/(空白對(duì)照組平均A值-空白調(diào)零組平均A值)×100%。
2.3 流式細(xì)胞術(shù)凋亡檢測(cè) 取生長良好的對(duì)數(shù)期H3122細(xì)胞,以每孔4×105個(gè)細(xì)胞數(shù)接種于6孔板中,待細(xì)胞貼壁后棄原培養(yǎng)基,實(shí)驗(yàn)分為4組:空白對(duì)照(control)組、alectinib處理組、重組細(xì)胞因子(HGF/EGF/TGF-α)處理組和alectinib聯(lián)合重組細(xì)胞因子(HGF/EGF/TGF-α)處理組,按分組加入含0.05 μmol/L的alectinib或(和)50 μg/L HGF、100 μg/L EGF、100 μg/L TGF-α的培養(yǎng)基作用48 h。胰酶消化并分別收集各孔全部細(xì)胞,離心、棄上清液,冷生理鹽水洗滌2次,按照細(xì)胞凋亡試劑盒說明書對(duì)細(xì)胞進(jìn)行染色,避光、室溫反應(yīng)15 min后加入緩沖液,用流式細(xì)胞儀檢測(cè)細(xì)胞凋亡。實(shí)驗(yàn)重復(fù)3次。
2.4 Western blot實(shí)驗(yàn) 實(shí)驗(yàn)分為4組:空白對(duì)照(control)組、alectinib處理組、重組細(xì)胞因子(HGF/EGF/TGF-α)處理組和alectinib聯(lián)合重組細(xì)胞因子(HGF/EGF/TGF-α)處理組,先以0.05 μmol/L alectinib處理2 h,繼而加入50 μg/L HGF、100 μg/L EGF或100 μg/L TGF-α刺激15 min,收集長滿瓶的經(jīng)不同處理的H3122細(xì)胞,按蛋白提取試劑說明書提取細(xì)胞總蛋白,所得總蛋白經(jīng)10%聚丙烯酰胺凝膠電泳分離后,轉(zhuǎn)移至PVDF膜,5%脫脂奶粉室溫封閉1 h。分別使用稀釋度為1∶1 000的ALK、1∶1 000的p-ALK、1∶1 000的c-Met、1∶1 000的p-Met(Tyr1234/1235)、1∶1 000的EGFR、1∶1 000的p-EGFR(Tyr1068)、1∶2 000的AKT 、1∶2 000的p-AKT(Ser473)、1∶1 000的ERK和1∶1 000的p-ERK(Thr202/Tyr204)抗體,4 ℃孵育過夜,TBST洗膜10 min,3次后用稀釋度1∶2 000的兔鼠II抗室溫下孵育1~2 h,ECL發(fā)光試劑盒顯色,計(jì)算機(jī)掃描蛋白質(zhì)條帶,以條帶灰度值確定蛋白表達(dá),實(shí)驗(yàn)重復(fù)3次。
3 統(tǒng)計(jì)學(xué)處理
應(yīng)用SPSS 17.0統(tǒng)計(jì)學(xué)軟件,數(shù)值以均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,兩組間比較采用t檢驗(yàn), 多組數(shù)據(jù)比較采用單因素方差分析,以P<0.05表示差異有統(tǒng)計(jì)學(xué)意義。
1 CCK-8法檢測(cè)alectinib單獨(dú)或聯(lián)合HGF/EGF/TGF-α處理對(duì)H3122細(xì)胞活力的影響
Alectinib作用72 h后,H3122細(xì)胞的活力隨著alectinib藥物濃度的升高相應(yīng)下降,呈現(xiàn)顯著的濃度依賴性抑制,alectinib作用H3122細(xì)胞72 h的IC50值為0.042 μmol/L。50 μg/L HGF處理后,alectinib作用于H3122細(xì)胞的IC50顯著升高(P<0.05),而100 μg/L EGF或100 μg/L TGF-α處理后,H3122細(xì)胞對(duì)alectinib不敏感,給予100倍于IC50值的藥物濃度仍未求出IC50,估計(jì)值遠(yuǎn)大于3 μmol/L。HGF(50 μg/L)、EGF(100 μg/L)和TGF-α(100 μg/L)誘導(dǎo)H3122細(xì)胞的藥物濃度-細(xì)胞存活率曲線與非誘導(dǎo)曲線相比明顯往右側(cè)移。重組細(xì)胞生長因子單獨(dú)處理H3122細(xì)胞出現(xiàn)不同程度促進(jìn)細(xì)胞活力的作用,尤其是TGF-α對(duì)H3122細(xì)胞的促生長作用顯著(P<0.05),見圖1。
Figure 1.H3122 cell viability after treatment with various concentrations of alectinib alone or combined with HGF/EGF/TGF-α for 72 h detected by CCK-8 assay. Mean±SD.n=3.*P<0.05vsalectinib group.
圖1 CCK-8法檢測(cè)不同濃度alectinib單獨(dú)或聯(lián)合HGF/EGF/TGF-α作用72 h后H3122細(xì)胞的存活率
2 流式細(xì)胞術(shù)檢測(cè)細(xì)胞凋亡
根據(jù)CCK-8法檢測(cè)H3122細(xì)胞生長的情況,選擇0.05 μmol/L alectinib單獨(dú)或聯(lián)合HGF/EGF/TGF-α處理H3122細(xì)胞48 h,檢測(cè)細(xì)胞凋亡率。結(jié)果0.05 μmol/L alectinib單藥處理48 h后H3122細(xì)胞的凋亡率為(20.12±1.36)%,50 μg/L HGF、100 μg/L EGF和100 μg/L TGF-α聯(lián)合0.05 μmol/L alectinib處理48 h后的凋亡率分別為(7.85±1.03)%、(5.60±0.79)%和(4.58±1.00)%,顯著低于alectinib單藥處理(P<0.05)。實(shí)驗(yàn)結(jié)果表明alectinib對(duì)H3122細(xì)胞有促凋亡作用,HGF、EGF和TGF-α誘導(dǎo)作用可減少alectinib導(dǎo)致的H3122細(xì)胞凋亡,見圖2。
3 Western blot檢測(cè)alectinib單獨(dú)或聯(lián)合HGF/EGF/TGF-α處理對(duì)H3122細(xì)胞ALK、HGF/Met和EGFR信號(hào)通路蛋白表達(dá)的影響
Figure 2.The apoptosis of H3122 cells treated with alectinib at 0.05 μmol/L alone or combined with HGF, EGF or TGF-α for 48 h. Mean±SD.n=3.*P<0.05vscontrol group;#P<0.05vsalectinib group.
圖2 Alectinib單獨(dú)或聯(lián)合HGF、EGF和TGF-α作用 48 h對(duì)H3122細(xì)胞凋亡的情況
為了探索HGF、EGF和TGF-α旁路激活在誘導(dǎo)H3122細(xì)胞對(duì)alectinib耐藥中的作用,我們采用Western blot技術(shù)檢測(cè)ALK、c-Met、EGFR及相應(yīng)磷酸化蛋白的表達(dá),同時(shí)觀察其下游通路關(guān)鍵蛋白AKT、ERK、p-AKT和p-ERK的水平。結(jié)果顯示未經(jīng)處理的H3122細(xì)胞可測(cè)得ALK和下游信號(hào)通路AKT、ERK及其磷酸化蛋白,H3122也表達(dá)c-Met及EGFR蛋白,但p-Met及p-EGFR蛋白測(cè)不出。0.05 μmol/L alectinib單藥作用2 h后成功抑制ALK及其下游信號(hào)蛋白AKT、ERK的磷酸化,但對(duì)總蛋白的水平無明顯影響。當(dāng)聯(lián)合重組細(xì)胞因子(50 μg/L HGF、100 μg/L EGF或100 μg/L TGF-α)同時(shí)作用于細(xì)胞時(shí),alectinib雖然仍有效抑制ALK的磷酸化,但不能抑制下游信號(hào)蛋白AKT、ERK的磷酸化。HGF激活c-Met旁路途徑、EGF和TGF-α激活EGFR旁路途徑,可以不依賴ALK的活化而激活下游AKT、ERK的磷酸化。這些結(jié)果提示HGF通過激活c-Met旁路途徑、EGF和TGF-α通過激活EGFR旁路途徑進(jìn)而激活下游通路來介導(dǎo)H3122細(xì)胞對(duì)alectinib的繼發(fā)耐藥,見圖3。
Figure 3.The protein levels in the H3122 cells treated with alectinib at 0.05 μmol/L alone or combined with HGF, EGF or TGF-α. Mean±SD.n=3.*P<0.05vscontrol group;#P<0.05vsalectinib group.
圖3 Alectinib單獨(dú)或聯(lián)合HGF、EGF和TGF-α處理后H3122細(xì)胞的蛋白水平比較
4 Alectinib聯(lián)合HGF/c-Met及熱休克蛋白 90 (heat shock protein 90, Hsp90)抑制劑對(duì)HGF/EGF/TGF-α誘導(dǎo)的細(xì)胞增殖的影響
為進(jìn)一步研究逆轉(zhuǎn)由HGF/EGF/TGF-α介導(dǎo)的alectinib耐藥,我們檢測(cè)了alectinib聯(lián)合crizotinib(HGF/c-Met抑制劑)和17-DMAG(Hsp90抑制劑)對(duì)H3122細(xì)胞活力的影響。結(jié)果發(fā)現(xiàn)0.1 μmol/L的crizotinib可解除HGF誘發(fā)的細(xì)胞對(duì)alectinib的耐藥性變化,0.3 μmol/L 的17-DMAG 可以有效抑制H3122細(xì)胞在alectinib聯(lián)合EGF/TGF-α處理下細(xì)胞的活力,見圖4。
Figure 4.The effects of alectinib combined with crizotinib or 17-DMAG in the presence of HGF, EGF or TGF-α. Mean±SD.n=3.*P<0.05vsalectinib+HGF group;#P<0.05vsalectinib+EGF;△P<0.05vsalectinib+TGF-α group.
圖4 Alectinib聯(lián)合crizotinib或17-DMAG對(duì)HGF、EGF和TGF-α誘導(dǎo)的H3122細(xì)胞活力的影響
Alectinib是第2代的ALK抑制劑,藥物活性及選擇性都高于第1代的克唑替尼,它對(duì)克唑替尼耐藥的ALK陽性NSCLC及有中樞神經(jīng)系統(tǒng)轉(zhuǎn)移的患者均有效。但同其它靶向藥物一樣,在治療一段時(shí)間后仍不可避免地發(fā)生耐藥,探索其耐藥的發(fā)生機(jī)制對(duì)于尋求克服方法具有重要意義。
ALK結(jié)合域二次突變[3]、細(xì)胞類型轉(zhuǎn)變[4-5]以及上皮-間質(zhì)轉(zhuǎn)化[6]目前被認(rèn)為是alectinib獲得性耐藥的重要機(jī)制。腫瘤細(xì)胞除了表達(dá)ALK外,同時(shí)還表達(dá)其它酪氨酸激酶活性的跨膜受體,稱之為ALK旁路酪氨酸激酶信號(hào)。在肺癌患者中,MET擴(kuò)增[11]、表皮生長因子受體2(human epidermal growth factor receptor-2,HER2)擴(kuò)增[12]、HGF/c-Met[9]、生長停滯特異性基因產(chǎn)物6(growth arrest-specific gene 6,GAS6) /AXL[13]與胰島素樣生長因子1受體(human insulin-like growth factor 1 receptor,IGF-1R)[14]信號(hào)通路的激活,均可導(dǎo)致EGFR突變非小細(xì)胞肺癌患者對(duì)EGFR-TKI 的耐藥。此外還發(fā)現(xiàn)HGF/c-Met[15]及IGF-1R[16]信號(hào)通路的激活參與了BRAF突變黑色素瘤患者對(duì)BRAF的耐藥。有研究證實(shí)EGFR[10]、KIT/SCF[17]旁路信號(hào)通路的激活與克唑替尼耐藥相關(guān),但旁路信號(hào)激活在alectinib耐藥發(fā)生發(fā)展中的作用目前尚未完全明確。
在我們的實(shí)驗(yàn)中,CCK-8細(xì)胞活力檢測(cè)顯示alectinib抑制EML4-ALK融合基因陽性肺癌細(xì)胞株H3122細(xì)胞的活力呈濃度依賴性,HGF、EGF及TGF-α誘導(dǎo)后IC50值顯著升高。HGF、EGF及TGF-α誘導(dǎo)后藥物濃度-細(xì)胞存活率曲線與非誘導(dǎo)曲線相比明顯往右側(cè)移。Alectinib促進(jìn)細(xì)胞凋亡,HGF、EGF及TGF-α誘導(dǎo)后明顯降低其促進(jìn)細(xì)胞凋亡的作用。從IC50的變化、藥物濃度-存活率曲線、細(xì)胞凋亡率的結(jié)果看出,HGF、EGF及TGF-α誘導(dǎo)H3122細(xì)胞對(duì)alectinib耐藥。本研究檢測(cè)出HGF誘導(dǎo)后增加細(xì)胞中p-Met及其下游信號(hào)通道蛋白,EGF、TGF-α誘導(dǎo)增加細(xì)胞中p-EGFR及其下游信號(hào)蛋白的水平,alectinib抑制p-ALK,但不能抑制由HGF、EGF和TGF-α誘導(dǎo)后p-AKT和p-ERK的蛋白水平。推測(cè)HGF激活c-Met磷酸化及EGF、TGF-α激活EGFR磷酸化,以旁路信號(hào)通路激活的方式誘導(dǎo)EML4-ALK陽性肺癌細(xì)胞株H3122對(duì)alectinib的耐藥。既往有研究在藥物濃度梯度遞增法誘導(dǎo)的alectinib耐藥株中檢測(cè)出HGF、NRG1、EGF、IGF及TGF-α的mRNA高表達(dá)[18-20],提示HGF、NRG1,EGF、IGF及TGF-α可能是alectinib耐藥的驅(qū)動(dòng)因子,而本研究通過外源性加入生長因子的方法亦成功誘導(dǎo)H3122細(xì)胞對(duì)alectinib耐藥,進(jìn)一步證實(shí)了旁路激活在耐藥中的作用。此外,NRG1/HER3的激活及IGF-1R也與alectinib耐藥相關(guān)[18, 20],可見旁路信號(hào)激活誘導(dǎo)alectinib耐藥的機(jī)制是復(fù)雜多樣的,還需不斷探索發(fā)現(xiàn)新的機(jī)制。
HGF、EGF及TGF-α雖然是本研究中介入的外源性生長因子,但在腫瘤細(xì)胞生長的微環(huán)境中也存在HGF、EGFR及IGF-1R等的配體,如內(nèi)皮細(xì)胞產(chǎn)生的EGFR配體激活EGFR誘導(dǎo)克唑替尼及TAE684耐藥,纖維細(xì)胞產(chǎn)生的HGF激活MET信號(hào)通路誘導(dǎo)TAE684的耐藥[10]。有研究[20]報(bào)道了1例經(jīng)alectinib治療后繼發(fā)耐藥的患者,采用IHC檢測(cè)患者用藥前及耐藥后的腫瘤活檢標(biāo)本,結(jié)果提示耐藥后的標(biāo)本中HGF呈現(xiàn)高表達(dá),這些結(jié)果為我們的實(shí)驗(yàn)結(jié)果提供了臨床依據(jù)。
有意思的是,我們的研究發(fā)現(xiàn)HGF/c-Met和EGFR信號(hào)通路的活化能夠介導(dǎo)H3122細(xì)胞對(duì)alectinib的耐藥,而克唑替尼作為ALK和c-Met的雙靶點(diǎn)抑制劑可抑制因HGF誘發(fā)的耐藥細(xì)胞的生長。EGFR是熱休克蛋白90(HSP90)顧客蛋白之一,Hsp90是一種分子伴侶,它在調(diào)節(jié)許多顧客蛋白構(gòu)象與功能的維持和調(diào)控方面發(fā)揮重要作用[21]。17-DMAG作為HSP90的抑制劑,對(duì)多種 NSCLC 細(xì)胞株具有抗增殖效應(yīng)[22]。本研究中觀察到alectinib聯(lián)合應(yīng)用17-DMAG可抑制由EGF、TGF-α誘導(dǎo)的H3122耐藥細(xì)胞的增殖。這揭示了在ALK-TKI耐藥患者中聯(lián)合使用一代的ALK-TKI或其它TKI可能是潛在的克服耐藥的方法,另有相關(guān)的研究也報(bào)道了L1198F突變導(dǎo)致的三代ALK-TKI Lorlatinib耐藥患者再次用回克唑替尼并從中獲益[23],這似乎在演繹著ALK-TKI的輪回,如果在多線進(jìn)展的腫瘤細(xì)胞中發(fā)現(xiàn)新的耐藥機(jī)制,聯(lián)合使用相關(guān)信號(hào)通路抑制劑可能仍敏感有效。我們研究alectinib的耐藥機(jī)制,為聯(lián)合應(yīng)用靶向受體配體抑制劑克服alectinib耐藥提供實(shí)驗(yàn)室依據(jù),為臨床耐藥患者提供了新的治療策略。
本研究證實(shí)外源性加入HGF、EGF和TGF-α可以誘導(dǎo)EML4-ALK陽性細(xì)胞H3122對(duì)alectinib的耐藥,并揭示了HGF/c-Met和EGFR旁路信號(hào)通路的活化可能是其耐藥機(jī)制,這為今后深入研究針對(duì)EML4-ALK靶點(diǎn)的靶向耐藥和逆轉(zhuǎn)耐藥機(jī)制提供分子生物學(xué)基礎(chǔ)。然而,該研究僅限在細(xì)胞水平,仍需更多的臨床耐藥患者組織標(biāo)本證實(shí),可望更好闡明 HGF/c-Met和EGFR旁路信號(hào)通路激活在alectinib耐藥中的作用。
[1] 戴 輝, 宋向群, 潘星辰, 等. mTOR 信號(hào)通路在克唑替尼誘導(dǎo)的EML4-ALK融合基因陽性肺癌細(xì)胞株 H2228凋亡中的作用[J]. 中國病理生理雜志, 2014, 30(6):1103-1109.
[2] Gadgeel SM, Gandhi L, Riely GJ, et al. Safety and acti-vity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study[J]. Lancet Oncol, 2014, 15(10):1119-1128.
[3] Katayama R, Friboulet L, Koike S, et al. Two novel ALK mutations mediate acquired resistance to the next-generation ALK inhibitor alectinib[J]. Clin Cancer Res, 2014, 20(22):5686-5696.
[4] Takegawa N, Hayashi H, Iizuka N, et al. Transformation of ALK rearrangement-positive adenocarcinoma to small-cell lung cancer in association with acquired resistance to alectinib[J]. Ann Oncol, 2016, 27(5):953-955.
[5] Fujita S, Masago K, Katakami N, et al. Transformation to SCLC after treatment with the ALK inhibitor alectinib[J]. J Thorac Oncol, 2016, 11(6):e67-e72.
[6] Kogita A, Togashi Y, Hayashi H, et al. Hypoxia induces resistance to ALK inhibitors in the H3122 non-small cell lung cancer cell line with an ALK rearrangement via epithelial-mesenchymal transition[J]. Int J Oncol, 2014, 45(4):1430-1436.
[7] Corso S, Giordano S. Cell-autonomous and non-cell-autonomous mechanisms of HGF/MET-driven resistance to targeted therapies: from basic research to a clinical perspective[J]. Cancer Discov, 2013, 3(9):978-992.
[8] Sadiq AA, Salgia R. MET as a possible target for non-small-cell lung cancer[J]. J Clin Oncol, 2013, 31(8):1089-1096.
[9] Yano S, Wang W, Li Q, et al. Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor-activating mutations[J]. Cancer Res, 2008, 68(22):9479-9487.
[10]Yamada T, Takeuchi S, Nakade J, et al. Paracrine receptor activation by microenvironment triggers bypass survival signals and ALK inhibitor resistance in EML4-ALK lung cancer cells[J]. Clin Cancer Res, 2012, 18(13):3592-3602.
[11]Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling[J]. Science, 2007, 316(5827):1039-1043.
[12]Takezawa K, Pirazzoli V, Arcila ME, et al. HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFRT790M mutation[J]. Cancer Discov, 2012, 2(10):922-933.
[13]Zhang Z, Lee JC, Lin L, et al. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer[J]. Nat Genet, 2012, 44(8):8528-8560.
[14]Yeo CD, Park KH, Park CK, et al. Expression of insulin-like growth factor 1 receptor (IGF-1R) predicts poor responses to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in non-small cell lung cancer patients harboring activating EGFR mutations[J]. Lung Cancer, 2015, 87(3):311-317.
[15]Straussman R, Morikawa T, Shee K, et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion[J]. Nature, 2012, 487(7408):500-504.
[16]Hilmi C, Larribere L, Giuliano S, et al. IGF1 promotes resistance to apoptosis in melanoma cells through an increased expression of BCL2, BCL-X(L), and survivin[J]. J Invest Dermatol, 2008, 128(6):1499-1505.
[17]Katayama R, Shaw AT, Khan TM, et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers[J]. Sci Transl Med, 2012, 4(120):120ra17.
[18]Dong X, Fernandez-Salas E, Li E, et al. Elucidation of resistance mechanisms to second-generation ALK inhibitors alectinib and ceritinib in non-small cell lung cancer cells[J]. Neoplasia, 2016, 18(3):162-171.
[19]Tani T, Yasuda H, Hamamoto J, et al. Activation of EGFR bypass signaling by TGFα overexpression induces acquired resistance to alectinib in ALK-translocated lung cancer cells[J]. Mol Cancer Ther, 2016,15(1):162-171.
[20]Isozaki H, Ichihara E, Takigawa N, et al. Non-small cell lung cancer cells acquire resistance to the ALK inhibitor alectinib by activating alternative receptor tyrosine kinases[J]. Cancer Res, 2016,76(6):1506-1516.
[21]Taipale M, Jarosz DF, Lindquist S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights[J]. Nat Rev Mol Cell Biol, 2010, 11(7):515-528.
[22]Kobayashi N, Toyooka S, Soh J, et al. The anti-proliferative effect of heat shock protein 90 inhibitor, 17-DMAG, on non-small-cell lung cancers being resistant to EGFR tyrosine kinase inhibitor[J]. Lung Cancer, 2012, 75(2):161-166.
[23]Shaw AT, Friboulet L, Leshchiner I, et al. Resensitization to crizotinib by the lorlatinib ALK resistance mutation L1198F[J]. N Engl J Med, 2016, 374(1):54-61.
(責(zé)任編輯: 陳妙玲, 羅 森)
Bypass signaling pathway activation mediates resistance ofEML4-ALKfusion gene positive lung cancer cell line H3122 to alectinib
LI Ya-ni1, LIANG Liu-dan1, CHEN Yan-qiong1, SONG Xiang-qun2, ZHOU Shao-zhang2
(1PostgraduateCollege,2DepartmentofRespiratoryOncology,AffiliatedTumorHospital,GuangxiMedicalUniversity,Nanning530021,China.E-mail:zhoushaozhang@qq.com)
AIM: To detect the changes of active status of bypass signaling pathways inEML4-ALKpositive lung cancer cell line H3122 treated with alectinib, hepatocyte growth factor (HGF), epidermal growth factor (EGF) and transforming growth factor-α (TGF-α), and to explore the potential mechanisms. METHODS:EML4-ALKpositive cell line H3122 was treated with increasing concentrations of alectinib or/and induced by HGF, EGF and TGF-α. The cell viability was measured by CCK-8 assay. The cell apoptosis was analyzed by flow cytometry. The protein levels and phosphorylation status of ALK, c-Met and EGFR, and the downstream molecules AKT, ERK, p-AKT and p-ERK were examined by Western blot. RESULTS: The viability of the H3122 cells was inhibited by alectinib in a dose-dependent manner after administrated for 72 h, and the IC50value was 0.042 μmol/L. The concentration-growth curves of the H3122 cells shifted to the right after induced by HGF, EGF and TGF-α. After treatment with alectinib at 0.05 μmol/L for 48 h, the apoptotic rate of H3122 cells was (20.12±1.36)%, while the apoptotic rates of the cells in the groups of alectinib combined with HGF, EGF or TGF-α were (7.85±1.03)%, (5.60±0.79)% and (4.58±1.00)%, respectively. Those values were remarkably lower than those in alectinib single treatment group (P<0.05). Alectinib inhibited the protein levels of p-ALK and its downstream signaling pathway molecules, while HGF significantly up-regulated the protein levels of p-Met and its downstream p-AKT and p-ERK. Besides, EGF and TGF-α remarkablely up-regulated the protein levels of p-EGFR and its downstream p-AKT and p-ERK. Combined treatment with crizotinib and 17-DMAG successfully inhibited the viability of the H3122 cells even in the presence of the HGF and EGFR ligands, respectively. CONCLUSION: Bypass signaling pathways are activated by HGF, EGF and TGF-α inEML4-ALKpositive lung cancer cell line H3122, which may be linked to alectinib resistance.
EML4-ALKfusion gene; Alectinib; Hepatocyte growth factor; Epidermal growth factor receptor; Drug resistance
1000- 4718(2017)05- 0769- 07
2016- 11- 28
2017- 03- 17
國家自然科學(xué)基金資助項(xiàng)目(No. 81260357; No. 81060188); 廣西自然科學(xué)基金資助項(xiàng)目(No. 2015GXNSFAA139162)
R730.23
A
10.3969/j.issn.1000- 4718.2017.05.001
雜志網(wǎng)址: http://www.cjpp.net
△通訊作者 Tel: 0771-5334955; E-mail: zhoushaozhang@qq.com