陶亞飛 陳 青 徐媛媛 石秀文 陳 文 黃艷群(河南農(nóng)業(yè)大學飼料營養(yǎng)河南省工程實驗室,河南農(nóng)業(yè)大學國家家養(yǎng)動物種質資源平臺,鄭州450002)
油脂類型對肉雞不同組織甘油醛-3-磷酸脫氫酶基因相對表達量的影響
陶亞飛 陳 青 徐媛媛 石秀文 陳 文 黃艷群*
(河南農(nóng)業(yè)大學飼料營養(yǎng)河南省工程實驗室,河南農(nóng)業(yè)大學國家家養(yǎng)動物種質資源平臺,鄭州450002)
本試驗旨在探究油脂類型對肉雞不同組織甘油醛-3-磷酸脫氫酶(GAPDH)基因相對表達量的影響。試驗選用240只1日齡的科寶肉雞母雛,隨機分為8個組(4個單一油脂組,分別在飼糧中添加5.00%亞麻油、玉米油、芝麻油和豬油;4個混合油脂組,分別在飼糧中添加2.50%豬油+2.50%玉米油、2.50%豬油+2.50%芝麻油、2.50%亞麻油+2.50%玉米油和2.50%亞麻油+2.50%芝麻油),每組6個重復,每個重復5只雞。試驗期42 d。結果表明:1)組織及油脂類型與組織的交互作用對42日齡肉雞組織GAPDH基因的相對表達量影響顯著(P<0.05),油脂類型對42日齡肉雞組織GAPDH基因的相對表達量的影響不顯著(P>0.05)。42日齡肉雞胸肌GAPDH基因的相對表達量顯著高于肝臟和腹脂(P<0.05),是肝臟的37.50~89.50倍,是腹脂的129.54~190.64倍,而42日齡肉雞的GAPDH基因的相對表達量在肝臟與腹脂之間差異不顯著(P>0.05);玉米油組胸肌中GAPDH基因的相對表達量顯著高于豬油組(P<0.05)。2)21日齡肉雞肝臟GAPDH基因的相對表達量顯著或極顯著高于42日齡(P<0.05或P<0.01)。3)油脂組合及油脂組合與日齡的交互作用對肉雞肝臟GAPDH基因相對表達量的影響均不顯著(P>0.05),但日齡對肉雞肝臟GAPDH基因相對表達量的影響顯著(P<0.05)。由此可見,油脂類型對肉雞GAPDH基因的相對表達量的影響呈現(xiàn)組織間的差異,玉米油可提高胸肌GAPDH基因的相對表達量。42日齡肉雞胸肌GAPDH基因的相對表達量顯著高于肝臟和腹脂,21日齡肉雞肝臟GAPDH基因的相對表達量顯著高于42日齡。
肉雞;油脂;GAPDH;基因表達
甘油醛-3-磷酸脫氫酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)是動物能量代謝途徑的關鍵代謝酶,由4個分子質量為30~40 ku的亞基組成,分子質量為146 ku[1]。最初對GAPDH的研究主要集中在其在糖酵解過程中的作用,GAPDH作為糖酵解過程中的關鍵酶之一[2-4],在細胞膜、細胞質、細胞核上均有分布。隨著對GAPDH研究的深入,發(fā)現(xiàn)該酶還具有一些與糖酵解功能無關的生物活性,例如,在生物膜上,GAPDH參與膜運動、促進膜融合等[5];在細胞質中,GAPDH有保護細胞、催化微管聚合等功能[6];在細胞核內,GAPDH參與tRNA出核、DNA修復[7];在一些神經(jīng)性疾病上,GAPDH參與細胞凋亡以及與年齡相關的神經(jīng)性疾病[8];研究表明,GAPDH還具有磷酸轉移酶/激酶的活性[9]。GAPDH基因具有高度保守的種屬序列并且廣泛存在于眾多生物體中,幾乎在所有組織中都高水平表達。在分子生物學研究方法上,GAPDH基因常被作為管家基因,廣泛用作RNA水平和蛋白質水平下基因表達研究的標準化內參。
玉米油和芝麻油含有較高的亞油酸和油酸,是n-6脂肪酸的代表[10-11];亞麻籽油的n-6/n-3多不飽和脂肪酸(PUFA)的比值(約為0.34∶1.00)遠遠低于其他油脂,是n-3脂肪酸的代表[12-13];豬油是富含單不飽和脂肪酸的動物油,其油酸含量高達48.70%。已有研究表明,在肉雞飼糧中適量添加油脂可以滿足肉雞快速生長對能量的需要,改善飼糧口感和提高飼糧利用率[14]。油脂類型會影響動物脂類代謝及脂肪酸合成酶(FAS)mRNA的表達[15]。但尚未見油脂類型對肉雞GAPDH基因表達效應的系統(tǒng)報道。本文主要研究單一油脂及其組合對不同日齡肉雞在不同組織中GAPDH基因表達量的影響。
1.1 試驗動物及試驗設計
本試驗選用240只1日齡科寶肉雞母雛,隨機分為8組,每組6個重復,每個重復5只雞。試驗雞采用籠養(yǎng),每籠5只雞,自由采食和飲水,免疫程序按常規(guī)進行。飼糧參照NRC(1994)肉雞的營養(yǎng)需要配制,分為1~3周齡和4~6周齡2個階段。試驗期42 d。4個單一油脂組分別在飼糧中添加5%的亞麻油、玉米油、芝麻油和豬油,其飼糧組成及營養(yǎng)水平見表1;4個混合油脂組包含2個豬油混合組(飼糧中添加2.5%豬油+2.5%玉米油、2.5%豬油+2.5%芝麻油)和2個植物油混合組(飼糧中添加2.5%亞麻油+2.5%玉米油、2.5%亞麻油+2.5%芝麻油),其飼糧組成及營養(yǎng)水平見表2。
表1 單一油脂組飼糧組成及營養(yǎng)水平(風干基礎)
續(xù)表1項目Items1~3周齡1to3weeksofage植物油組Vegetableoilgroup豬油組Lardoilgroup4~6周齡4to6weeksofage植物油組Vegetableoilgroup豬油組Lardoilgroup賴氨酸Lys1.151.561.021.05蛋氨酸Met0.500.500.400.41
1)植物油組飼糧的油脂分別為亞麻油、玉米油和芝麻油。Oils in diets of vegetable oil groups were linseed oil, corn oil and sesame oil, respectively.
2)預混料為每千克飼糧提供 Premix provide the following per kg of diets: VA 0.45 mg,VD30.005 mg,VE 10.00 mg,VK 0.50 mg,VB11.80 mg,VB23.60 mg,VB63.50 mg,VB120.002 5 mg,煙酸 niacin 35.00 mg,葉酸 folic acid 0.55 mg,生物素 biotin 0.20 mg,泛酸 pantothenic 10.00 mg,Zn (ZnSO4·7H2O) 40.00 mg,Mn (MnSO4·5H2O) 60.00 mg,F(xiàn)e (FeSO4·7H2O) 80.00 mg,Cu (CuSO4·5H2O) 10.00 mg,I (KI) 0.35 mg,Se (Na2SeO3·5H2O) 0.15 mg。表2同The same as Table 2。
3)營養(yǎng)水平根據(jù)NRC(1994)肉雞的營養(yǎng)需要計算得來。表2同。Nutrient levels were calculated in accordance with broilers nutrition needs of NRC (1994). The same as Table 2.
表2 混合油脂組飼糧組成及營養(yǎng)水平(風干基礎)
植物油混合組飼糧的油脂分別為2.50%玉米油+2.50%亞麻油、2.50%亞麻油+2.50%芝麻油;豬油混合組飼糧的油脂分別為2.50%芝麻油+2.50%豬油、2.50%玉米油+2.50%豬油。
Oils in diets of mixed vegetable oil groups were 2.50% corn oil and 2.50% linseed oil, 2.50% linseed oil and 2.50% sesame oil, respectively; oils in diets of mixed lard oil groups were 2.50% sesame oil and 2.50% lard oil, 2.50% corn oil and 2.50% lard oil, respectively.
1.2 樣品采集
分別于21、42日齡時,從每組各重復隨機挑選1只肉雞屠宰,在無菌條件下取肝臟、胸肌和腹脂。所取樣品均用焦炭酸二乙酯(DEPC)水清洗后,放入液氮速凍,-80 ℃保存。
1.3 總RNA提取和反轉錄
1.4 引物設計
根據(jù)紅色原雞的GAPDH基因序列(GenBank登錄號:NM_204305.1),用Oligo 6.0軟件設計熒光定量PCR所用的檢測引物,并由上海生物工程技術服務有限公司合成。PCR擴增片段長度為98 bp。熒光定量PCR引物見表3。
表3 熒光定量PCR引物
F:上游引物 forward primer;R:下游引物 reverse primer;P:探針 probe。
1.5 熒光定量PCR反應條件
參照張雯雯等[16]文獻,運用探針法熒光定量PCR進行基因的定量表達分析:反應體系為25.0 μL,包括1.0 μL cDNA(0.1 μL總RNA)、0.5 μL上游引物(12.5 μmol/L)、0.5 μL下游引物(12.5 μmol/L)、2.5 μL TaqManTM探針、0.5 μL RoxⅡ、3.5 μL鎂離子(Mg2+,25 mmol/L)、12.5 μL 2×Mix(包含1.5 mmol/L Mg2+)、4.0 μL超純水;熒光定量PCR反應條件為95 ℃預變性2 min;40個循環(huán)的95 ℃變性15 s;60 ℃退火1 min。每個樣品設置3個重復。純化的PCR產(chǎn)物采用微量分光光度計(NanoDrop 2000 UV spectrophotometer)測定濃度后,進行梯度稀釋(10-4、10-5、10-6、10-7、10-8、10-9和10-10),用于建立每板的標準曲線。每板均設陰性對照。參照Bustin[17]報道方法,本研究采用微量定量儀測定RNA的濃度,反應中添加等量的RNA和cDNA進行每個樣品的均一化處理。
1.6 數(shù)據(jù)統(tǒng)計和分析
首先,把每個樣本的GAPDH拷貝數(shù)轉換成相對表達量。GAPDH基因的相對表達量=樣本拷貝數(shù)/42日齡平均拷貝數(shù)最低組(5.00%芝麻油組在腹脂組織的表達值)平均值。試驗數(shù)據(jù)用SAS 8.1統(tǒng)計軟件中的ANOVA(GLM)過程進行單變量兩因素方差分析,檢測油脂類型與組織、油脂類型與日齡、油脂組合與日齡對肉雞GAPDH基因的相對表達量的效應。以P<0.05為差異顯著,P<0.01為差異極顯著。
2.1 單一油脂對42日齡肉雞不同組織中GAPDH基因的相對表達量的影響
由表4可知,42日齡時,組織以及油脂類型與組織的交互作用顯著影響了肉雞不同組織中GAPDH基因的相對表達量(P<0.05),油脂類型對肉雞GAPDH基因的相對表達量的影響不顯著(P>0.05)。肉雞不同組織中GAPDH基因的相對表達量表現(xiàn)為胸肌>肝臟>腹脂。在不同單一油脂組中,胸肌GAPDH基因的相對表達量均顯著高于肝臟和腹脂(P<0.05),是肝臟的37.50~89.50倍,是腹脂的129.54~190.64倍,而GAPDH基因的相對表達量在肝臟和腹脂之間差異不顯著(P>0.05)。在胸肌中,玉米油組GAPDH基因的相對表達量顯著高于豬油組(P<0.05),而在肝臟和腹脂中,不同油脂類型組中GAPDH基因的相對表達量均無顯著差異(P>0.05)。以上結果表明,肉雞GAPDH基因的相對表達量具有明顯的時空表達特性,受肉雞不同組織的顯著影響。
表4 單一油脂對42日齡肉雞不同組織中GAPDH基因的相對表達量影響
同行數(shù)據(jù)(不同組織之間)和同列數(shù)據(jù)(不同油脂類型之間)肩標不同小寫字母表示差異顯著(P<0.05),肩標相同小寫字母表示差異不顯著(P>0.05)。
Values with different small letter superscripts in the same row (among different tissues) and column (among different oil types) mean significant difference (P<0.05), while with the same small letter superscripts mean no significant difference (P>0.05).
2.2 單一油脂類型對不同日齡肉雞肝臟中GAPDH基因的相對表達量的影響
由表5可知,日齡顯著影響了肉雞肝臟中GAPDH基因的相對表達量(P<0.05),油脂類型以及油脂類型與日齡的交互作用對肉雞肝臟中GAPDH基因的相對表達量的影響不顯著(P>0.05)。亞麻油組、玉米油組、芝麻油組和豬油組21日齡肉雞肝臟中GAPDH基因的相對表達量均顯著或極顯著高于42日齡(P<0.05或P<0.01),是42日齡肉雞肝臟中GAPDH基因的相對表達量的2.46~4.15倍。但21和42日齡肉雞肝臟中GAPDH基因的相對表達量在不同油脂類型之間均無顯著差異(P>0.05)。以上結果表明,肉雞肝臟中GAPDH基因的相對表達量受肉雞日齡的顯著影響。
表5 單一油脂對不同日齡肉雞肝臟中GAPDH基因的相對表達量的影響
同行數(shù)據(jù)肩標*表示差異顯著(P<0.05),肩標**表示差異極顯著(P<0.01)。同列數(shù)據(jù)肩標無字母表示差異不顯著(P>0.05)。下表同。
In the same row, values with * superscripts mean significant difference (P<0.05), with ** superscripts mean extremely significant difference (P<0.01). In the same column, values with no letter superscripts mean no significant difference (P>0.05). The same as below.
2.3 混合油脂對不同日齡肉雞肝臟中GAPDH基因的相對表達量的影響
由表6和表7可知,油脂組合以及日齡與油脂組合的交互作用對肉雞肝臟中GAPDH基因的相對表達量影響不顯著(P>0.05),但日齡仍顯著影響了肉雞肝臟中GAPDH基因的相對表達量(P<0.05)。與單一油脂一樣,21日齡肉雞肝臟中GAPDH基因的相對表達量均顯著或極顯著高于42日齡(P<0.05或P<0.01),是肉雞肝臟中GAPDH基因的相對表達量的2.46~3.57倍。
表6 亞麻油混合油脂對肉雞肝臟中GAPDH基因的相對表達量的影響
表7 豬油混合油脂對肉雞肝臟中GAPDH基因的相對表達量的影響
本研究發(fā)現(xiàn),肉雞GAPDH基因的相對表達量在不同組織間有顯著的差異,胸肌是其優(yōu)勢表達部位。在肉雞肝臟中,GAPDH基因的相對表達量也隨日齡呈現(xiàn)顯著變化,表明肉雞GAPDH基因具有明顯的時空表達特性。Barber等[18]研究表明,人GAPDH基因在組織間的表達也呈現(xiàn)顯著差異,在骨骼肌中的相對表達量最高,而在乳腺中的相對表達量最低,兩者相差15倍。
Lowe等[19]研究報道,老齡(37月齡)大鼠的GAPDH基因和蛋白質水平在骨骼肌的快肌中均顯著低于幼齡(9月齡)大鼠,而在慢肌之間則無顯著差異,顯示快肌的糖酵解能力隨著年齡的增長而下降。Slagboom等[20]研究發(fā)現(xiàn),36月齡雌性大鼠脾臟GAPDH基因的相對表達量顯著高于24月齡,而在肝臟和腦部GAPDH基因的相對表達量沒有出現(xiàn)伴隨年齡的明顯變化。Mozdziak等[21]研究發(fā)現(xiàn),7日齡時雞胸肌中GAPDH基因的相對表達量顯著高于其他不足7日齡的小雞。本試驗中21日齡肉雞肝臟中GAPDH基因的相對表達量顯著或極顯著高于42日齡,顯示肉雞肝臟的糖酵解能力隨著肉雞日齡的增長而下降。日齡對動物GAPDH基因的相對表達量的影響因物種、組織或肌肉類型的不同而異。
Hanke等[22]研究發(fā)現(xiàn),在野兔骨骼肌細胞培養(yǎng)過程中,低濃度的葡萄糖可以直接抑制GAPDH啟動子的活性,從而降低其轉錄水平和酶活性。Mozdziak等[21]報道,3日齡肉雞胸肌GAPDH基因的相對表達量以飼糧飼喂組顯著高于禁飼組,表明營養(yǎng)狀態(tài)可以改變GAPDH基因的轉錄水平。而本研究發(fā)現(xiàn)5%的玉米油上調了胸肌中GAPDH基因的相對表達量,而油脂類型和油脂組合對42日齡肉雞肝臟中GAPDH基因的相對表達量無顯著影響,顯示油脂以機體組織特異性和種類特異性的方式影響GAPDH的轉錄水平。
近幾年來,越來越多的研究者發(fā)現(xiàn)GAPDH在作為內參基因時表現(xiàn)出不穩(wěn)定的現(xiàn)象[23-24],其表達量在轉錄或轉錄后受到其他因子調節(jié),基因水平和蛋白質水平會隨著不同刺激而變化[20]。因此在分子生物學研究中應謹慎選擇GAPDH基因作為內參基因。
① 油脂類型對肉雞GAPDH基因的相對表達量的影響呈現(xiàn)組織間的差異,玉米油可提高42日齡肉雞胸肌GAPDH基因的相對表達量。
② 42日齡肉雞胸肌GAPDH基因的相對表達量顯著高于肝臟和腹脂。
③ 21日齡肉雞肝臟中GAPDH基因的相對表達量顯著或極顯著高于42日齡。
致謝:
感謝河南農(nóng)業(yè)大學牧醫(yī)工程學院王志祥教授對該文稿所提出的寶貴意見。
[1] YAN B X,ZHAO R,WANG J P,et al.Effect of different dietary oil sources on the growth performance,blood characteristics,fatty acid profiles,and expression of lipogenic genes in the liver of broiler chickens[J].Czech Journal of Animal Science,2015,60(11):487-497.
[2] KUBO T,NAKAJIMA H,NAKATSUJI M,et al.Active site cysteine-null glyceraldehyde-3-phosphate dehydrogenase (GAPDH) rescues nitric oxide-induced cell death[J].Nitric Oxide,2016,53:13-21.
[3] TANG Z J,YUAN S Q,HU Y M,et al.Over-expression of GAPDH in human colorectal carcinoma as a preferred target of 3-bromopyruvate propyl ester[J].Journal of Bioenergetics and Biomembranes,2012,44(1):117-125.
[4] REIS M,ALVES C N,LAMEIRA J,et al.The catalytic mechanism of glyceraldehyde 3-phosphate dehydrogenase from Trypanosoma cruzi elucidated via the QM/MM approach[J].Physical Chemistry Chemical Physics,2013,15(11):3772-3785.
[5] GLASER P E,HAN X L,GROSS R W.Tubulin is the endogenous inhibitor of the glyceraldehyde 3-phosphate dehydrogenase isoform that catalyzes membrane fusion:implications for the coordinated regulation of glycolysis and membrane fusion[J].Proceedings of the National Academy of Sciences,2002,99(22):14104-14109.
[6] COLELL A,RICCI J E,TAIT S,et al.GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation[J].Cell,2007,129(5):983-997.
[7] SINGH R,GREEN M R.Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase[J].Science,1993,259(5093):365-368.
[8] BAUMGARNER B L,RILEY C P,SEPULVEDA M S,et al.Increased expression of GAPDH protein is not indicative of nitrosative stress or apoptosis in liver of starved rainbow trout (Oncorhynchusmykiss)[J].Fish Physiology and Biochemistry,2012,38(2):319-327.
[9] ENGEL M,SEIFERT M,THEISINGER B,et al.Glyceraldehyde-3-phosphate dehydrogenase and Nm23-H1/nucleoside diphosphate kinase A.Two old enzymes combine for the novel Nm23 protein phosphotransferase function[J].Journal of Biological Chemistry,1998,273(32):20058-20065.
[10] PATHAK N,RAI A K,KUMARI R,et al.Value addition in sesame:a perspective on bioactive components for enhancing utility and profitability[J].Pharmacognosy Reviews,2014,8(16):147-155.
[11] 盧建,王克華,曲亮,等.飼糧中不同水平芝麻油對蘇禽青殼蛋雞產(chǎn)蛋性能、蛋品質、血清脂質指標和蛋黃膽固醇含量的影響[J].動物營養(yǎng)學報,2013,25(10):2474-2480.
[12] LEE J Y,KANG S K,HEO Y J,et al.Influence of flaxseed oil on fecal microbiota,egg quality and fatty acid composition of egg yolks in laying hens[J].Current Microbiology,2016,72(3):259-266.
[13] BOURRE J M.Effect of increasing the ω-3 fatty acid in the diets of animals on the animal products consumed by humans[J].Médecine/Sciences,2005,21(8/9):773-779.
[14] 倪紅玉,魯菲,溫超,等.飼糧不同油脂來源對肉雞脂類代謝及相關基因表達的影響[J].動物營養(yǎng)學報,2011,23(10):1677-1683.
[15] 岳穎,劉國華,鄭愛娟,等.生長動物脂肪代謝關鍵酶基因表達調控[J].動物營養(yǎng)學報,2012,24(2):232-238.
[16] 張雯雯,魯衛(wèi)衛(wèi),王婷,等.油脂類型和水平對肉雞組織18S rRNA表達的影響[J].動物營養(yǎng)學報,2014,26(12):3814-3820.
[17] BUSTIN S.Quantification of mRNA using real-time reverse transcription PCR (RT-PCR):trends and problems[J].Journal of Molecular Endocrinology,2002,29(1):23-39.
[18] BARBER R D,HARMER D W,COLEMAN R A,et al.GAPDH as a housekeeping gene:analysis of GAPDH mRNA expression in a panel of 72 human tissues[J].Physiological Genomics,2005,21(3):389-395.
[19] LOWE D A,DEGENS H,CHEN K D,et al.Glyceraldehyde-3-phosphate dehydrogenase varies with age in glycolytic muscles of rats[J].The Journals of Gerontology Series A:Biological Sciences and Medical Sciences,2000,55(3):B160-B164.
[20] SLAGBOOM P E,DE LEEUW W J F,VIJG J.Messenger RNA levels and methlation patterns of GAPDH and β-actin genes in rat liver,spleen and brain in relation to aging[J].Mechanisms of Ageing and Development,1990,53(3):243-257.
[21] MOZDZIAK P E,DIBNER J J,MCCOY D W.Glyceraldehyde-3-phosphate dehydrogenase expression varies with age and nutrition status[J].Nutrition,2003,19(5):438-440.
[22] HANKE N,MEISSNER J D,SCHEIBE R J,et al.Metabolic transformation of rabbit skeletal muscle cells in primary culture in response to low glucose[J].Biochimica et Biophysica Acta (BBA)-Molecular Cell Research,2008,1783(5):813-825.
[23] TONG Z G,GAO Z H,WANG F,et al.Selection of reliable reference genes for gene expression studies in peach using real-time PCR[J].BMC Molecular Biology,2009,10:71.
[24] MOE T K,ZILIANG J,BARATHI A,et al.Differential expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH),β actin and hypoxanthine phosphoribosyltransferase (HPRT) in postnatal rabbit sclera[J].Current Eye Research,2001,23(1):44-50.
*Corresponding author, professor, E-mail: hyanqun@aliyun.com
(責任編輯 武海龍)
Effects of Oil Types on Glyceraldehyde-3-Phosphate Dehydrogenase Gene Relative Expression Level in Different Tissues of Broilers
TAO Yafei CHEN Qing XU Yuanyuan SHI Xiuwen CHEN Wen HUANG Yanqun*
(HenanAgriculturalUniversityNationalGermplasmResouecesPlatformforAnimals,FeedNutritionEngineeringLaboratoryofHenanProvince,HenanAgriculturalUniversity,Zhengzhou450002,China)
This experiment was conducted to study the effects of oil types on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene relative expression level in different tissues of broilers. A total of 240 one-day-old female Cobb broilers were selected and randomly assigned to 8 groups (four single oil groups were fed diets added with 5.00% linseed oil, corn oil, sesame oil and lard oil, respectively; four oil combination groups were fed diets added with 2.50% lard oil+2.50% corn oil, 2.50% lard oil+2.50% sesame oil, 2.50% linseed oil+2.50% corn oil and 2.50% linseed oil+2.50% sesame oil, respectively) with 6 replicates per group and 5 broilers per replicate. The experiment lasted for 42 days. The results showed as follows: 1) the relative expression level ofGAPDHgene in broiler tissues was significantly affected by tissues and the interaction between oil types and tissues (P<0.05), however, the effects of oil types were not significant (P>0.05). The relative expression level in pectorals ofGAPDHgene of 42-day-old broilers was significantly higher than that in liver and abdominal fat (P<0.05), the relative expression level ofGAPDHgene in liver was 37.50 to 89.50 and 129.54 to 190.64 times than that in liver and abdominal fat, respectively, however, the relative expression level ofGAPDHgene between liver and abdominal fat was not significant (P>0.05). The relative expression level ofGAPDHgene in corn oil group was significantly higher than that in sesame oil group in pectorals (P<0.05). 2) The relative expression level ofGAPDHgene in liver of 21-day-old broilers was significantly higher than that of 42-day-old broilers (P<0.05 orP<0.01). 3) The relative expression level ofGAPDHgene in liver of broilers was significantly affected by days of age (P<0.05), however, the effects of oil combination and the interaction between oil combination and days of age were not significant (P>0.05). In conclusion, the effect of oil types on the relative expression level ofGAPDHgene in broilers shows difference among different tissues, corn oil can improve the relative expression level ofGAPDHgene in pectorals. The relative expression level in pectorals ofGAPDHgene of 42-day-old broilers is significantly higher than that in liver and abdominal fat, and the relative expression level ofGAPDHgene in liver of 21-day-old broilers is significantly higher than that of 42-day-old broilers.[ChineseJournalofAnimalNutrition, 2017, 29(5):1750-1758]
broilers; oil; GAPDH; gene expression
10.3969/j.issn.1006-267x.2017.05.035
2016-11-17
國家自然科學基金(31272434)
陶亞飛(1990—),男,河南商丘人,碩士研究生,動物遺傳育種與繁殖專業(yè)。E-mail: 15515517571@163.com
*通信作者:黃艷群,教授,碩士生導師,E-mail: hyanqun@aliyun.com
S831
A
1006-267X(2017)05-1750-09