国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

脂聯(lián)素與胰島素抵抗研究進(jìn)展

2017-04-11 07:43:59安平王安平母義明
生物技術(shù)通訊 2017年3期
關(guān)鍵詞:信號(hào)轉(zhuǎn)導(dǎo)脂聯(lián)素抵抗

安平,王安平,母義明

解放軍總醫(yī)院 內(nèi)分泌科,北京 100853

脂聯(lián)素與胰島素抵抗研究進(jìn)展

安平,王安平,母義明

解放軍總醫(yī)院 內(nèi)分泌科,北京 100853

脂聯(lián)素是脂肪組織分泌一種脂肪因子,與胰島素抵抗和肥胖密切相關(guān),在2型糖尿病和肥胖人群中,脂聯(lián)素的血漿濃度下降。脂聯(lián)素信號(hào)通路通過(guò)激活A(yù)MPK和PPAR-α與胰島素信號(hào)通路相聯(lián)系。研究表明,上調(diào)脂聯(lián)素信號(hào)通路的活性可以有效緩解胰島素抵抗。因此,脂聯(lián)素信號(hào)轉(zhuǎn)導(dǎo)通路機(jī)制是以胰島素抵抗為病理生理基礎(chǔ)的2型糖尿病的研究熱點(diǎn)。本文簡(jiǎn)要介紹脂聯(lián)素的生物學(xué)特征、脂聯(lián)素的信號(hào)通路機(jī)制、脂聯(lián)素與胰島素抵抗的現(xiàn)有研究成果及臨床價(jià)值。

脂聯(lián)素;胰島素抵抗;肥胖

肥胖已成為嚴(yán)重威脅人類(lèi)健康的公共衛(wèi)生問(wèn)題,在全世界范圍內(nèi)造成了嚴(yán)重的社會(huì)經(jīng)濟(jì)負(fù)擔(dān)。肥胖是包括2型糖尿病在內(nèi)許多慢性非傳染性疾病的重要致病因素,導(dǎo)致全世界包括發(fā)展中國(guó)家在內(nèi)的死亡率逐年升高[1]。80%的2型糖尿病被認(rèn)為與肥胖相關(guān)[2],而2型糖尿病又以外周組織如肝臟、骨骼肌、脂肪的胰島素抵抗為特征[3]。肥胖的本質(zhì)是脂肪細(xì)胞數(shù)量及質(zhì)量增加的狀態(tài),現(xiàn)在認(rèn)為肥胖和胰島素抵抗通過(guò)脂肪組織相互聯(lián)系[4-5]。脂肪組織不僅是多余能量的存儲(chǔ)倉(cāng)庫(kù),更是一個(gè)內(nèi)分泌器官,它可以分泌多種被稱(chēng)為脂肪因子的生物活性分子[6]。其中脂聯(lián)素就是一種在體內(nèi)豐富表達(dá)的脂肪因子,與其受體結(jié)合后具有顯著的胰島素增敏作用。在肥胖引起的胰島素抵抗中,脂聯(lián)素及其受體的表達(dá)均下調(diào),改變了正常代謝信號(hào)通路[7-9]。

1 脂聯(lián)素概述

1.1 脂聯(lián)素的結(jié)構(gòu)

人脂聯(lián)素是相對(duì)分子質(zhì)量(Mr)為30×103的蛋白質(zhì)分子,由244個(gè)氨基酸殘基構(gòu)成,N端為膠原結(jié)構(gòu)域,C端為球狀結(jié)構(gòu)域[10]。脂聯(lián)素在人體循環(huán)中以多聚體的形式存在,90%的脂聯(lián)素結(jié)合成一個(gè)高分子量多聚體(HMW)和低分子量多聚體(LMW)。HMW的Mr為360×103~540×103,由12個(gè)或18個(gè)脂聯(lián)素分子組成;LMW的Mr為180×103,由6個(gè)脂聯(lián)素分子組成。人體循環(huán)中其余10%的脂聯(lián)素以三聚體的形式存在,被稱(chēng)為全長(zhǎng)型脂聯(lián)素,相對(duì)分子質(zhì)量為90×103。

高分子量多聚體、低分子量多聚體、全長(zhǎng)型脂聯(lián)素在體內(nèi)較為穩(wěn)定,意味著某種亞型脂聯(lián)素含量下降并不能通過(guò)改變其他亞型脂聯(lián)素的構(gòu)象而恢復(fù)[11]。但是在體外實(shí)驗(yàn)中發(fā)現(xiàn),HMW和LMW在低pH值等還原條件時(shí)分子內(nèi)二硫鍵斷裂,產(chǎn)生了無(wú)N端膠原結(jié)構(gòu)域的全長(zhǎng)型脂聯(lián)素三聚體和球狀脂聯(lián)素三聚體。

脂聯(lián)素的多聚復(fù)合物構(gòu)象被認(rèn)為是調(diào)節(jié)其生物功能的重要機(jī)制[12]。體內(nèi)及體外實(shí)驗(yàn)證實(shí),HMW是脂聯(lián)素中具有生物學(xué)活性的形式,具有抗動(dòng)脈粥樣硬化、抗糖尿病、抗炎的作用,可以阻止糖尿病和心血管疾病的進(jìn)展[13]。

1.2 脂聯(lián)素受體

不同亞型的脂聯(lián)素與不同的脂聯(lián)素受體相結(jié)合。與HMW和LMW結(jié)合的受體是T型鈣黏蛋白[14]。T型鈣黏蛋白是一種由Ca2+介導(dǎo)細(xì)胞間信號(hào)傳遞的細(xì)胞表面蛋白[15],它沒(méi)有細(xì)胞內(nèi)結(jié)構(gòu),由糖原錨定于細(xì)胞膜表面[16]。脂聯(lián)素分子C端球狀結(jié)構(gòu)域含有一個(gè)Ca2+結(jié)合位點(diǎn),因而可以通過(guò)Ca2+介導(dǎo)與T型鈣黏蛋白結(jié)合[11]。T型鈣黏蛋白在受傷的血管內(nèi)皮細(xì)胞和粥樣硬化的血管平滑肌細(xì)胞中大量表達(dá)[17-18],有研究認(rèn)為其具有降低心臟負(fù)荷的作用19。但是,T型鈣黏蛋白與脂聯(lián)素結(jié)合后的信號(hào)轉(zhuǎn)導(dǎo)以及相關(guān)功能的分子機(jī)制仍不清楚,需要進(jìn)一步研究來(lái)證實(shí)。

AdipoR1和AdipoR2是另外2種主要的脂聯(lián)素受體,由25個(gè)氨基酸殘基構(gòu)成,蛋白質(zhì)分子N端位于胞質(zhì)中,而C端位于胞膜外[20-21]。2種受體均具有七跨膜結(jié)構(gòu),但在結(jié)構(gòu)和功能上都與G蛋白偶聯(lián)受體有所區(qū)別。AdipoR1在全身組織中均有表達(dá),而AdipoR2在肝臟中特異性表達(dá)[21]。有體外研究表明,全長(zhǎng)型脂聯(lián)素主要在肝臟中與AdipoR2結(jié)合,而球狀脂聯(lián)素與AdipoR1的親和力較高[22]。

參與脂聯(lián)素受體下游信號(hào)通路中分子包括含有PH結(jié)構(gòu)的銜接蛋白(APPL1)、激活蛋白激酶受體C1(RACK1)、蛋白激酶CK2β、Mr為46×103的內(nèi)質(zhì)網(wǎng)蛋白(ERp46)[23-27]。

此外,脂聯(lián)素作為一種凝集素可以與巨噬細(xì)胞表面的鈣網(wǎng)蛋白結(jié)合,促進(jìn)死亡細(xì)胞的吸收,因而可以在一定程度上減輕全身性炎癥[28-29]。

1.3 脂聯(lián)素的信號(hào)轉(zhuǎn)導(dǎo)通路

脂聯(lián)素基因啟動(dòng)子包含多個(gè)轉(zhuǎn)錄因子結(jié)合位點(diǎn),可以通過(guò)多種因子調(diào)節(jié)其活性[30-31]。能夠上調(diào)脂聯(lián)素表達(dá)的轉(zhuǎn)錄因子有過(guò)氧化物酶增殖物激活受體γ(PPAR-γ)、C/EBPa、叉頭轉(zhuǎn)錄因子FoxO1[32-33]。在肥胖引起的慢性低度炎癥、氧化應(yīng)激等狀態(tài)下,脂聯(lián)素的表達(dá)下調(diào)[31]。氧化應(yīng)激時(shí)通過(guò)影響Akt和JAK/STAT信號(hào)通路,炎癥因子TNFα通過(guò)影響蛋白激酶C和JNK信號(hào)通路、炎癥因子IL-6通過(guò)影響p44/42MAPK均能下調(diào)脂聯(lián)素的表達(dá)[34-37]。另外,在內(nèi)質(zhì)網(wǎng)應(yīng)激時(shí),脂聯(lián)素mRNA表達(dá)水平下調(diào)[38-39]。轉(zhuǎn)錄因子CREB可以被β腎上腺素能信號(hào)通路激活,進(jìn)而通過(guò)ATF3、NFAT、蛋白激酶A下調(diào)脂聯(lián)素的表達(dá)[30-31]。

2 脂聯(lián)素與胰島素抵抗

脂聯(lián)素與其受體AdipoR結(jié)合后,主要通過(guò)AMP活化的蛋白激酶(AMPK)和過(guò)氧化物酶增殖物激活受體α(PPAR-α)來(lái)調(diào)節(jié)糖代謝[21]。脂聯(lián)素抑制肝臟糖異生產(chǎn)生降糖作用的具體機(jī)制包括以下幾點(diǎn):增加乙酰輔酶A羧化酶的磷酸化、增加脂肪酸消耗、增加葡萄糖攝取率、增加肌細(xì)胞產(chǎn)生乳酸[40]。

AMPK是依賴(lài)AMP的蛋白激酶,在細(xì)胞代謝中起傳感器作用。脂聯(lián)素通過(guò)AMPK參與葡萄糖的攝取和β氧化[22]。研究發(fā)現(xiàn),APPL1在脂聯(lián)素激活A(yù)MPK的信號(hào)轉(zhuǎn)導(dǎo)通路中發(fā)揮重要作用[41-42]。骨骼肌中的全長(zhǎng)型脂聯(lián)素和球狀脂聯(lián)素可以激活A(yù)MPK,而肝臟中的全長(zhǎng)型脂聯(lián)素可以激活A(yù)MPK[43-44]。從肥胖的2型糖尿病患者中分離出的骨骼肌細(xì)胞中,AMPK的磷酸化水平下降,說(shuō)明脂聯(lián)素受體下游的信號(hào)通路受損可以引起胰島素抵抗[45]。

脂聯(lián)素通過(guò)PPAR-α增加了機(jī)體對(duì)脂肪酸和能量的消耗,從而降低了甘油三酯的水平,同樣增加了肝臟和骨骼肌的胰島素敏感性[40]。較高的游離脂肪酸導(dǎo)致葡萄糖攝取率下降,其機(jī)制可能是高甘油三酯血癥引起線粒體內(nèi)蓄積較多的NADH和乙酰輔酶A,抑制了己糖激酶2和6-磷酸果糖激酶-1的活性,從而增加了細(xì)胞內(nèi)葡萄糖含量,降低了細(xì)胞對(duì)葡萄糖的攝取率。但是也有學(xué)者認(rèn)為較高的游離脂肪酸會(huì)首先影響葡萄糖轉(zhuǎn)運(yùn)和磷酸化,再導(dǎo)致糖原合成和葡萄糖有氧氧化的減少。在骨骼肌細(xì)胞中,脂聯(lián)素可以通過(guò)上調(diào)PPAR-α信號(hào)通路下游蛋白CD36、乙酰輔酶A氧化酶的表達(dá)增加脂肪酸的轉(zhuǎn)運(yùn),從而緩解胰島素抵抗[46]。另一方面,高甘油三酯血癥可以通過(guò)影響由胰島素刺激下的磷脂酰肌醇3激酶(PI3K)和葡萄糖轉(zhuǎn)運(yùn)體4(GLUT-4)的活化來(lái)影響細(xì)胞對(duì)葡萄糖的攝取率。細(xì)胞內(nèi)脂肪酸代謝產(chǎn)物的堆積,可能會(huì)增加絲氨酸/蘇氨酸級(jí)聯(lián)反應(yīng)的活性,通過(guò)蛋白激酶C增加胰島素受體底物1(IRS-1)絲氨酸/蘇氨酸的磷酸化。磷酸化的IRS-1絲氨酸不能與PI3K結(jié)合并將其活化,導(dǎo)致葡萄糖轉(zhuǎn)運(yùn)降低并產(chǎn)生胰島素抵抗。游離脂肪酸也可以直接影響GLUT-4的表達(dá)、轉(zhuǎn)運(yùn)、趨化。此外,游離脂肪酸能夠降低肝臟對(duì)胰島素的清除率,并增加肝糖輸出,進(jìn)一步促進(jìn)了胰島素抵抗的發(fā)展[47]。

但是,體內(nèi)脂聯(lián)素信號(hào)通路對(duì)胰島素敏感性的影響存在一些爭(zhēng)議。體內(nèi)脂聯(lián)素受體AdipoR1主要存在于骨骼肌中,其與球狀脂聯(lián)素的親和力遠(yuǎn)高于全長(zhǎng)型脂聯(lián)素。大多數(shù)體外實(shí)驗(yàn)的研究對(duì)象為球狀脂聯(lián)素,而體內(nèi)全長(zhǎng)型脂聯(lián)素的含量遠(yuǎn)高于球狀脂聯(lián)素48。研究發(fā)現(xiàn),小鼠模型中AdipoR1基因敲除可以抑制由脂聯(lián)素激活的AMPK信號(hào)通路活性;抑制AdipoR2的表達(dá)可以抑制PPAR-α信號(hào)通路活性;同時(shí)敲除AdipoR1和AdipoR2可以阻止脂聯(lián)素與其受體結(jié)合并激活,進(jìn)而產(chǎn)生胰島素抵抗[49]。也有研究發(fā)現(xiàn),AdipoR1基因敲除小鼠表現(xiàn)出顯著的肥胖,而AdipoR2基因敲除小鼠則較為消瘦,并且具有阻止高脂高糖飲食條件下產(chǎn)生肥胖的效應(yīng),這表明AdipoR1和AdipoR2具有相反的作用[50]。

3 脂聯(lián)素信號(hào)通路在臨床中的價(jià)值

在臨床上以脂聯(lián)素信號(hào)通路為靶點(diǎn)改善胰島素抵抗的方法主要有以下2種,其一是提高脂聯(lián)素血漿濃度,其二是增加脂聯(lián)素信號(hào)轉(zhuǎn)導(dǎo)通路的活性。

提高脂聯(lián)素的血漿濃度可以通過(guò)2種方式實(shí)現(xiàn),其一是直接應(yīng)用外源性脂聯(lián)素,其二是通過(guò)藥物治療增加內(nèi)源性脂聯(lián)素的表達(dá)。由于脂聯(lián)素在體內(nèi)以多聚體的形式存在,故直接應(yīng)用外源性脂聯(lián)素較為困難。因此,增加脂聯(lián)素體內(nèi)含量的可行方法是通過(guò)藥物以及改善生活方式來(lái)促進(jìn)內(nèi)源性脂聯(lián)素表達(dá)。能夠有效提高脂聯(lián)素水平的藥物有PPAR-α受體激動(dòng)劑噻唑烷二酮(TZDs)[51-52]、血管緊張素轉(zhuǎn)換酶抑制劑(ACEI)和血管緊張素Ⅱ受體阻斷劑(ARBs)[53-54];近來(lái)的研究發(fā)現(xiàn),大麻素-1受體阻斷劑,如taranabant,可以調(diào)節(jié)體內(nèi)脂聯(lián)素的水平,但這種藥物尚不能應(yīng)用于臨床,需要評(píng)估其治療價(jià)值以及對(duì)中樞神經(jīng)系統(tǒng)的影響[55]。此外,已發(fā)現(xiàn)某些日常食物如魚(yú)油、亞油酸、菜籽提取物、綠茶提取物、多酚白藜蘆醇等可以促進(jìn)體內(nèi)脂聯(lián)素的表達(dá)[56]。對(duì)于肥胖和糖尿病人群,減重和體育活動(dòng)也能夠有效提高體內(nèi)脂聯(lián)素水平[57]。

可以通過(guò)上調(diào)體內(nèi)脂聯(lián)素受體的表達(dá)來(lái)增加體內(nèi)脂聯(lián)素信號(hào)轉(zhuǎn)導(dǎo)通路的活性。PPAR-α激動(dòng)劑、PPAR-γ激動(dòng)劑、ARBs等都可以上調(diào)脂聯(lián)素受體的表達(dá)[58]。之前發(fā)現(xiàn)一種名為osmotin的蛋白可能具有脂聯(lián)素受體激動(dòng)劑的效應(yīng)[59]。最近新研制出一種可以口服的合成活性小分子脂聯(lián)素受體激動(dòng)劑AdipoRon。在動(dòng)物模型中,AdipoRon具有改善肥胖相關(guān)疾病的效應(yīng),如胰島素抵抗、糖耐量異常、2型糖尿病等,并且發(fā)現(xiàn)能夠延長(zhǎng)動(dòng)物模型壽命[60-61]。

4 結(jié)語(yǔ)

脂聯(lián)素是一種重要的脂肪因子,在體內(nèi)參與多種代謝的調(diào)節(jié)。因脂聯(lián)素對(duì)胰島素抵抗具有正向調(diào)節(jié)作用,脂聯(lián)素信號(hào)轉(zhuǎn)導(dǎo)通路機(jī)制可能成為糖尿病新藥研究的方向,這些機(jī)制包括脂聯(lián)素的生物合成、脂聯(lián)素多聚化過(guò)程以增加活化亞型HMW的比例、脂聯(lián)素在基因水平的調(diào)控、脂聯(lián)素受體下游的信號(hào)通路機(jī)制,以及脂聯(lián)素在細(xì)胞內(nèi)的活性。

因此,還需要對(duì)脂聯(lián)素的信號(hào)轉(zhuǎn)導(dǎo)通路機(jī)制進(jìn)行更深入的研究以應(yīng)用于臨床。而前述改善脂聯(lián)素表達(dá)和脂聯(lián)素通路活性的藥物還需要大樣本量的臨床試驗(yàn)來(lái)證實(shí)其對(duì)脂聯(lián)素信號(hào)通路的調(diào)控作用。

[1]Friedman J M.A war on obesity,not the obese[J].Science,2003,299:856-858.

[2]Matthaei S,Stumvoll M,Kellerer M,et al.Pathophysiology and pharmacological treatment of insulin resistance[J].Endocr Rev,2000,21:585-618.

[3]Saltiel A R.Series introduction:the molecular and physiological basis of insulin resistance:emerging implications for metabolic and cardiovascular diseases[J]. J Clin Investig,2000,106:163-164.

[4]Li Y,Ding L,Hassan W,et al.Adipokines and hepatic insulin resistance[J].J Diabetes Res,2013,2013: 170532.

[5]Rabe K,Lehrke M,Parhofer K G,et al.Adipokines and insulin resistance[J].Mol Med,2008,14:741-751.

[6]Tilg H,Moschen A R.Adipocytokines:mediators linking adipose tissue,inflammation and immunity[J].Nat Rev Immunol,2006,6:772-783.

[7]Arita Y,Kihara S,Ouchi N,et al.Paradoxical decrease of an adipose-specific protein,adiponectin,in obesity.1999[J].Biochem Biophys Res Commun,2012, 425:560-564.

[8]Kadowaki T,Yamauchi T,Kubota N,et al.Adiponectin and adiponectin receptors in insulin resistance,diabetes,and the metabolic syndrome[J].J Clin Investig, 2006,116:1784-1792.

[9]Lihn A S,Pedersen S B,Richelsen B.Adiponectin: action,regulation and association to insulin sensitivity [J].Obes Rev,2005,6:13-21.

[10]Berg A H,Combs T P,Scherer P E.ACRP30/adiponectin:an adipokine regulating glucose and lipid metabolism[J].Trends Endocr Metab,2002,13:84-89.

[11]Schraw T,Wang Z V,Halberg N,et al.Plasma adiponectin complexes have distinct biochemical characteristics[J].Endocrinology,2008,149:2270-2282.

[12]Pajvani U B,Du X,Combs T P,et al.Structure-function studies of the adipocyte-secreted hormone Acrp30/ adiponectin. Implications fpr metabolic regulation and bioactivity[J].J Biol Chem,2003,278:9073-9085.

[13]Aso Y,Yamamoto R,Wakabayashi S,et al.Comparison of serum high-molecular weight(HMW)adiponectin with total adiponectin concentrations in type 2 diabetic patients with coronary artery disease using a novel enzyme-linked immunosorbent assay to detect HMW adiponectin[J].Diabetes,2006,55:1954-1960.

[14]Hug C,Wang J,Ahmad N S,et al.T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin[J].Proc Natl Acad Sci USA,2004,101:10308-10313.

[15]Vestal D J,Ranscht B.Glycosyl phosphatidylinositolanchored T-cadherin mediates calcium-dependent,homophilic cell adhesion[J].J Cell Biol,1992,119:451-461.

[16]Philippova M P,Bochkov V N,Stambolsky D V,et al.T-cadherin and signal-transducing molecules co-localize in caveolin-rich membrane domains of vascular smooth muscle cells[J].FEBS Lett,1998,429:207-210.

[17]Takeuchi T,Adachi Y,Ohtsuki Y,et al.Adiponectin receptors,with special focus on the role of the third receptor,T-cadherin,in vascular disease[J].Med Mol Morphol,2007,40:115-120.

[18]Ivanov D,Philippova M,Antropova J,et al.Expression of cell adhesion molecule T-cadherin in the human vasculature[J].Histochem Cell Biol,2001,115: 231-242.

[19]Denzel M S,Scimia M C,Zumstein P M,et al.T-cadherin is critical for adiponectin-mediated cardioprotection in mice[J].J Clin Investig,2010,120:4342-4352.

[20]Yamauchi T,Kamon J,Ito Y,et al.Cloning of adiponectin receptors that mediate antidiabetic metabolic ef-fects[J].Nature,2003,423:762-769.

[21]Kadowaki T,Yamauchi T.Adiponectin and adiponectin receptors[J].Endocr Rev,2005,26:439-451.

[22]Yamauchi T,Kamon J,Minokoshi Y,et al.Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase[J]. Nat Med,2002,8:1288-1295.

[23]Heiker J T,Kosel D,Beck-Sickinger A G.Molecular mechanisms of signal transduction via adiponectin and adiponectin receptors[J].Biol Chem,2010,391:1005-1018.

[24]Mao X,Kikani C K,Riojas R A,et al.APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function[J].Nat Cell Biol,2006,8:516-523.

[25]Xu Y,Wang N,Ling F,et al.Receptor for activated C-kinase 1,a novel binding partner of adiponectin receptor 1[J].Biochem Biophys Res Commun,2009,378: 95-98.

[26]Heiker J T,Wottawah C M,Juhl C,et al.Protein kinase CK2 interacts with adiponectin receptor 1 and participates in adiponectin signaling[J].Cell Sig,2009, 21:936-942.

[27]Charlton H K,Webster J,Kruger S,et al.ERp46 binds to AdipoR1,but not AdipoR2,and modulates adiponectin signalling[J].Biochem Biophys Res Commun,2010,392:234-239.

[28]Takemura Y,Ouchi N,Shibata R,et al.Adiponectin modulates inflammatory reactions via calreticulin receptor-dependent clearance of early apoptotic bodies[J]. J Clin Investig,2007,117:375-386.

[29]Ouchi N,Parker J L,Lugus J J,et al.Adipokines in inflammation and metabolic disease[J].Nat Rev Immunol,2011,11:85-97.

[30]Liu M,Liu F.Transcriptional and post-translational regulation of adiponectin[J].Biochem J,2010,425:41-52.

[31]Phillips S A,Kung J T.Mechanisms of adiponectin regulation and use as a pharmacological target[J]. Curr Opin Pharmacol,2010,10:676-683.

[32]Nakae J,Cao Y,Oki M,et al.Forkhead transcription factor FoxO1 in adipose tissue regulates energy storage and expenditure[J].Diabetes,2008,57:563-576.

[33]Qiao L,Shao J.SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein alpha transcriptional complex[J].J Biol Chem,2006,281: 39915-39924.

[34]Zhang X,Li Z Z,Liu D F,et al.Angiotensin-converting enzyme inhibitors improve hepatic steatosis by modulating expression of tumour necrosis factor-alpha,interleukin-6 and adiponectin receptor-2 in rats with type 2 diabetes[J].Clin Exp Pharmacol Physiol, 2009,36:631-636.

[35]Lim J Y,Kim W H,Park S I.GO6976 prevents TNF-alpha-induced suppression of adiponectin expression in 3T3-L1 adipocytes:putative involvement of protein kinase C[J].FEBS Lett,2008,582:3473-3478.

[36]Kim K Y,Kim J K,Jeon J H,et al.c-Jun N-term inal kinase is involved in the suppression of adiponectin expression by TNF-alpha in 3T3-L1 adipocytes [J].Biochem Biophys Res Commun,2005,327:460-467. [37]Fasshauer M,Kralisch S,Klier M,et al.Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 adipocytes[J].Biochem Biophys Res Commun,2003,301:1045-1050.

[38]Hosogai N,Fukuhara A,Oshima K,et al.Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation[J].Diabetes,2007,56:901-911.

[39]Han K L,Choi J S,Lee J Y,et al.Therapeutic potential of peroxisome proliferators--activated receptoralpha/gamma dual agonist with alleviation of endoplasmic reticulum stress for the treatment of diabetes[J]. Diabetes,2008,57:737-745.

[40]Yadav A,Kataria M A,Saini V,et al.Role of leptin and adiponectin in insulin resistance[J].Clin Chim Acta,2013,417:80-84.

[41]Deepa S S,Zhou L,Ryu J,et al.APPL1 mediates adiponectin-induced LKB1 cytosolic localization through the PP2A-PKCzeta signaling pathway[J].Mol Endocrinol,2011,25:1773-1785.

[42]Zhou L,Deepa S S,Etzler J C,et al.Adiponectin activates AMP-activated protein kinase in muscle cells via APPL1/LKB1-dependent and phospholipase C/Ca2+/ Ca2+/calmodulin-dependent protein kinase kinase-dependent pathways[J].J Biol Chem,2009,284:22426-22435.

[43]Yamauchi T,Kamon J,Minokoshi Y,et al.Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase[J]. Nat Med,2002,8:1288-1295.

[44]Fasshauer M,Klein J,Kralisch S,et al.Growth hormone is a positive regulator of adiponectin receptor 2in 3T3-L1 adipocytes[J].FEBS Lett,2004,558:27-32.

[45]Chen M B,McAinch A J,Macaulay S L,et al.Impaired activation of AMP-kinase and fatty acid oxidation by globular adiponectin in cultured human skeletal muscle of obese type 2 diabetics[J].J Clin Endocrinol Metab,2005,90:3665-3672.

[46]Yamauchi T,Kamon J,Waki H,et al.The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity[J].Nat Med,2001,7:941-946.

[47]O'Rourke R W,Metcalf M D,White A E,et al.Depot-specific differences in inflammatory mediators and a role for NK cells and IFN-gamma in inflammation in human adipose tissue[J].Int J Obes(Lond),2009,33: 978-990.

[48]Liu M,Zhou L,Xu A,et al.A disulfide-bond A oxidoreductase-like protein(DsbA-L)regulates adiponectin multimerization[J].Proc Natl Acad Sci USA,2008, 105:18302-18307.

[49]Yamauchi T,Nio Y,Maki T,et al.Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions[J].Nat Med, 2007,13:332-339.

[50]Bjursell M,Ahnmark A,Bohlooly Y M,et al.Opposing effects of adiponectin receptors 1 and 2 on energy metabolism[J].Diabetes,2007,56:583-593.

[51]Yamauchi T,Kamon J,Waki H,et al.The mechanisms by which both heterozygous peroxisome proliferator-activated receptor gamma(PPARgamma)deficiency and PPARgamma agonist improve insulin resistance[J]. J Biol Chem,2001,276:41245-41254.

[52]Kubota N,Terauchi Y,Kubota T,et al.Pioglitazone ameliorates insulin resistance and diabetes by both adiponectin-dependent and-independent pathways[J].J Biol Chem,2006,281:8748-8755.

[53]Wang Z V,Scherer P E.Adiponectin,cardiovascular function,and hypertension[J].Hypertension,2008,51:8-14.

[54]Yilmaz M I,Sonmez A,Caglar K,et al.Effect of antihypertensive agents on plasma adiponectin levels in hypertensive patients with metabolic syndrome[J].Nephrology(Carlton),2007,12:147-153.

[55]Viveros M P,de Fonseca F R,Bermudez-Silva F J, et al.Critical role of the endocannabinoid system in the regulation of food intake and energy metabolism, with phylogenetic,developmental,and pathophysiological implications[J]. Endocr Metab Immune Disord Drug Targets,2008,8:220-230.

[56]Hui X,Lam K S,Vanhoutte P M,et al.Adiponectin and cardiovascular health:an update[J].Br J Pharmacol,2012,165:574-590.

[57]Tishinsky J M,Dyck D J,Robinson L E.Lifestyle factors increasing adiponectin synthesis and secretion[J]. Vitam Horm,2012,90:1-30.

[58]Yamauchi T,Kadowaki T.Adiponectin receptor as a key player in healthy longevity and obesity-related diseases[J].Cell Metab,2013,17:185-196.

[59]Narasimhan M L,Coca M A,Jin J,et al.Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor[J].Mol Cell,2005,17:171-180.

[60]Okada-Iwabu M,Yamauchi T,Iwabu M,et al.A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity[J].Nature,2013,503:493-499.

[61]Okada-Iwabu M,Iwabu M,Ueki K,et al.Perspective of Small-Molecule AdipoR Agonist for Type 2 Diabetes and Short Life in Obesity[J].Diabetes Metab J, 2015,39:363-372.

Progress of the Relationship Between Adiponectin and Insulin Resistance

AN Ping,WANG An-Ping,MU Yi-Ming*

Department of Endocrinology,General Hospital of Chinese PLA,Beijing 100853,China *Corresponding author,E-mail:hgx0536@163.com

s]Adiponectin,a protein secreted by adipose tissue,is considered that associated with insulin resistance and obesity.The reduction of adiponectin level was observed in people with insulin resistance.The insulin-sensitizing efforts of adiponectin resulting from the activation of AMPK and PPAR-αand the decrease of triglyceride level.Up-regulation of adiponectin signaling may be the potential treatment strategy of insulin resistance.This review aims to discuss the mechanisms of adiponectin related to insulin resistance and its perspective of clinical value.

adiponectin;insulin resistance;obesity

R335.6

A

1009-0002(2017)03-0360-06

10.3969/j.issn.1009-0002.2017.03.024

2016-10-21

安平(1990-),男,碩士研究生,(E-mail)anping6666@sina.com

母義明,(E-mail)hgx0536@163.com

猜你喜歡
信號(hào)轉(zhuǎn)導(dǎo)脂聯(lián)素抵抗
鍛煉肌肉或有助于抵抗慢性炎癥
中老年保健(2021年5期)2021-08-24 07:06:20
Wnt/β-catenin信號(hào)轉(zhuǎn)導(dǎo)通路在瘢痕疙瘩形成中的作用機(jī)制研究
做好防護(hù) 抵抗新冠病毒
iNOS調(diào)節(jié)Rab8參與肥胖誘導(dǎo)的胰島素抵抗
脂聯(lián)素生物學(xué)與消化系統(tǒng)腫瘤
自噬與脂聯(lián)素誘導(dǎo)的人乳腺癌MCF-7細(xì)胞凋亡的關(guān)系
HGF/c—Met信號(hào)轉(zhuǎn)導(dǎo)通路在結(jié)直腸癌肝轉(zhuǎn)移中的作用
脂聯(lián)素、瘦素與2型糖尿病患者輕度認(rèn)知功能障礙的關(guān)系
脂聯(lián)素、瘦素與2型糖尿病患者輕度認(rèn)知功能障礙的關(guān)系
金华市| 永宁县| 徐州市| 绥化市| 霞浦县| 西丰县| 嘉荫县| 白玉县| 曲周县| 石首市| 遵义市| 元朗区| 绥芬河市| 庆阳市| 扶风县| 阿合奇县| 阿荣旗| 沈阳市| 仙游县| 舞阳县| 枞阳县| 新巴尔虎右旗| 凤翔县| 东方市| 建德市| 琼中| 枣阳市| 乌拉特中旗| 孟州市| 育儿| 渑池县| 中宁县| 嘉兴市| 措勤县| 嘉定区| 通山县| 德保县| 永福县| 南漳县| 景德镇市| 仁怀市|